Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Objectives

Although T-cell malignancies are relatively less prevalent compared to B-cell malignancies, they are highly malignant, and patients usually have poor prognoses. Employing CD7-targeted chimeric antigen receptor (CAR) T cell therapy as a novel immunotherapy to treat malignant T cells faces numerous challenges and is in its early phase. To evaluate this possibility, we aimed to review and meta-analyze the related clinical trials systematically.

Methods

On October 9, 2023, the online databases of PubMed, Scopus, Embase, and Web of Science were systematically searched for pertinent studies. After completing a two‐step title/abstract and full-text screening process, the eligible studies were included.

Results

We observed a pooled overall response rate (ORR) of 100%. Partial response (PR), stringent and/or complete response (sCR/CR), and relapse rate were 6%, 85%, and 18%, respectively. Additionally, the pooled rate of minimal residual disease (MRD) negativity was 85%. The most common grade ≥3 adverse events were related to hematological toxicities, including neutropenia (100%), thrombocytopenia (79%), and anemia (57%). Cytokine release syndrome (CRS) was also a frequent complication with a 100% rate; however, 81% of CRS events were low grades. No grade ≥3 GVHD was reported, and the immune effector cell–associated neurotoxicity syndrome (ICANS grade ≥3) was rare (4%).

Conclusion

CD7 is an active and safe target that shows promising results in the treatment of relapsed and/or refractory (r/r) T-cell malignancies.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206321313240820101412
2025-01-01
2025-01-25
Loading full text...

Full text loading...

References

  1. TeacheyD.T. PuiC.H. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia.Lancet Oncol.2019203e142e15410.1016/S1470‑2045(19)30031‑230842058
    [Google Scholar]
  2. TanY. ShanL. ZhaoL. DengB. LingZ. ZhangY. PengS. XuJ. DuanJ. WangZ. YuX. ZhengQ. XuX. TianZ. ZhangY. ZhangJ. ChangA.H. FengX. PanJ. Long-term follow-up of donor-derived CD7 CAR T-cell therapy in patients with T-cell acute lymphoblastic leukemia.J. Hematol. Oncol.20231613410.1186/s13045‑023‑01427‑337020231
    [Google Scholar]
  3. HungerS.P. LuX. DevidasM. CamittaB.M. GaynonP.S. WinickN.J. ReamanG.H. CarrollW.L. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group.J. Clin. Oncol.201230141663166910.1200/JCO.2011.37.801822412151
    [Google Scholar]
  4. den HoedMA. PluijmSM. te WinkelML. de Groot-KrusemanHA. FioccoM. HoogerbruggeP. Aggravated bone density decline following symptomatic osteonecrosis in children with acute lymphoblastic leukemia.Haematologica2015100121564
    [Google Scholar]
  5. LitzowM.R. FerrandoA.A. How I treat T-cell acute lymphoblastic leukemia in adults.Blood2015126783384110.1182/blood‑2014‑10‑55189525966987
    [Google Scholar]
  6. BhojwaniD. PuiC.H. Relapsed childhood acute lymphoblastic leukaemia.Lancet Oncol.2013146e205e21710.1016/S1470‑2045(12)70580‑623639321
    [Google Scholar]
  7. AshryM.S.E. RadwanE. AbdellateifM.S. ArafahO. HassanN.M. Clinical features, laboratory characteristics, and outcome of ETP and TCRA/D aberrations in pediatric patients with T-acute lymphoblastic leukemia.J. Egypt. Natl. Canc. Inst.20233511710.1186/s43046‑023‑00176‑137303010
    [Google Scholar]
  8. PolgárováK. OtáhalP. ŠálekC. PytlíkR. Chimeric antigen receptor based cellular therapy for treatment of T-cell malignancies.Front. Oncol.20221287675810.3389/fonc.2022.87675835600381
    [Google Scholar]
  9. KarstenH. MatrischL. CichutekS. FiedlerW. AlsdorfW. BlockA. Broadening the horizon: potential applications of CAR-T cells beyond current indications.Front. Immunol.202314128540610.3389/fimmu.2023.128540638090582
    [Google Scholar]
  10. LuoL. ZhouX. ZhouL. LiangZ. YangJ. TuS. LiY. Current state of CAR-T therapy for T-cell malignancies.Ther. Adv. Hematol.20221310.1177/2040620722114302536601636
    [Google Scholar]
  11. ZhangX. YangJ. LiJ. QiuL. ZhangJ. LuY. ZhaoY. JinD. LiJ. LuP. Analysis of 60 patients with relapsed or refractory T‐cell acute lymphoblastic leukemia and T‐cell lymphoblastic lymphoma treated with CD7 ‐targeted chimeric antigen receptor‐T cell therapy.Am. J. Hematol.202398121898190810.1002/ajh.2709437740926
    [Google Scholar]
  12. Gomes-SilvaD. SrinivasanM. SharmaS. LeeC.M. WagnerD.L. DavisT.H. RouceR.H. BaoG. BrennerM.K. MamonkinM. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies.Blood2017130328529610.1182/blood‑2017‑01‑76132028539325
    [Google Scholar]
  13. CooperM.L. ChoiJ. StaserK. RitcheyJ.K. DevenportJ.M. EckardtK. RettigM.P. WangB. EissenbergL.G. GhobadiA. GehrsL.N. PriorJ.L. AchilefuS. MillerC.A. FronickC.C. O’NealJ. GaoF. WeinstockD.M. GutierrezA. FultonR.S. DiPersioJ.F. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies.Leukemia20183291970198310.1038/s41375‑018‑0065‑529483708
    [Google Scholar]
  14. PanJ. TanY. WangG. DengB. LingZ. SongW. SeeryS. ZhangY. PengS. XuJ. DuanJ. WangZ. YuX. ZhengQ. XuX. YuanY. YanF. TianZ. TangK. ZhangJ. ChangA.H. FengX. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: First-in-human, phase I trial.J. Clin. Oncol.202139303340335110.1200/JCO.21.0038934324392
    [Google Scholar]
  15. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.Int. J. Surg.20218810590610.1016/j.ijsu.2021.10590633789826
    [Google Scholar]
  16. SlimK. NiniE. ForestierD. KwiatkowskiF. PanisY. ChipponiJ. Methodological index for non‐randomized studies ( MINORS ): development and validation of a new instrument.ANZ J. Surg.200373971271610.1046/j.1445‑2197.2003.02748.x12956787
    [Google Scholar]
  17. Cochrane handbook for systematic reviews of interventions.2011Available from: https://handbook-5-1.cochrane.org/(accessed on 31-7-2024)
  18. YeJ. JiaY. TuhinI.J. TanJ. MontyM.A. XuN. KangL. LiM. LouX. ZhouM. FangX. ShaoJ. ZhuH. YanZ. YuL. Feasibility study of a novel preparation strategy for anti-CD7 CAR-T cells with a recombinant anti-CD7 blocking antibody.Mol. Ther. Oncolytics20222471972810.1016/j.omto.2022.02.01335317521
    [Google Scholar]
  19. PngY.T. VinanicaN. KamiyaT. ShimasakiN. Coustan-SmithE. CampanaD. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies.Blood Adv.20171252348236010.1182/bloodadvances.201700992829296885
    [Google Scholar]
  20. LuP. LiuY. YangJ. ZhangX. YangX. WangH. WangL. WangQ. JinD. LiJ. HuangX. Naturally selected CD7 CAR-T therapy without genetic manipulations for T-ALL/LBL: first-in-human phase 1 clinical trial.Blood20221404blood.202101449810.1182/blood.202101449835500125
    [Google Scholar]
  21. ChiesaR. GeorgiadisC. SyedF. ZhanH. EtukA. GkaziS.A. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia.N. Engl. J. Med.202338910899910
    [Google Scholar]
  22. WatanabeN. MoF. ZhengR. MaR. BrayV.C. van LeeuwenD.G. Sritabal-RamirezJ. HuH. WangS. MehtaB. SrinivasanM. SchererL.D. ZhangH. ThakkarS.G. HillL.C. HeslopH.E. ChengC. BrennerM.K. MamonkinM. Feasibility and preclinical efficacy of CD7-unedited CD7 CAR T cells for T cell malignancies.Mol. Ther.2023311243410.1016/j.ymthe.2022.09.00336086817
    [Google Scholar]
  23. FreiwanA. ZoineJ.T. CrawfordJ.C. VaidyaA. SchattgenS.A. MyersJ.A. PatilS.L. KhanlariM. InabaH. KlcoJ.M. MullighanC.G. KrenciuteG. ChockleyP.J. NaikS. LangfittD.M. MamonkinM. ObengE.A. ThomasP.G. GottschalkS. VelasquezM.P. Engineering naturally occurring CD7− T cells for the immunotherapy of hematological malignancies.Blood2022140252684269610.1182/blood.202101502035914226
    [Google Scholar]
  24. WangX. LiS. GaoL. YuanZ. WuK. LiuL. LuoL. LiuY. ZhangC. LiuJ. YangC. LiY. HeJ. YeX. LiZ. TanX. GeJ. CaoW. WangS. ZhangX. Safety and efficacy results of GC027: The first-in-human, universal CAR-T cell therapy for adult relapsed/refractory T-cell acute lymphoblastic leukemia (r/r T-ALL).J. Clin. Oncol.20203815_suppl301310.1200/JCO.2020.38.15_suppl.3013
    [Google Scholar]
  25. GhobadiA. AldossI. MaudeS.L. BhojwaniD. WayneA.S. BajelA. FaramandR. MattisonR.J. DholariaB. RettigM.P. JacobsK. BakkachaO. MuthJ. PannunzioA. RamseyB. McNultyE. CooperM.L. Davidson-MoncadaJ. DiPersioJ.F. Phase 1/2 dose-escalation/dose-expansion study of anti-CD7 Allogeneic CAR-T cells (WU-CART-007) in relapsed or refractory (R/R) T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma (T-ALL/LBL).Blood2023142Suppl. 177010.1182/blood‑2023‑178723
    [Google Scholar]
  26. ZhangX. ZhouY. YangJ. LiJ. QiuL. GeW. PeiB. ChenJ. HanL. RenJ. LuP. A novel universal CD7-targeted CAR-T cell therapy for relapsed or refractory T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.Blood2022140Suppl. 14566456710.1182/blood‑2022‑165733
    [Google Scholar]
  27. ZhaoL. PanJ. TangK. TanY. DengB. LingZ. SongW. ChangA.H. FengX. Autologous CD7-targeted CAR T-cell therapy for refractory or relapsed T-cell acute lymphoblastic leukemia/lymphoma.J. Clin. Oncol.20224016_suppl703510.1200/JCO.2022.40.16_suppl.7035
    [Google Scholar]
  28. HuK. YangF. ShiH. LiuR. ZhengP. FengS. GuoY. P1236: Efficacy and toxicity for CD7 chimeric antigen receptor T-cell therapy in patients with relapsed/refractory T-cell lymphoma.HemaSphere202261121112210.1097/01.HS9.0000847808.59949.f6
    [Google Scholar]
  29. ZhangX. YangJ. LiJ. ShiY. SuY. LiuY. BaM. WuY. LiW. LiJ. LuP. First-in-human clinical study of a novel CD7-targeted chimeric antigen receptor (CAR)-T cell therapy for refractory/relapsed mixed phenotype acute leukemia (MPAL).Blood2021138Suppl. 1174110.1182/blood‑2021‑146425
    [Google Scholar]
  30. ChengJ. WangJ. MaoX. MuW. SunS. ZhouX. HuangL. Phase 1 dose escalation study of the anti-CD7 CAR-T therapy in relapsed/refractory T-cell acute leukemia and lymphoblastic lymphoma.Blood2023142Suppl. 1686310.1182/blood‑2023‑184370
    [Google Scholar]
  31. ZhangM. ChenD. FuX. MengH. NanF. SunZ. YuH. ZhangL. LiL. LiX. WangX. WangM. YouF. LiZ. ChangY. ZhouZ. YanJ. LiJ. WuX. WangY. WangY. XiangS. ChenY. PanG. XuH. ZhangB. YangL. Autologous nanobody-derived fratricide-resistant CD7-CAR T-cell therapy for patients with relapsed and refractory T-cell acute lymphoblastic leukemia/lymphoma.Clin. Cancer Res.202228132830284310.1158/1078‑0432.CCR‑21‑409735435984
    [Google Scholar]
  32. ZhangY. LiC. DuM. JiangH. LuoW. TangL. KangY. XuJ. WuZ. WangX. HuangZ. ZhangY. WuD. ChangA.H. HuY. MeiH. Allogenic and autologous anti-CD7 CAR-T cell therapies in relapsed or refractory T-cell malignancies.Blood Cancer J.20231316110.1038/s41408‑023‑00822‑w37095094
    [Google Scholar]
  33. Becerril-RicoJ. Delgado-MontesY.A. Ortiz-SánchezE. Differences in efficacy and safety among CAR-Ts anti-CD19/CD22, anti-CD19, and anti-CD22, in adult patients with relapse/refractory B-cell acute lymphoblastic leukemia: a meta-analysis and systematic review.Leuk. Lymphoma202364111822183110.1080/10428194.2023.224335737548560
    [Google Scholar]
  34. KimM.Y. CooperM.L. JacobsM.T. RitcheyJ.K. HollawayJ. FehnigerT.A. DiPersioJ.F. CD7-deleted hematopoietic stem cells can restore immunity after CAR T cell therapy.JCI Insight2021616e14981910.1172/jci.insight.14981934423790
    [Google Scholar]
  35. BonillaF. KokronC.M. SwintonP. GehaR.S. Targeted gene disruption of murine CD7.Int. Immunol.19979121875188310.1093/intimm/9.12.18759466315
    [Google Scholar]
  36. LeeD.M. StaatsH.F. SundyJ.S. PatelD.D. SempowskiG.D. ScearceR.M. JonesD.M. HaynesB.F. Immunologic characterization of CD7-deficient mice.J. Immunol.1998160125749575610.4049/jimmunol.160.12.57499637484
    [Google Scholar]
  37. WudhikarnK. PeralesM.A. Infectious complications, immune reconstitution, and infection prophylaxis after CD19 chimeric antigen receptor T-cell therapy.Bone Marrow Transplant.202257101477148810.1038/s41409‑022‑01756‑w35840746
    [Google Scholar]
  38. AamirS. AnwarM.Y. KhalidF. KhanS.I. AliM.A. KhattakZ.E. Systematic review and meta-analysis of CD19-specific CAR-T cell therapy in relapsed/refractory acute lymphoblastic leukemia in the pediatric and young adult population: safety and efficacy outcomes.Clin. Lymphoma Myeloma Leuk.2021214e334e34710.1016/j.clml.2020.12.01033573914
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206321313240820101412
Loading
/content/journals/acamc/10.2174/0118715206321313240820101412
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article. PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test