Skip to content
2000
Volume 24, Issue 16
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

NOP58 ribonucleoprotein (NOP58) is associated with the recurrence of lung adenocarcinoma.

Aims

Few investigations concentrate on the role of NOP58 in non-small cell lung cancer (NSCLC), which is the focus of our current study.

Methods

Following transfection, the proliferation, migration, and invasion of NSCLC cells were assessed by 5-ethynyl-2’-deoxyuridine (EdU), wound healing, and transwell assays. The percentage of CD9+ cells was evaluated by flow cytometry assay. Based on target genes and binding sites predicted through bioinformatics analysis, a dual-luciferase reporter assay was performed to verify the targeting relationship between hsa_circ_0001550 and NOP58. The effect of NOP58 overexpression on hsa_circ_0001550 stability was gauged using Actinomycin D. The hsa_circ_0001550 and NOP58 expression levels, as well as protein expressions of CD44, CD133, OCT4, and SOX2 in NSCLC cells were determined by quantitative real-time PCR and Western blot, respectively.

Results

Hsa_circ_0001550 was remarkably up-regulated in NSCLC cell lines A549 and PC9, silencing of which weakened cell abilities to proliferate, migrate and invade, decreased CD9+ cell ratio, and diminished protein expressions of CD44, CD133, OCT4, and SOX2. NOP58 could bind to hsa_circ_0001550 and stabilize its expression, and NOP58 overexpression partially abrogated hsa_circ_0001550 knockdown-inhibited NSCLC cell proliferation, migration, invasion and stemness.

Conclusion

Overexpression of NOP58 facilitates proliferation, migration, invasion, and stemness of NSCLC cells by stabilizing hsa_circ_0001550, hinting that NOP58 is a novel molecular target for NSCLC therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206293943240615105417
2024-10-01
2025-04-04
Loading full text...

Full text loading...

References

  1. BadeB.C. Dela CruzC.S. Lung Cancer 2020.Clin. Chest Med.202041112410.1016/j.ccm.2019.10.001 32008623
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. ThaiA.A. SolomonB.J. SequistL.V. GainorJ.F. HeistR.S. Lung cancer.Lancet20213981029953555410.1016/S0140‑6736(21)00312‑3 34273294
    [Google Scholar]
  4. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature25183 29364287
    [Google Scholar]
  5. HamiltonG. RathB. Pharmacogenetics of platinum-based chemotherapy in non-small cell lung cancer: predictive validity of polymorphisms of ERCC1.Expert Opin. Drug Metab. Toxicol.2018141172410.1080/17425255.2018.1416095 29226731
    [Google Scholar]
  6. DudnikE. MoskovitzM. RottenbergY. Pembrolizumab as a monotherapy or in combination with platinum-based chemotherapy in advanced non-small cell lung cancer with PD-L1 tumor proportion score (TPS) ≥50%: real-world data.OncoImmunology2021101186565310.1080/2162402X.2020.1865653 33552685
    [Google Scholar]
  7. WangJ. HuangR. HuangY. ChenY. ChenF. Overexpression of NOP58 as a prognostic marker in hepatocellular carcinoma: A TCGA data-based analysis.Adv. Ther.20213863342336110.1007/s12325‑021‑01762‑2 34014550
    [Google Scholar]
  8. WuH. QinW. LuS. Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2′-O-methylation via NOP58 recruitment in colorectal cancer.Mol. Cancer20201919510.1186/s12943‑020‑01201‑w 32443980
    [Google Scholar]
  9. HeJ. YuJ. Long noncoding RNA FAM83A-AS1 facilitates hepatocellular carcinoma progression by binding with NOP58 to enhance the mRNA stability of FAM83A.Biosci. Rep.20193911BSR2019255010.1042/BSR20192550 31696213
    [Google Scholar]
  10. ShenZ. LiuS. LiuJ. LiuJ. YaoC. Weighted gene co-expression network analysis and treatment strategies of tumor recurrence-associated hub genes in lung adenocarcinoma.Front. Genet.20211275623510.3389/fgene.2021.756235 34868230
    [Google Scholar]
  11. ZengY. DuW.W. WuY. A circular RNA binds to and activates akt phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair.Theranostics20177163842385510.7150/thno.19764 29109781
    [Google Scholar]
  12. KristensenL.S. AndersenM.S. StagstedL.V.W. EbbesenK.K. HansenT.B. KjemsJ. The biogenesis, biology and characterization of circular RNAs.Nat. Rev. Genet.2019201167569110.1038/s41576‑019‑0158‑7 31395983
    [Google Scholar]
  13. LiH. XuJ.D. FangX.H. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4.Cardiovasc. Res.202011671323133410.1093/cvr/cvz215 31397837
    [Google Scholar]
  14. ChenY.G. KimM.V. ChenX. Sensing self and foreign circular RNAs by intron identity.Mol. Cell2017672228238.e510.1016/j.molcel.2017.05.022 28625551
    [Google Scholar]
  15. LiuC.X. LiX. NanF. Structure and degradation of circular RNAs regulate PKR activation in innate immunity.Cell20191774865880.e2110.1016/j.cell.2019.03.046 31031002
    [Google Scholar]
  16. GoodallG.J. WickramasingheV.O. RNA in cancer.Nat. Rev. Cancer2021211223610.1038/s41568‑020‑00306‑0 33082563
    [Google Scholar]
  17. HongW. XueM. JiangJ. ZhangY. GaoX. Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC).J. Exp. Clin. Cancer Res.202039114910.1186/s13046‑020‑01648‑1 32746878
    [Google Scholar]
  18. FanY. WangQ. ShiM. Circ_0020123 promotes NSCLC tumorigenesis via up-regulating KIAA1522 expression through miR-940.Cell Cycle202221989490710.1080/15384101.2022.2034093 35196193
    [Google Scholar]
  19. ZhouY. ZhangQ. QiuX. TianT. XuQ. LiaoB. Hsa_circ_0001550 facilitates colorectal cancer progression through mediating microRNA -4262/nuclear casein kinase and cyclin-dependent kinase substrate 1 cascade.J. Clin. Lab. Anal.2022367e2453210.1002/jcla.24532 35698305
    [Google Scholar]
  20. ZhaoS. WangB. MaY. KuangJ. LiangJ. YuanY. NUCKS1 promotes proliferation, invasion and migration of non-small cell lung cancer by upregulating CDK1 expression.Cancer Manag. Res.202012133111332310.2147/CMAR.S282181 33380837
    [Google Scholar]
  21. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.Methods200125440240810.1006/meth.2001.1262 11846609
    [Google Scholar]
  22. KristensenL.S. JakobsenT. HagerH. KjemsJ. The emerging roles of circRNAs in cancer and oncology.Nat. Rev. Clin. Oncol.202219318820610.1038/s41571‑021‑00585‑y 34912049
    [Google Scholar]
  23. LiuX.X. YangY.E. LiuX. A two-circular RNA signature as a noninvasive diagnostic biomarker for lung adenocarcinoma.J. Transl. Med.20191715010.1186/s12967‑019‑1800‑z 30777071
    [Google Scholar]
  24. OhshimaK. MoriiE. Metabolic reprogramming of cancer cells during tumor progression and metastasis.Metabolites20211112810.3390/metabo11010028 33401771
    [Google Scholar]
  25. LeeY.T. TanY.J. OonC.E. Molecular targeted therapy: Treating cancer with specificity.Eur. J. Pharmacol.201883418819610.1016/j.ejphar.2018.07.034 30031797
    [Google Scholar]
  26. MunE.J. BabikerH.M. WeinbergU. KirsonE.D. Von HoffD.D. Tumor-treating fields: A fourth modality in cancer treatment.Clin. Cancer Res.201824226627510.1158/1078‑0432.CCR‑17‑1117 28765323
    [Google Scholar]
  27. ShackletonM. QuintanaE. FearonE.R. MorrisonS.J. Heterogeneity in cancer: Cancer stem cells versus clonal evolution.Cell2009138582282910.1016/j.cell.2009.08.017 19737509
    [Google Scholar]
  28. SkvortsovaI. Cancer stem cells: What do we know about them?Cells2021106152810.3390/cells10061528 34204391
    [Google Scholar]
  29. WalcherL. KistenmacherA.K. SuoH. Cancer stem cells—origins and biomarkers: Perspectives for targeted personalized therapies.Front. Immunol.202011128010.3389/fimmu.2020.01280 32849491
    [Google Scholar]
  30. SinghA. RNA-binding protein kinetics.Nat. Methods202118433510.1038/s41592‑021‑01122‑6 33828270
    [Google Scholar]
  31. SommerG. HeiseT. Role of the RNA-binding protein La in cancer pathobiology.RNA Biol.202118221823610.1080/15476286.2020.1792677 32687431
    [Google Scholar]
  32. LiuJ. LuJ. LiW. MaoW. LuY. Machine learning screens potential drugs targeting a prognostic gene signature associated with proliferation in hepatocellular carcinoma.Front. Genet.20221390038010.3389/fgene.2022.900380 35836576
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206293943240615105417
Loading
/content/journals/acamc/10.2174/0118715206293943240615105417
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test