Skip to content
2000
Volume 24, Issue 16
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Proteases are implicated in every hallmark of cancer and have complicated functions. For cancer cells to survive and thrive, the process of controlling intracellular proteins to keep the balance of the cell proteome is essential. Numerous natural compounds have been used as ligands/ small molecules to target various proteases that are found in the lysosomes, mitochondria, cytoplasm, and extracellular matrix, as possible anticancer therapeutics. Promising protease modulators have been developed for new drug discovery technology through recent breakthroughs in structural and chemical biology. The protein structure, function of significant tumor-related proteases, and their natural compound inhibitors have been briefly included in this study. This review highlights the most current frontiers and future perspectives for novel therapeutic approaches associated with the list of anticancer natural compounds targeting protease and the mode and mechanism of proteinase-mediated molecular pathways in cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206303964240708095110
2024-10-01
2025-04-22
Loading full text...

Full text loading...

References

  1. BeynonR.J. BondJ.S. Proteolytic Enzymes: A Practical Approach.LondonOxford University Press200110.1093/oso/9780199636631.001.0001
    [Google Scholar]
  2. López-OtínC. MatrisianL.M. Emerging roles of proteases in tumour suppression.Nat. Rev. Cancer200771080080810.1038/nrc2228 17851543
    [Google Scholar]
  3. Proteases: Multifunctional enzymes in life and disease. Lo´ pez-Otín, C.; Judith, S.B., Eds.; The J Biol. Chem.2008283453043330437
    [Google Scholar]
  4. ChakrabortiS. ChakrabortiT. DhallaN.S. Eds.; Advances in Biochemistry in health and disease, proteases in human diseases.Springer Nature201310.1007/978‑1‑4614‑9233‑7
    [Google Scholar]
  5. García-LorenzoM. SjödinA. JanssonS. FunkC. Protease gene families in Populus and Arabidopsis.BMC Plant Biol.2006613010.1186/1471‑2229‑6‑30 17181860
    [Google Scholar]
  6. VoshavarC. Protease inhibitors for the treatment of HIV/AIDS: Recent advances and future challenges.Curr. Top. Med. Chem.201919181571159810.2174/1568026619666190619115243 31237209
    [Google Scholar]
  7. AngD. KendallR. AtamianH. Virtual and in vitro screening of natural products identifies indole and benzene derivatives as inhibitors of SARS-CoV-2 Main Protease (Mpro).Biology202312451910.3390/biology12040519 37106720
    [Google Scholar]
  8. WadanambiP.M. JayathilakaN. SeneviratneK.N. A computational study of carbazole alkaloids from Murraya koenigii as potential SARS-CoV-2 main protease inhibitors.Appl. Biochem. Biotechnol.2023195157359610.1007/s12010‑022‑04138‑6 36107386
    [Google Scholar]
  9. RakashS. RanaF. RafiqS. MasoodA. AminS. Role of proteases in cancer: A review.Biotechnol. Mol. Biol. Rev.2012749010110.5897/BMBR11.027
    [Google Scholar]
  10. VeltriC.A. Proteases: Nature’s destroyers and the drugs that stop them.Pharm. Pharmacol. Int. J.20152611110.15406/ppij.2015.02.00044
    [Google Scholar]
  11. Quintero-FabiánS. ArreolaR. Becerril-VillanuevaE. Torres-RomeroJ.C. Arana-ArgáezV. Lara-RiegosJ. Ramírez-CamachoM.A. Alvarez-SánchezM.E. Role of matrix metalloproteinases in angiogenesis and cancer.Front. Oncol.20199137010.3389/fonc.2019.01370 31921634
    [Google Scholar]
  12. TagirasaR. YooE. Role of serine proteases at the tumor-stroma interface.Front. Immunol.20221383241810.3389/fimmu.2022.832418 35222418
    [Google Scholar]
  13. SarkarS. BhattacharjeeP. BhadraK. DNA binding and apoptotic induction ability of harmalol in HepG2: Biophysical and biochemical approaches.Chem. Biol. Interact.201625814215210.1016/j.cbi.2016.08.024 27590872
    [Google Scholar]
  14. BhattacharjeeP. SarkarS. GhoshT. BhadraK. Therapeutic potential of harmaline, a novel alkaloid, against cervical cancer cells in vitro: Apoptotic induction and DNA interaction study.J. Appl. Biol. Biotechnol.20186418
    [Google Scholar]
  15. SarkarS. TrebediP. BhadraK. Structure-activity insights of harmine targeting DNA, ROS inducing cytotoxicity with PARP mediated apoptosis against cervical cancer, anti-biofilm formation and in vivo therapeutic study.J. Biomol. Struct. Dyn.202240135880590210.1080/07391102.2021.1874533 33480316
    [Google Scholar]
  16. LiY.Y. BaoY.L. SongZ.B. SunL.G. WuP. ZhangY. FanC. HuangY.X. WuY. YuC.L. SunY. ZhengL.H. WangG.N. LiY.X. The threonine protease activity of testes-specific protease 50 (TSP50) is essential for its function in cell proliferation.PLoS One201275e3503010.1371/journal.pone.0035030 22574111
    [Google Scholar]
  17. UenoT. ElmbergerG. WeaverT.E. ToiM. LinderS. The aspartic protease napsin A suppresses tumor growth independent of its catalytic activity.Lab. Invest.200888325626310.1038/labinvest.3700718 18195689
    [Google Scholar]
  18. DudaniJ.S. WarrenA.D. BhatiaS.N. Harnessing protease activity to Improve cancer care.Annu. Rev. Cancer Biol.20182135337610.1146/annurev‑cancerbio‑030617‑050549
    [Google Scholar]
  19. OlsonO.C. JoyceJ.A. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response.Nat. Rev. Cancer2015151271272910.1038/nrc4027 26597527
    [Google Scholar]
  20. KessenbrockK. PlaksV. WerbZ. Matrix metalloproteinases: regulators of the tumor microenvironment.Cell20101411526710.1016/j.cell.2010.03.015 20371345
    [Google Scholar]
  21. Barreira da SilvaR. LairdM.E. YatimN. FietteL. IngersollM.A. AlbertM.L. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy.Nat. Immunol.201516885085810.1038/ni.3201 26075911
    [Google Scholar]
  22. TehreemM. MaimoonaQ. AsimurR. MohamadT. NaveedA. AbdelhamidE. Exploiting proteases for cancer theranostic through molecular imaging and drug delivery.Int. J. Pharm.2020587119712
    [Google Scholar]
  23. TrezzaA. CicaloniV. PettiniF. SpigaO. Potential roles of protease inhibitors in anticancer therapy.Cancer-Leading Proteases.Elsevier2020134910.1016/B978‑0‑12‑818168‑3.00002‑4
    [Google Scholar]
  24. TurkB. Targeting proteases: successes, failures and future prospects.Nat. Rev. Drug Discov.20065978579910.1038/nrd2092 16955069
    [Google Scholar]
  25. AhmadB. BatoolM. AinQ. KimM.S. ChoiS. Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations.Int. J. Mol. Sci.20212217912410.3390/ijms22179124 34502033
    [Google Scholar]
  26. GillsJ.J. A Lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo.Clin. Cancer Res.2007131751835194
    [Google Scholar]
  27. RudzińskaM. DagliogluC. SavvateevaL.V. KaciF.N. AntoineR. ZamyatninA.A.Jr ZamyatninA.A.Jr Current status and perspectives of protease inhibitors and their combination with nanosized drug delivery systems for targeted cancer therapy.Drug Des. Devel. Ther.20211592010.2147/DDDT.S285852 33442233
    [Google Scholar]
  28. RudzińskaM. ParodiA. SoondS.M. VinarovA.Z. KorolevD.O. MorozovA.O. DagliogluC. TutarY. ZamyatninA.A.Jr The role of cysteine cathepsins in cancer progression and drug resistance.Int. J. Mol. Sci.20192014360210.3390/ijms20143602 31340550
    [Google Scholar]
  29. PetushkovaA.I. ZamyatninA.A.Jr Redox-mediated post-translational modifications of proteolytic enzymes and their role in protease functioning.Biomolecules202010465010.3390/biom10040650 32340246
    [Google Scholar]
  30. WHO. Guidelines for the assessment of herbal medicines.GenevaWorld Health Organization1991
    [Google Scholar]
  31. GahtoriR. TripathiA.H. KumariA. NegiN. PaliwalA. TripathiP. JoshiP. RaiR.C. UpadhyayS.K. Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms.Fut. J. Pharmac. Sci.2023911410.1186/s43094‑023‑00465‑5
    [Google Scholar]
  32. BhadraK. Handbook of smart materials, technologies, and devices.Applications of Industry 4.0.ChamSpringer202310.1007/978‑3‑030‑58675‑1
    [Google Scholar]
  33. CarboneD. De FrancoM. PecoraroC. BassaniD. PavanM. CascioferroS. ParrinoB. CirrincioneG. Dall’AcquaS. SutS. MoroS. GandinV. DianaP. Structural manipulations of marine natural products inspire a new library of 3-amino-1,2,4-triazine PDK inhibitors endowed with antitumor activity in pancreatic ductal adenocarcinoma.Mar. Drugs202321528810.3390/md21050288 37233482
    [Google Scholar]
  34. NanY. SuH. ZhouB. LiuS. The function of natural compounds in important anticancer mechanisms.Front. Oncol.202312104988810.3389/fonc.2022.1049888 36686745
    [Google Scholar]
  35. LuoY. YinS. LuJ. ZhouS. ShaoY. BaoX. WangT. QiuY. YuH. Tumor microenvironment: A prospective target of natural alkaloids for cancer treatment.Cancer Cell Int.202121138610.1186/s12935‑021‑02085‑6 34284780
    [Google Scholar]
  36. NamanC.B. BenatrehinaP.A. KinghornA.D. OhioT. Pharmaceuticals, plant drugs.2nd edNew YorkElsevier201710.1016/B978‑0‑12‑394807‑6.00163‑5
    [Google Scholar]
  37. MukeshwarP. MousumiD. ShobitG. SurenderK.C. Phytomedicine: An ancient approach turning into future potential source of therapeutics.J. Pharmacogn. Phytother.2011322737
    [Google Scholar]
  38. Chunarkar-PatilP. KaleemM. MishraR. RayS. AhmadA. VermaD. BhayyeS. DubeyR. SinghH. KumarS. Anticancer drug discovery based on natural products: From computational approaches to clinical studies.Biomedicines202412120110.3390/biomedicines12010201 38255306
    [Google Scholar]
  39. LiX. YuN. LiJ. BaiJ. DingD. TangQ. XuH. Novel “carrier-free” nanofiber codelivery systems with the synergistic antitumor effect of paclitaxel and tetrandrine through the enhancement of mitochondrial apoptosis.ACS Appl. Mater. Interfaces2020129100961010610.1021/acsami.9b17363 32027119
    [Google Scholar]
  40. LaskarP. SomaniS. CampbellS.J. MullinM. KeatingP. TateR.J. IrvingC. LeungH.Y. DufèsC. Camptothecin-based dendrimersomes for gene delivery and redox-responsive drug delivery to cancer cells.Nanoscale20191142200582007110.1039/C9NR07254C 31612185
    [Google Scholar]
  41. IshiiN. ArakiK. YokoboriT. HagiwaraK. GantumurD. YamanakaT. HandaT. TsukagoshiM. IgarashiT. WatanabeA. KuboN. HarimotoN. MasamuneA. UmezawaK. KuwanoH. ShirabeK. Conophylline suppresses pancreatic cancer desmoplasia and cancer‐promoting cytokines produced by cancer‐associated fibroblasts.Cancer Sci.2019110133434410.1111/cas.13847 30353606
    [Google Scholar]
  42. AntropowA.H. XuK. BuchsbaumR.J. MovassaghiM. Synthesis and evaluation of agelastatin derivatives as potent modulators for cancer invasion and metastasis.J. Org. Chem.201782157720773110.1021/acs.joc.7b01162 28696693
    [Google Scholar]
  43. WengT.Y. WuH.F. LiC.Y. HungY.H. ChangY.W. ChenY.L. HsuH.P. ChenY.H. WangC.Y. ChangJ.Y. LaiM.D. Homoharringtonine induced immune alteration for an efcient anti-tumor response in mouse models of non-small cell lung adenocarcinoma expressing Kras mutation.Sci. Rep.201881821610.1038/s41598‑018‑26454‑w 29844447
    [Google Scholar]
  44. HockB.D. MacPhersonS.A. McKenzieJ.L. Idelalisib and caffeine reduce suppression of T cell responses mediated by activated chronic lymphocytic leukemia cells.PLoS One2017123e017285810.1371/journal.pone.0172858 28257435
    [Google Scholar]
  45. ChoiD.W. JungS.Y. ShonD.H. ShinH.S. PiperineAmeliorates Trimellitic anhydride-induced atopic dermatitis-like symptoms by suppressing Th2-mediated immune responses via inhibition of STAT6 phosphorylation.Molecules2020259218610.3390/molecules25092186 32392825
    [Google Scholar]
  46. LiuH. ZouM. LiP. WangH. LinX. YeJ. Oxymatrine mediated maturation of dendritic cells leads to activation of FOXP3+/CD4+ Treg cells and reversal of cisplatin resistance in lung cancer cells.Mol. Med. Rep.20191954081409010.3892/mmr.2019.10064 30896871
    [Google Scholar]
  47. GuoG. ShiF. ZhuJ. ShaoY. GongW. ZhouG. WuH. SheJ. ShiW. Piperine, a functional food alkaloid, exhibits inhibitory potential against TNBS-induced colitis via the inhibition of IκB-α/NF-κB and induces tight junction protein (claudin-1, occludin, and ZO-1) signaling pathway in experimental mice.Hum. Exp. Toxicol.202039447749110.1177/0960327119892042 31835924
    [Google Scholar]
  48. YaoM. FanX. YuanB. TakagiN. LiuS. HanX. RenJ. LiuJ. Berberine inhibits NLRP3 inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell.BMC Complement. Altern. Med.201919121610.1186/s12906‑019‑2615‑4 31412862
    [Google Scholar]
  49. ZhuL. HuangS. LiJ. ChenJ. YaoY. LiL. GuoH. XiangX. DengJ. XionJ. Sophoridine inhibits lung cancer cell growth and enhances cisplatin sensitivity through activation of the p53 and Hippo signaling pathways.Gene202074214455610.1016/j.gene.2020.144556
    [Google Scholar]
  50. ZhaoL. WangL. DiS.N. XuQ. RenQ.C. ChenS.Z. HuangN. JiaD. ShenX.F. Steroidal alkaloid solanine A from Solanum nigrum Linn. Exhibits anti-inflammatory activity in lipopolysaccharide/interferon gamma activated murine macrophages and animal models of inflammation.Pharmacotherapy2018105606615
    [Google Scholar]
  51. PangL. LiuC.Y. GongG.H. QuanZ.S. Synthesis, in vitro and in vivo biological evaluation of novel lappaconitine derivatives as potential anti-inflammatory agents.Acta Pharm. Sin. B202010462864510.1016/j.apsb.2019.09.002
    [Google Scholar]
  52. WangX. GaoJ.Q. OuyangX. WangJ. SunX. LvY. Mesenchymal stem cells loaded with paclitaxel–poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy.Int. J. Nanomedicine2018135231524810.2147/IJN.S167142 30237710
    [Google Scholar]
  53. LiH. GuoL. JieS. LiuW. ZhuJ. DuW. FanL. WangX. FuB. HuangS. Berberine inhibits SDF-1-induced AML cells and leukemic stem cells migration via regulation of SDF-1 level in bone marrow stromal cells.Biomed. Pharmacother.200862957357810.1016/j.biopha.2008.08.003 18805669
    [Google Scholar]
  54. ChakravarthyD. MuñozA.R. SuA. HwangR.F. KepplerB.R. ChanD.E. HalffG. GhoshR. KumarA.P. Palmatine suppresses glutamine-mediated interaction between pancreatic cancer and stellate cells through simultaneous inhibition of survivin and COL1A1.Cancer Lett.201841910311510.1016/j.canlet.2018.01.057 29414301
    [Google Scholar]
  55. JieS. LiH. TianY. GuoD. ZhuJ. GaoS. JiangL. Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down‐regulation in vitro.J. Gastroenterol. Hepatol.201126117918510.1111/j.1440‑1746.2010.06389.x 21175812
    [Google Scholar]
  56. WenZ. HuangC. XuY. XiaoY. TangL. DaiJ. SunH. ChenB. ZhouM. α-Solanine inhibits vascular endothelial growth factor expression by down-regulating the ERK1/2-HIF-1α and STAT3 signaling pathways.Eur. J. Pharmacol.2016771939810.1016/j.ejphar.2015.12.020 26688571
    [Google Scholar]
  57. ZhangH. RenY. TangX. WangK. LiuY. ZhangL. LiX. LiuP. ZhaoC. HeJ. Vascular normalization induced by sinomenine hydrochloride results in suppressed mammary tumor growth and metastasis.Sci. Rep.201551888810.1038/srep08888 25749075
    [Google Scholar]
  58. GuoX.X. LiX.P. ZhouP. LiD.Y. LyuX.T. ChenY. LyuY.W. TianK. YuanD.Z. RanJ.H. ChenD.L. JiangR. LiJ. Evodiamine induces apoptosis in SMMC-7721 and HepG2 cells by suppressing NOD1 signal pathway.Int. J. Mol. Sci.20181911341910.3390/ijms19113419 30384473
    [Google Scholar]
  59. BräutigamJ. BischoffI. SchürmannC. BuchmannG. EpahJ. FuchsS. HeissE. BrandesR.P. FürstR. Narciclasine inhibits angiogenic processes by activation of Rho kinase and by downregulation of the VEGF receptor 2.J. Mol. Cell. Cardiol.20191359710810.1016/j.yjmcc.2019.08.001 31381906
    [Google Scholar]
  60. YuanZ. LiangZ. YiJ. ChenX. LiR. WuY. WuJ. SunZ. Protective effect of koumine, an alkaloid from gelsemium sempervirens, on injury induced by H2O2 in IPEC-J2 cells.Int. J. Mol. Sci.201920375410.3390/ijms20030754 30754638
    [Google Scholar]
  61. YangM.H. JungS.H. SethiG. AhnK.S. Pleiotropic pharmacological actions of capsazepine, a synthetic analogue of capsaicin, against various cancers and infammatory diseases.Molecules201924599510.3390/molecules24050995 30871017
    [Google Scholar]
  62. XuZ. ZhangF. BaiC. YaoC. ZhongH. ZouC. ChenX. Sophoridine induces apoptosis and S phase arrest via ROS-dependent JNK and ERK activation in human pancreatic cancer cells.J. Exp. Clin. Cancer Res.201736112410.1186/s13046‑017‑0590‑5 28893319
    [Google Scholar]
  63. BhattacharjeeP. SarkarP. BhadraK. Evaluation of chemotherapeutic role of harmaline: In vitro cytotoxicity targeting nucleic acids.J. Asian Nat. Prod. Res.202426451953310.1080/10286020.2023.2251116
    [Google Scholar]
  64. AwaleS. DibweD.F. BalachandranC. FayezS. FeineisD. LombeB.K. BringmannG. Ancistrolikokine E3, a 5,8′-coupled naphthylisoquinoline alkaloid, eliminates the tolerance of cancer cells to nutrition starvation by inhibition of the Akt/mTOR/autophagy signaling pathway.J. Nat. Prod.201881102282229110.1021/acs.jnatprod.8b00733 30303002
    [Google Scholar]
  65. SongL. WangY. ZhenY. LiD. HeX. YangH. ZhangH. LiuQ. Piperine inhibits colorectal cancer migration and invasion by regulating STAT3/Snail-mediated epithelial–mesenchymal transition.Biotechnol. Lett.202042102049205810.1007/s10529‑020‑02923‑z 32500474
    [Google Scholar]
  66. SuQ. FanM. WangJ. UllahA. GhauriM.A. DaiB. ZhanY. ZhangD. ZhangY. Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma.Cell Death Dis.2019101293910.1038/s41419‑019‑2173‑1 31819036
    [Google Scholar]
  67. HuangC. WangX. QiF. PangZ. Berberine inhibits epithelial-mesenchymal transition and promotes apoptosis of tumour-associated fibroblast-induced colonic epithelial cells through regulation of TGF-β signalling.J. Cell Commun. Signal.2020141536610.1007/s12079‑019‑00525‑7 31399854
    [Google Scholar]
  68. DengG. ZengS. MaJ. ZhangY. QuY. HanY. YinL. CaiC. GuoC. ShenH. The anti-tumor activities of Neferine on cell invasion and oxaliplatin sensitivity regulated by EMT via Snail signaling in hepatocellular carcinoma.Sci. Rep.2017714161610.1038/srep41616 28134289
    [Google Scholar]
  69. JiangY. JiaoY. LiuY. ZhangM. WangZ. LiY. LiT. ZhaoX. WangD. Sinomenine hydrochloride inhibits the metastasis of human glioblastoma cells by suppressing the expression of matrix metalloproteinase-2/-9 and reversing the endogenous and exogenous epithelial mesenchymal transition.Int. J. Mol. Sci.201819384410.3390/ijms19030844 29538296
    [Google Scholar]
  70. KimJ.H. ChoE.B. LeeJ. JungO. RyuB.J. KimS.H. ChoJ.Y. RyouC. LeeS.Y. Emetine inhibits migration and invasion of human non-small-cell lung cancer cells via regulation of ERK and p38 signaling pathways.Chem. Biol. Interact.2015242253310.1016/j.cbi.2015.08.014 26332055
    [Google Scholar]
  71. RahimN.F.C. HussinY. AzizM.N.M. MohamadN.E. YeapS.K. MasarudinM.J. AbdullahR. AkhtarM.N. AlitheenN.B. Cytotoxicity and apoptosis effects of curcumin analogue (2E, 6E)-2, 6-bis (2,3-dimethoxybenzylidine) cyclohexanone (DMCH) on human colon cancer cells HT29 and SW620 in vitro.Molecules2021265126110.3390/molecules26051261 33652694
    [Google Scholar]
  72. FerhiS. SantanielloS. ZerizerS. CrucianiS. FaddaA. SannaD. DoreA. MaioliM. D’hallewinG. Total phenols from grape leaves counteract cell proliferation and modulate apoptosis related gene expression in MCF-7 and HepG2 human cancer cell lines.Molecules201924361210.3390/molecules24030612 30744145
    [Google Scholar]
  73. YuY. ZhangC. LiuL. LiX. Hepatic arterial administration of ginsenoside Rg3 and transcatheter arterial embolization for the treatment of VX2 liver carcinomas.Exp. Ther. Med.20135376176610.3892/etm.2012.873 23404440
    [Google Scholar]
  74. WuL. WangL. TianX. ZhangJ. FengH. Germacrone exerts anti-cancer effects on gastric cancer through induction of cell cycle arrest and promotion of apoptosis.BMC Complement. Med. Ther.20202012110.1186/s12906‑019‑2810‑3
    [Google Scholar]
  75. LauT.S. ChanL.K.Y. ManG.C.W. WongC.H. LeeJ.H.S. YimS.F. CheungT.H. McNeishI.A. KwongJ. Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE dependent Exocytosis Paclitaxel induces ICD via TLR4 in cancer cells.Cancer Immunol. Res.2020881099111110.1158/2326‑6066.CIR‑19‑0616 32354736
    [Google Scholar]
  76. SunY. ZhouQ.M. LuY.Y. ZhangH. ChenQ.L. ZhaoM. SuS.B. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-b1-induced epithelial-mesenchymal transition.Molecules2019246113110.3390/molecules24061131 30901941
    [Google Scholar]
  77. WangY. RenX. DengC. YangL. YanE. GuoT. LiY. XuM.X. Mechanism of the inhibition of the STAT3 signaling pathway by EGCG.Oncol. Rep.20133062691269610.3892/or.2013.2743 24065300
    [Google Scholar]
  78. GhasemiF. ShafieeM. BanikazemiZ. PourhanifehM.H. KhanbabaeiH. ShamshirianA. Amiri MoghadamS. ArefNezhad, R.; Sahebkar, A.; Avan, A.; Mirzaei, H. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells.Pathol. Res. Pract.20192151015255610.1016/j.prp.2019.152556 31358480
    [Google Scholar]
  79. FanH. JiangC. ZhongB. ShengJ. ChenT. ChenQ. LiJ. ZhaoH. Matrine ameliorates colorectal cancer in rats via inhibition of HMGB1 signalling and downregulation of IL-6, TNF-a, and HMGB1.J. Immunol. Res.201820181810.1155/2018/5408324 29546074
    [Google Scholar]
  80. ZhaoL. ZhangC. Berberine inhibits MDA-MB-231 cells by attenuating their inflammatory responses.BioMed Res. Int.202020201610.1155/2020/3617514 32258115
    [Google Scholar]
  81. PrabhuK.S. BhatA.A. SiveenK.S. KuttikrishnanS. RazaS.S. RaheedT. JochebethA. KhanA.Q. ChawdheryM.Z. HarisM. KulinskiM. DermimeS. SteinhoffM. UddinS. Sanguinarine mediated apoptosis in non-small cell lung cancer via generation of reactive oxygen species and suppression of JAK/STAT pathway.Biomed. Pharmacother.202114411235810.1016/j.biopha.2021.112358 34794241
    [Google Scholar]
  82. ZhangW. GouP. DupretJ.M. ChomienneC. Rodrigues-LimaF. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play.Transl. Oncol.2021141010116910.1016/j.tranon.2021.101169 34243013
    [Google Scholar]
  83. SyedR. RaniR. Sabeena; Masoodi, T.A.; Shafi, G.; Alharbi, K. Functional analysis and structure determination of alkaline protease from Aspergillus flavus.Bioinformation20128417518010.6026/97320630008175 22419836
    [Google Scholar]
  84. KentS. MarshallG.R. WlodawerA. Determining the 3D structure of HIV-1 protease.Science20002885471159010.1126/science.288.5471.1590a 10858137
    [Google Scholar]
  85. OverallC.M. López-OtínC. Strategies for MMP inhibition in cancer: innovations for the post-trial era.Nat. Rev. Cancer20022965767210.1038/nrc884 12209155
    [Google Scholar]
  86. YanC. BoydD.D. Regulation of matrix metalloproteinase gene expression.J. Cell. Physiol.20072111192610.1002/jcp.20948 17167774
    [Google Scholar]
  87. RiedlS.J. SalvesenG.S. The apoptosome: signalling platform of cell death.Nat. Rev. Mol. Cell Biol.20078540541310.1038/nrm2153 17377525
    [Google Scholar]
  88. VersteegH.H. RufW. Emerging insights in tissue factor-dependent signaling events.Semin. Thromb. Hemost.200632102403210.1055/s‑2006‑933337 16479459
    [Google Scholar]
  89. FuX. ParksW.C. HeineckeJ.W. RETRACTED: Activation and silencing of matrix metalloproteinases.Semin. Cell Dev. Biol.200819121310.1016/j.semcdb.2007.06.005 17689277
    [Google Scholar]
  90. BodeW. HuberR. Structural basis of the endoproteinase–protein inhibitor interaction.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.200014771-224125210.1016/S0167‑4838(99)00276‑9 10708861
    [Google Scholar]
  91. HashemS. AliT.A. AkhtarS. NisarS. SageenaG. AliS. Al-MannaiS. TherachiyilL. MirR. ElfakiI. MirM.M. JamalF. MasoodiT. UddinS. SinghM. HarisM. MachaM. BhatA.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents.Biomed. Pharmacother.202215011305410.1016/j.biopha.2022.113054 35658225
    [Google Scholar]
  92. HedstromL. Serine protease mechanism and specificity.Chem. Rev.2002102124501452410.1021/cr000033x 12475199
    [Google Scholar]
  93. JedinakA. MaliarT. Inhibitors of proteases as anticancer drugs.Neoplasma2005523185192 15875078
    [Google Scholar]
  94. Al-AwadhiF. SalvadorL. LawB. PaulV. LueschH. Kempopeptin C, a novel marine-derived serine protease inhibitor targeting invasive breast cancer.Mar. Drugs201715929030710.3390/md15090290 28926939
    [Google Scholar]
  95. Al-AwadhiF.H. LueschH. Targeting eukaryotic proteases for natural products-based drug development.Nat. Prod. Rep.202037682786010.1039/C9NP00060G 32519686
    [Google Scholar]
  96. KuoC.L. ChiC.W. LiuT.Y. Modulation of apoptosis by berberine through inhibition of cyclooxygenase-2 and Mcl-1 expression in oral cancer cells. in vivo 2005191247252 15796182
    [Google Scholar]
  97. KimJ.S. OhD. YimM.J. ParkJ.J. KangK.R. ChoI.A. MoonS.M. OhJ.S. YouJ.S. KimC.S. KimD.K. LeeS.Y. LeeG.J. Im, H.J.; Kim, S.G. Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells.Oncol. Rep.20153341775178210.3892/or.2015.3768 25634589
    [Google Scholar]
  98. JagetiaG.C. Anticancer potential of natural isoquinoline alkaloid berberine.J. Explorat. Res. Pharmacol.20216310513310.14218/JERP.2021.00005
    [Google Scholar]
  99. LeeS.L. DicksonR.B. LinC.Y. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease.J. Biol. Chem.200027547367203672510.1074/jbc.M007802200 10962009
    [Google Scholar]
  100. BhattA.S. Erdjument-BromageH. TempstP. CraikC.S. MoasserM.M. Adhesion signaling by a novel mitotic substrate of src kinases.Oncogene200524345333534310.1038/sj.onc.1208582 16007225
    [Google Scholar]
  101. UhlandK. Matriptase and its putative role in cancer.Cell. Mol. Life Sci.200663242968297810.1007/s00018‑006‑6298‑x 17131055
    [Google Scholar]
  102. ListK. Matriptase: A culprit in cancer?Future Oncol.2009519710410.2217/14796694.5.1.97 19243302
    [Google Scholar]
  103. LiP. JiangS. LeeS.L. LinC.Y. JohnsonM.D. DicksonR.B. MichejdaC.J. RollerP.P. Design and synthesis of novel and potent inhibitors of the type II transmembrane serine protease, matriptase, based upon the sunflower trypsin inhibitor-1.J. Med. Chem.200750245976598310.1021/jm0704898 17985858
    [Google Scholar]
  104. LawM.E. CorsinoP.E. JahnS.C. DavisB.J. ChenS. PatelB. PhamK. LuJ. SheppardB. NørgaardP. HongJ. HigginsP. KimJ-S. LueschH. LawB.K. Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms.Oncogene201332101316132910.1038/onc.2012.138 22543582
    [Google Scholar]
  105. NguyenH.H. AronchikI. BrarG.A. NguyenD.H.H. BjeldanesL.F. FirestoneG.L. The dietary phytochemical indole-3-carbinol is a natural elastase enzymatic inhibitor that disrupts cyclin E protein processing.Proc. Natl. Acad. Sci.200810550197501975510.1073/pnas.0806581105 19064917
    [Google Scholar]
  106. AronchikI. BjeldanesL.F. FirestoneG.L. Direct inhibition of elastase activity by indole-3-carbinol triggers a CD40-TRAF regulatory cascade that disrupts NF-kappaB transcriptional activity in human breast cancer cells.Cancer Res.201070124961497110.1158/0008‑5472.CAN‑09‑3349 20530686
    [Google Scholar]
  107. CrocettiL. QuinnM.T. SchepetkinI.A. GiovannoniM.P. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications.Expert Opin. Ther. Pat.201929755557810.1080/13543776.2019.1630379 31204543
    [Google Scholar]
  108. AkizukiM. FukutomiT. TakasugiM. TakahashiS. SatoT. HaraoM. MizumotoT. YamashitaJ. Prognostic significance of immunoreactive neutrophil elastase in human breast cancer: long-term follow-up results in 313 patients.Neoplasia20079326026410.1593/neo.06808 17401466
    [Google Scholar]
  109. SatoT. TakahashiS. MizumotoT. HaraoM. AkizukiM. TakasugiM. FukutomiT. YamashitaJ. Neutrophil elastase and cancer.Surg. Oncol.200615421722210.1016/j.suronc.2007.01.003 17320378
    [Google Scholar]
  110. MittendorfE.A. AlatrashG. QiaoN. WuY. SukhumalchandraP. St JohnL.S. PhilipsA.V. XiaoH. ZhangM. RuisaardK. Clise-DwyerK. LuS. MolldremJ.J. Breast cancer cell uptake of the inflammatory mediator neutrophil elastase triggers an anticancer adaptive immune response.Cancer Res.201272133153316210.1158/0008‑5472.CAN‑11‑4135 22564522
    [Google Scholar]
  111. NawaM. OsadaS. MorimitsuK. NonakaK. FutamuraM. KawaguchiY. YoshidaK. Growth effect of neutrophil elastase on breast cancer: favorable action of sivelestat and application to anti-HER2 therapy.Anticancer Res.20123211319 22213283
    [Google Scholar]
  112. PorterD.C. ZhangN. DanesC. McGahrenM.J. HarwellR.M. FarukiS. KeyomarsiK. Tumor-specific proteolytic processing of cyclin E generates hyperactive lower-molecular-weight forms.Mol. Cell. Biol.200121186254626910.1128/MCB.21.18.6254‑6269.2001 11509668
    [Google Scholar]
  113. AkliS. KeyomarsiK. Cyclin E and its low molecular weight forms in human cancer and as targets for cancer therapy. Cancer Biol. Ther.20032sup1)(1374610.4161/cbt.201 14508079
    [Google Scholar]
  114. HuntK.K. KeyomarsiK. Cyclin E as a prognostic and predictive marker in breast cancer.Semin. Cancer Biol.200515431932610.1016/j.semcancer.2005.04.007 16043362
    [Google Scholar]
  115. LoebK.R. ChenX. Too much cleavage of cyclin E promotes breast tumorigenesis.PLoS Genet.201283e100262310.1371/journal.pgen.1002623 22479209
    [Google Scholar]
  116. HessS. EngelmannH. A novel function of CD40: Induction of cell death in transformed cells.J. Exp. Med.1996183115916710.1084/jem.183.1.159 8551219
    [Google Scholar]
  117. WingettD.G. VestalR.E. ForcierK. HadjokasN. NielsonC.P. CD40 is functionally expressed on human breast carcinomas: Variable inducibility by cytokines and enhancement of Fas-mediated apoptosis.Breast Cancer Res. Treat.1998501273610.1023/A:1006012607452 9802617
    [Google Scholar]
  118. HiranoA. LongoD.L. TaubD.D. FerrisD.K. YoungL.S. EliopoulosA.G. AgathanggelouA. CullenN. MacartneyJ. FanslowW.C. MurphyW.J. Inhibition of human breast carcinoma growth by a soluble recombinant human CD40 ligand.Blood19999392999300710.1182/blood.V93.9.2999 10216096
    [Google Scholar]
  119. Al-AwadhiF.H. PaulV.J. LueschH. Structural diversity and anticancer activity of marine‐derived elastase inhibitors: Key features and mechanisms mediating the antimetastatic effects in invasive breast cancer.ChemBioChem201819881582510.1002/cbic.201700627 29405541
    [Google Scholar]
  120. DiD. ChenL. WangL. SunP. LiuY. XuZ. JuJ. Downregulation of human intercellular adhesion molecule-1 attenuates the metastatic ability in human breast cancer cell lines.Oncol. Rep.20163531541154810.3892/or.2016.4543 26751847
    [Google Scholar]
  121. Gitlin-DomagalskaA. MaciejewskaA. DębowskiD. Bowman-birk inhibitors: Insights into family of multifunctional proteins and peptides with potential therapeutical applications.Pharmaceuticals2020131242110.3390/ph13120421 33255583
    [Google Scholar]
  122. SrikanthS. ChenZ. Plant protease inhibitors in therapeutics-focus on cancer therapy.Front. Pharmacol.2016747048910.3389/fphar.2016.00470 28008315
    [Google Scholar]
  123. ArmstrongW.B. KennedyA.R. WanX.S. AtibaJ. McLarenC.E. MeyskensF.L. Jr Single-dose administration of Bowman-Birk inhibitor concentrate in patients with oral leukoplakia.Cancer Epidemiol. Biomarkers Prev.2000914347 10667462
    [Google Scholar]
  124. ManasanchE.E. OrlowskiR.Z. Proteasome inhibitors in cancer therapy.Nat. Rev. Clin. Oncol.201714741743310.1038/nrclinonc.2016.206 28117417
    [Google Scholar]
  125. Bibo-VerdugoB. JiangZ. CaffreyC.R. O’DonoghueA.J. Targeting proteasomes in infectious organisms to combat disease.FEBS J.2017284101503151710.1111/febs.14029 28122162
    [Google Scholar]
  126. Della SalaG. AgriestiF. MazzoccoliC. TataranniT. CostantinoV. PiccoliC. Clogging the ubiquitin-proteasome machinery with marine natural products: last decade update.Mar. Drugs2018161246710.3390/md16120467 30486251
    [Google Scholar]
  127. HanadaM. SugawaraK. KanetaK. TodaS. NishiyamaY. TomitaK. YamamotoH. KonishiM. OkiT. Epoxomicin, a new antitumor agent of microbial origin.J. Antibiot.199245111746175210.7164/antibiotics.45.1746 1468981
    [Google Scholar]
  128. MengL. MohanR. KwokB.H.B. ElofssonM. SinN. CrewsC.M. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity.Proc. Natl. Acad. Sci.19999618104031040810.1073/pnas.96.18.10403 10468620
    [Google Scholar]
  129. GrollM. HuberR. PottsB.C.M. Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of β-lactone ring opening and a mechanism for irreversible binding.J. Am. Chem. Soc.2006128155136514110.1021/ja058320b 16608349
    [Google Scholar]
  130. MacherlaV.R. MitchellS.S. ManamR.R. ReedK.A. ChaoT.H. NicholsonB. Deyanat-YazdiG. MaiB. JensenP.R. FenicalW.F. NeuteboomS.T.C. LamK.S. PalladinoM.A. PottsB.C.M. Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor.J. Med. Chem.200548113684368710.1021/jm048995+ 15916417
    [Google Scholar]
  131. ManamR.R. McArthurK.A. ChaoT.H. WeissJ. AliJ.A. PalombellaV.J. GrollM. LloydG.K. PalladinoM.A. NeuteboomS.T.C. MacherlaV.R. PottsB.C.M. Leaving groups prolong the duration of 20S proteasome inhibition and enhance the potency of salinosporamides.J. Med. Chem.200851216711672410.1021/jm800548b 18939815
    [Google Scholar]
  132. PottsB.C. LamK.S. Generating a generation of proteasome inhibitors: from microbial fermentation to total synthesis of salinosporamide a (marizomib) and other salinosporamides.Mar. Drugs20108483588010.3390/md8040835 20479958
    [Google Scholar]
  133. MaL. DiaoA. Marizomib, a potent second generation proteasome inhibitor from natural origin.Anticancer. Agents Med. Chem.201515329830610.2174/1871520614666141114202606 25403165
    [Google Scholar]
  134. PereiraR.B. EvdokimovN.M. LefrancF. ValentãoP. KornienkoA. PereiraD.M. AndradeP.B. GomesN.G.M. Marine-derived anticancer agents: Clinical benefits, innovative mechanisms, and new targets.Mar. Drugs201917632910.3390/md17060329 31159480
    [Google Scholar]
  135. PereiraA.R. KaleA.J. FenleyA.T. ByrumT. DebonsiH.M. GilsonM.K. ValerioteF.A. MooreB.S. GerwickW.H. The carmaphycins: new proteasome inhibitors exhibiting an α,β-epoxyketone warhead from a marine cyanobacterium.ChemBioChem201213681081710.1002/cbic.201200007 22383253
    [Google Scholar]
  136. RawatA. RoyM. JyotiA. KaushikS. VermaK. SrivastavaV.K. Cysteine proteases: Battling pathogenic parasitic protozoans with omnipresent enzymes.Microbiol. Res.202124912678410.1016/j.micres.2021.126784 33989978
    [Google Scholar]
  137. VermaS. DixitR. PandeyK.C. Cysteine proteases: Modes of activation and future prospects as pharmacological targets.Front. Pharmacol.2016710710.3389/fphar.2016.00107 27199750
    [Google Scholar]
  138. TurkV. StokaV. VasiljevaO. RenkoM. SunT. TurkB. TurkD. Cysteine cathepsins: From structure, function and regulation to new frontiers.Biochim. Biophys. Acta. Proteins Proteomics201218241688810.1016/j.bbapap.2011.10.002
    [Google Scholar]
  139. SudhanD.R. SiemannD.W. CathepsinL. Cathepsin L targeting in cancer treatment.Pharmacol. Ther.201515510511610.1016/j.pharmthera.2015.08.007 26299995
    [Google Scholar]
  140. FujishimaA. ImaiY. NomuraT. FujisawaY. YamamotoY. SugawaraT. The crystal structure of human cathepsin L complexed with E‐64.FEBS Lett.19974071475010.1016/S0014‑5793(97)00216‑0 9141479
    [Google Scholar]
  141. OnoY. SaidoT.C. SorimachiH. Calpain research for drug discovery: Challenges and potential nature reviews drug discovery.Nat. Publis. Gr.20161129854876
    [Google Scholar]
  142. SaatmanK.E. CreedJ. RaghupathiR. Calpain as a therapeutic target in traumatic brain injury.Neurotherapeutics201071314210.1016/j.nurt.2009.11.002 20129495
    [Google Scholar]
  143. LeloupL. WellsA. Calpains as potential anti-cancer targets.Expert Opin. Ther. Targets201115330932310.1517/14728222.2011.553611 21244345
    [Google Scholar]
  144. PotzB.A. AbidM.R. SellkeF.W. Role of calpain in pathogenesis of human disease processes.J. Nat. Sci.201629e218 27747292
    [Google Scholar]
  145. BarnardD.L. HubbardV.D. BurtonJ. SmeeD.F. MorreyJ.D. OttoM.J. SidwellR.W. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and β-D-N4-hydroxycytidine.Antivir. Chem. Chemother.2004151152210.1177/095632020401500102 15074711
    [Google Scholar]
  146. SchneiderM. AckermannK. StuartM. WexC. ProtzerU. SchätzlH.M. GilchS. Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain.J. Virol.20128618101121012210.1128/JVI.01001‑12 22787216
    [Google Scholar]
  147. TaoriK. LiuY. PaulV.J. LueschH. Combinatorial strategies by marine cyanobacteria: symplostatin 4, an antimitotic natural dolastatin 10/15 hybrid that synergizes with the coproduced HDAC inhibitor largazole.ChemBioChem200910101634163910.1002/cbic.200900192 19514039
    [Google Scholar]
  148. LiuS. GaoX. ZhangL. QinS. WeiM. LiuN. ZhaoR. LiB. MengY. LinG. LuC. LiuX. XieM. LiuT. ZhouH. QiM. YangG. YangC. A novel Anti-Cancer Stem Cells compound optimized from the natural symplostatin 4 scaffold inhibits Wnt/β-catenin signaling pathway.Eur. J. Med. Chem.2018156214210.1016/j.ejmech.2018.06.046 30006166
    [Google Scholar]
  149. WhiteJ.B. BeckfordJ. YadegaryniaS. NgoN. LialiutskaT. d’AlarcaoM. Some natural flavonoids are competitive inhibitors of caspase-1, -3, and -7 despite their cellular toxicity.Food Chem.201213141453145910.1016/j.foodchem.2011.10.026 22140296
    [Google Scholar]
  150. YadavP. YadavR. JainS. VaidyaA. Caspase‐3: A primary target for natural and synthetic compounds for cancer therapy.Chem. Biol. Drug Des.202198114416510.1111/cbdd.13860 33963665
    [Google Scholar]
  151. Al-AwadhiF.H. LawB.K. PaulV.J. LueschH. Grassystatins D–F, potent aspartic protease inhibitors from marine cyanobacteria as potential antimetastatic agents targeting invasive breast cancer.J. Nat. Prod.201780112969298610.1021/acs.jnatprod.7b00551 29087712
    [Google Scholar]
  152. Cerdà-CostaN. Xavier Gomis-RüthF. Architecture and function of metallopeptidase catalytic domains.Protein Sci.201423212314410.1002/pro.2400 24596965
    [Google Scholar]
  153. KumarG.B. NairB.G. PerryJ.J.P. MartinD.B.C. Recent insights into natural product inhibitors of matrix metalloproteinases.MedChemComm201910122024203710.1039/C9MD00165D 32904148
    [Google Scholar]
  154. GuptaP. Natural products as inhibitors of matrix metalloproteinases.Nat. Prod. Chem. Res.201641110.4172/2329‑6836.1000e114
    [Google Scholar]
  155. CathcartJ. Pulkoski-GrossA. CaoJ. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas genes and diseases.Chongq. Med. Univ.2015312634
    [Google Scholar]
  156. MannelloF. TontiG. PapaS. Matrix metalloproteinase inhibitors as anticancer therapeutics.Curr. Cancer Drug Targets20055428529810.2174/1568009054064615 15975049
    [Google Scholar]
  157. PengP.L. HsiehY.S. WangC.J. HsuJ.L. ChouF.P. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2.Toxicol. Appl. Pharmacol.2006214181510.1016/j.taap.2005.11.010 16387334
    [Google Scholar]
  158. JamesM.A. FuH. LiuY. ChenD.R. YouM. Dietary administration of berberine or Phellodendron amurense extract inhibits cell cycle progression and lung tumorigenesis.Mol. Carcinog.20115011710.1002/mc.20690 21061266
    [Google Scholar]
  159. LingX.H. WangS.K. HuangY.H. HuangM.J. DuhC.Y. A high-content screening assay for the discovery of novel proteasome inhibitors from formosan soft corals.Mar. Drugs2018161039510.3390/md16100395 30347865
    [Google Scholar]
  160. MajumdarD.D. Recent updates on pharmaceutical potential of plant protease inhibitors.Int. J. Med. Pharm. Sci.20133101120
    [Google Scholar]
  161. ClementeA. ArquesM.C. Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents.World J. Gastroenterol.20142030103051031510.3748/wjg.v20.i30.10305 25132747
    [Google Scholar]
  162. MorrisonK.C. HergenrotherP.J. Natural products as starting points for the synthesis of complex and diverse compounds.Nat. Prod. Rep.201431161410.1039/C3NP70063A 24219884
    [Google Scholar]
  163. HashmiM.A. AndreassendS.K. KeyzersR.A. LeinM. Accurate prediction of the optical rotation and NMR properties for highly flexible chiral natural products.Phys. Chem. Chem. Phys.20161835245062451010.1039/C6CP04828E 27539138
    [Google Scholar]
  164. AdelusiT.I. OyedeleA.Q.K. BoyenleI.D. OgunlanaA.T. AdeyemiR.O. UkachiC.D. IdrisM.O. OlaobaO.T. AdedotunI.O. KolawoleO.E. XiaoxingY. Abdul-HammedM. Molecular modeling in drug discovery.Informatics in Medicine Unlocked20222910088010.1016/j.imu.2022.100880
    [Google Scholar]
  165. BaxiS.M. BeallR. YangJ. MackeyT.K. A multidisciplinary review of the policy, intellectual property rights, and international trade environment for access and affordability to essential cancer medications.Global. Health20191515710.1186/s12992‑019‑0497‑3 31533850
    [Google Scholar]
  166. LiuG.H. ChenT. ZhangX. MaX.L. ShiH.S. Small molecule inhibitors targeting the cancers.MedComm202234e18110.1002/mco2.181 36254250
    [Google Scholar]
  167. BedardP.L. HymanD.M. DavidsM.S. SiuL.L. Small molecules, big impact: 20 years of targeted therapy in oncology.Lancet2020395102291078108810.1016/S0140‑6736(20)30164‑1 32222192
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206303964240708095110
Loading
/content/journals/acamc/10.2174/0118715206303964240708095110
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test