Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

P90 ribosomal S6 kinase 2 (RSK2) is an important member of the RSK family, functioning as a kinase enzyme that targets serine and threonine residues and contributes to regulating cell growth. RSK2 comprises two major functional domains: the N-terminal kinase domain (NTKD) and the C-terminal kinase domain (CTKD). RSK2 is situated at the lower end of the Mitogen-activated protein kinases (MAPK) signaling pathway and is phosphorylated by the direct regulation of Extracellular signal-regulating kinase (ERK). RSK2 has been found to play a pivotal role in regulating cell proliferation, apoptosis, metastasis, and invasion in various cancer cells, including breast cancer and melanoma. Consequently, RSK2 has emerged as a potential target for the development of anti-cancer drugs. Presently, several inhibitors are undergoing clinical trials, such as SL0101. Current inhibitors of RSK2 mainly bind to its NTK or CTK domains and inhibit their activity. Natural products serve as an important resource for drug development and screening and with the potential to identify RSK2 inhibitors. This article discusses how RSK2 influences tumor cell proliferation, prevents apoptosis, arrests the cell cycle process, and promotes cancer metastasis through its regulation of downstream pathways or interaction with other biological molecules. Additionally, the paper also covers recent research progress on RSK2 inhibitors and the mechanisms of action of natural RSK2 inhibitors on tumors. This review emphasizes the significance of RSK2 as a potential therapeutic target in cancer and offers a theoretical basis for the clinical application of RSK2 inhibitors.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206329546240830055233
2025-01-01
2025-01-10
Loading full text...

Full text loading...

References

  1. RomeoY. ZhangX. RouxP.P. Regulation and function of the RSK family of protein kinases.Biochem. J.2012441255356910.1042/BJ2011028922187936
    [Google Scholar]
  2. DümmlerB.A. HaugeC. SilberJ. YntemaH.G. KruseL.S. KofoedB. HemmingsB.A. AlessiD.R. FrödinM. D黰mler Functional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types.J. Biol. Chem.200528014133041331410.1074/jbc.M40819420015632195
    [Google Scholar]
  3. Eisinger-MathasonT.S.K. AndradeJ. LanniganD.A. RSK in tumorigenesis: Connections to steroid signaling.Steroids201075319120210.1016/j.steroids.2009.12.01020045011
    [Google Scholar]
  4. JonesS.W. EriksonE. BlenisJ. MallerJ.L. EriksonR.L. A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases.Proc. Natl. Acad. Sci. USA198885103377338110.1073/pnas.85.10.33773368449
    [Google Scholar]
  5. FisherT.L. BlenisJ. Evidence for two catalytically active kinase domains in pp90rsk.Mol. Cell. Biol.19961631212121910.1128/MCB.16.3.12128622665
    [Google Scholar]
  6. ArulN. ChoY.Y. A Rising Cancer Prevention Target of RSK2 in Human Skin Cancer.Front. Oncol.2013320110.3389/fonc.2013.0020123936765
    [Google Scholar]
  7. ChoY.Y. RSK2 and its binding partners in cell proliferation, transformation and cancer development.Arch. Pharm. Res.201740329130310.1007/s12272‑016‑0880‑z28013489
    [Google Scholar]
  8. ChoiJ.S. ChoY.Y. Novel wiring of the AKT-RSK2 signaling pathway plays an essential role in cancer cell proliferation via a G1/S cell cycle transition.Biochem. Biophys. Res. Commun.2023642667410.1016/j.bbrc.2022.12.04836566564
    [Google Scholar]
  9. GuoZ.F. KongF.L. Akt regulates RSK2 to alter phosphorylation level of H2A.X in breast cancer.Oncol. Lett.202121318710.3892/ol.2021.1244833574926
    [Google Scholar]
  10. WangL. IorioC. YanK. YangH. TakeshitaS. KangS. NeelB.G. YangW. A ERK/RSK‐mediated negative feedback loop regulates M‐CSF–evoked PI3K/AKT activation in macrophages.FASEB J.201832287588710.1096/fj.201700672RR29046360
    [Google Scholar]
  11. KuppusamyP. NagalingamA. MunirajN. SaxenaN.K. SharmaD. Concomitant activation of ETS-like transcription factor-1 and Death Receptor-5 via extracellular signal-regulated kinase in withaferin A-mediated inhibition of hepatocarcinogenesis in mice.Sci. Rep.2017711794310.1038/s41598‑017‑18190‑429263422
    [Google Scholar]
  12. YooS.M. LeeC.J. AnH.J. LeeJ.Y. LeeH.S. KangH.C. ChoS.J. KimS.M. ParkJ. KimD.J. ChoY.Y. RSK2-mediated ELK3 activation enhances cell transformation and breast cancer cell growth by regulation of c-fos promoter activity.Int. J. Mol. Sci.2019208199410.3390/ijms2008199431018569
    [Google Scholar]
  13. AbdulrahmanN. SiveenK.S. JosephJ.M. OsmanA. YalcinH.C. HasanA. UddinS. MraicheF. Inhibition of p90 ribosomal S6 kinase potentiates cisplatin activity in A549 human lung adenocarcinoma cells.J. Pharm. Pharmacol.202072111536154510.1111/jphp.1333532667058
    [Google Scholar]
  14. ZhengK. YaoS. YaoW. LiQ. WangY. ZhangL. ChenX. XiongH. YuanX. WangY. ZouY. XiongH. Association between RSK2 and clinical indexes of primary breast cancer: A meta-analysis based on mRNA microarray data.Front. Genet.20211277013410.3389/fgene.2021.77013434790230
    [Google Scholar]
  15. CzaplinskaD. MieczkowskiK. SupernatA. SkladanowskiA.C. KordekR. BiernatW. ZaczekA.J. RomanskaH.M. SadejR. Interactions between FGFR2 and RSK2—implications for breast cancer prognosis.Tumour Biol.20163710137211373110.1007/s13277‑016‑5266‑927476168
    [Google Scholar]
  16. LiJ.J. RhimJ.S. SchlegelR. VousdenK.H. ColburnN.H. Expression of dominant negative Jun inhibits elevated AP-1 and NF-κB transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes.Oncogene199816212711272110.1038/sj.onc.12017989652737
    [Google Scholar]
  17. ZhangX. GuoY. XiaoT. LiJ. GuoA. LeiL. JinC. LongQ. SuJ. YinM. LiuH. ChenC. ZhouZ. ZhuS. TaoJ. HuS. ChenX. PengC. CD147 mediates epidermal malignant transformation through the RSK2/AP-1 pathway.J. Exp. Clin. Cancer Res.202241124610.1186/s13046‑022‑02427‑w35964097
    [Google Scholar]
  18. JiangD. QiuT. PengJ. LiS. Tala RenW. YangC. WenY. ChenC.H. SunJ. WuY. LiuR. ZhouJ. WuK. LiuW. MaoX. ZhouZ. ChenC. YB-1 is a positive regulator of KLF5 transcription factor in basal-like breast cancer.Cell Death Differ.20222961283129510.1038/s41418‑021‑00920‑x35022570
    [Google Scholar]
  19. StratfordA.L. FryC.J. DesiletsC. DaviesA.H. ChoY.Y. LiY. DongZ. BerquinI.M. RouxP.P. DunnS.E. Y-box binding protein-1 serine 102 is a downstream target of p90 ribosomal S6 kinase in basal-like breast cancer cells.Breast Cancer Res.2008106R9910.1186/bcr220219036157
    [Google Scholar]
  20. SheQ.B. MaW.Y. ZhongS. DongZ. Activation of JNK1, RSK2, and MSK1 is involved in serine 112 phosphorylation of Bad by ultraviolet B radiation.J. Biol. Chem.200227727240392404810.1074/jbc.M10990720011983683
    [Google Scholar]
  21. PengC. ChoY.Y. ZhuF. LiH. LiX. XieH. BodeA.M. DongZ. Abstract 4968: Phosphorylation of caspase-8 (Thr263) by ribosomal S6 kinase 2 (RSK2) mediates caspase-8 ubiquitination and stability.Cancer Res.2012728_SupplementSuppl.4968496810.1158/1538‑7445.AM2012‑4968
    [Google Scholar]
  22. LeeC.J. LeeM.H. LeeJ.Y. SongJ.H. LeeH.S. ChoY.Y. RSK2-induced stress tolerance enhances cell survival signals mediated by inhibition of GSK3β activity.Biochem. Biophys. Res. Commun.2013440111211810.1016/j.bbrc.2013.09.04224055036
    [Google Scholar]
  23. HeZ. MaW.Y. LiuG. ZhangY. BodeA.M. DongZ. Arsenite-induced phosphorylation of histone H3 at serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2, and p90 ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1.J. Biol. Chem.200327812105881059310.1074/jbc.M20858120012529330
    [Google Scholar]
  24. ChoY.Y. HeZ. ZhangY. ChoiH.S. ZhuF. ChoiB.Y. KangB.S. MaW.Y. BodeA.M. DongZ. The p53 protein is a novel substrate of ribosomal S6 kinase 2 and a critical intermediary for ribosomal S6 kinase 2 and histone H3 interaction.Cancer Res.20056593596360310.1158/0008‑5472.CAN‑04‑393515867353
    [Google Scholar]
  25. LauA.T.Y. LeeS.Y. XuY.M. ZhengD. ChoY.Y. ZhuF. KimH.G. LiS.Q. ZhangZ. BodeA.M. DongZ. Phosphorylation of histone H2B serine 32 is linked to cell transformation.J. Biol. Chem.201128630266282663710.1074/jbc.M110.21559021646345
    [Google Scholar]
  26. ZhuF. ZykovaT.A. PengC. ZhangJ. ChoY.Y. ZhengD. YaoK. MaW.Y. LauA.T.Y. BodeA.M. DongZ. Phosphorylation of H2AX at Ser139 and a new phosphorylation site Ser16 by RSK2 decreases H2AX ubiquitination and inhibits cell transformation.Cancer Res.201171239340310.1158/0008‑5472.CAN‑10‑201221224359
    [Google Scholar]
  27. PenzoC. ArnoldoL. PegoraroS. PetrosinoS. RosG. ZaninR. WiśniewskiJ.R. ManfiolettiG. SgarraR. HMGA1 modulates gene transcription sustaining a tumor signalling pathway acting on the epigenetic status of triple-negative breast cancer cells.Cancers (Basel)2019118110510.3390/cancers1108110531382504
    [Google Scholar]
  28. LiuK. ChoY.Y. YaoK. NadasJ. KimD.J. ChoE.J. LeeM.H. PuglieseA. ZhangJ. BodeA.M. DongZ. DongZ. Eriodictyol inhibits RSK2-ATF1 signaling and suppresses EGF-induced neoplastic cell transformation.J. Biol. Chem.201128632057206610.1074/jbc.M110.14730621098035
    [Google Scholar]
  29. KangJ. ChunJ. HwangJ.S. PanC. LiJ. BoeseA.C. YoungI. MalinC.M. KangY. GibbonsD.L. SicaG. FuH. RamalingamS.S. JinL. KangS. EGFR-phosphorylated GDH1 harmonizes with RSK2 to drive CREB activation and tumor metastasis in EGFR-activated lung cancer.Cell Rep.2022411111182710.1016/j.celrep.2022.11182736516759
    [Google Scholar]
  30. Vanden BergheW. De NaeyerA. DijsselbloemN. DavidJ.P. De KeukeleireD. HaegemanG. Attenuation of ERK/RSK2-driven NFκB gene expression and cancer cell proliferation by kurarinone, a lavandulyl flavanone isolated from Sophora flavescens ait. roots.Endocr. Metab. Immune Disord. Drug Targets201111324726110.2174/18715301179642979021831037
    [Google Scholar]
  31. QianX. XuQ. LiG. BuY. SunF. ZhangJ. Therapeutic effect of idebenone on rats with vascular dementia via the MicroRNA-216a/RSK2/NF-κB axis.Neuropsychiatr. Dis. Treat.20211753354310.2147/NDT.S29361433628024
    [Google Scholar]
  32. WuH.Z. LiL.Y. JiangS.L. LiY.Z. ShiX.M. SunX.Y. LiZ. ChengY. RSK2 promotes melanoma cell proliferation and vemurafenib resistance via upregulating cyclin D1.Front. Pharmacol.20221395057110.3389/fphar.2022.95057136210843
    [Google Scholar]
  33. KosnopfelC. SinnbergT. SauerB. NiessnerH. SchmittA. MakinoE. ForschnerA. HailfingerS. GarbeC. SchittekB. Human melanoma cells resistant to MAPK inhibitors can be effectively targeted by inhibition of the p90 ribosomal S6 kinase.Oncotarget2017822357613577510.18632/oncotarget.1620428415756
    [Google Scholar]
  34. LiY. YuP. LongJ. TangL. ZhangX. ZhouZ. CaoD. SuJ. ChenX. PengC. A novel ribosomal protein S6 kinase 2 inhibitor attenuates the malignant phenotype of cutaneous malignant melanoma cells by inducing cell cycle arrest and apoptosis.Bioengineered2022135135551357010.1080/21655979.2022.208036436700473
    [Google Scholar]
  35. LommelM.J. TrairatphisanP. GäblerK. LauriniC. MullerA. KaomaT. VallarL. SauterT. Schaffner-ReckingerE. L‐plastin Ser5 phosphorylation in breast cancer cells and in vitro is mediated by RSK downstream of the ERK/MAPK pathway.FASEB J.20163031218123310.1096/fj.15‑27631126631483
    [Google Scholar]
  36. CzaplinskaD. TurczykL. GrudowskaA. MieszkowskaM. LipinskaA.D. SkladanowskiA.C. ZaczekA.J. RomanskaH.M. SadejR. Phosphorylation of RSK2 at Tyr529 by FGFR2-p38 enhances human mammary epithelial cells migration.Biochim. Biophys. Acta Mol. Cell Res.20141843112461247010.1016/j.bbamcr.2014.06.02225014166
    [Google Scholar]
  37. AlesiG.N. JinL. LiD. MaglioccaK.R. KangY. ChenZ.G. ShinD.M. KhuriF.R. KangS. RSK2 signals through stathmin to promote microtubule dynamics and tumor metastasis.Oncogene201635415412542110.1038/onc.2016.7927041561
    [Google Scholar]
  38. MaQ. GuinS. PadhyeS.S. ZhouY.Q. ZhangR.W. WangM.H. Ribosomal Protein S6 Kinase (RSK)-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein.Mol. Cancer20111016610.1186/1476‑4598‑10‑6621619683
    [Google Scholar]
  39. MaoL. SummersW. XiangS. YuanL. DauchyR.T. ReynoldsA. Wren-DailM.A. PointerD. FraschT. BlaskD.E. HillS.M. Melatonin represses metastasis in Her2 -postive human breast cancer cells by suppressing RSK2 expression.Mol. Cancer Res.201614111159116910.1158/1541‑7786.MCR‑16‑015827535706
    [Google Scholar]
  40. PambidM.R. BernsR. AdomatH.H. HuK. TriscottJ. MaurerN. ZismanN. RamaswamyV. HawkinsC.E. TaylorM.D. DunhamC. GunsE. DunnS.E. Overcoming resistance to sonic hedgehog inhibition by targeting p90 ribosomal S6 kinase in pediatric medulloblastoma.Pediatr. Blood Cancer201461110711510.1002/pbc.2467523940083
    [Google Scholar]
  41. StratfordA.L. ReipasK. HuK. FotovatiA. BroughR. FrankumJ. TakharM. WatsonP. AshworthA. LordC.J. LashamA. PrintC.G. DunnS.E. Targeting p90 ribosomal S6 kinase eliminates tumor-initiating cells by inactivating Y-box binding protein-1 in triple-negative breast cancers.Stem Cells20123071338134810.1002/stem.112822674792
    [Google Scholar]
  42. MrozowskiR.M. VemulaR. WuB. ZhangQ. SchroederB.R. HilinskiM.K. ClarkD.E. HechtS.M. O’DohertyG.A. LanniganD.A. Improving the affinity of SL0101 for RSK using structure-based design.ACS Med. Chem. Lett.20134217517910.1021/ml300298v23519677
    [Google Scholar]
  43. WrightE.B. FukudaS. LiM. LiY. O’DohertyG.A. LanniganD.A. Identifying requirements for RSK2 specific inhibitors.J. Enzyme Inhib. Med. Chem.20213611798180910.1080/14756366.2021.195786234348556
    [Google Scholar]
  44. CasalvieriK.A. MathesonC.J. BackosD.S. ReiganP. Substituted pteridinones as p90 ribosomal S6 protein kinase (RSK) inhibitors: A structure-activity study.Bioorg. Med. Chem.202028511530310.1016/j.bmc.2019.11530331982240
    [Google Scholar]
  45. VicierC. SfumatoP. IsambertN. DalencF. RobertM. LevyC. RezaiK. ProvansalM. TAKTIC: A prospective, multicentre, uncontrolled, phase IB/II study of LY2780301, a p70S6K/AKT inhibitor, in combination with weekly paclitaxel in HER2-negative advanced breast cancer patients.Euro. J. Cancer2021159205214
    [Google Scholar]
  46. UshijimaM. ShiotaM. MatsumotoT. KashiwagiE. InokuchiJ. EtoM. An oral first‐in‐class small molecule RSK inhibitor suppresses AR variants and tumor growth in prostate cancer.Cancer Sci.202211351731173810.1111/cas.1528035118769
    [Google Scholar]
  47. KosnopfelC. WendlingerS. NiessnerH. SiewertJ. SinnbergT. HofmannA. WohlfarthJ. SchramaD. BertholdM. SiedelC. SauerB. JayanthanA. LenzG. DunnS.E. SchillingB. SchittekB. Inhibition of p90 ribosomal S6 kinases disrupts melanoma cell growth and immune evasion.J. Exp. Clin. Cancer Res.202342117510.1186/s13046‑023‑02755‑537464364
    [Google Scholar]
  48. CohenM.S. HadjivassiliouH. TauntonJ. A clickable inhibitor reveals context-dependent autoactivation of p90 RSK.Nat. Chem. Biol.20073315616010.1038/nchembio85917259979
    [Google Scholar]
  49. CraggG.M. PezzutoJ.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents.Med. Princ. Pract.201625S2415910.1159/000443404
    [Google Scholar]
  50. MushtaqS. AbbasiB.H. UzairB. AbbasiR. Natural products as reservoirs of novel therapeutic agents.EXCLI J.20181742045129805348
    [Google Scholar]
  51. DiasD.A. UrbanS. RoessnerU. A historical overview of natural products in drug discovery.Metabolites20122230333610.3390/metabo202030324957513
    [Google Scholar]
  52. SongB. ShenX. TongC. ZhangS. ChenQ. LiY. LiS. Gossypin: A flavonoid with diverse pharmacological effects.Chem. Biol. Drug Des.2023101113113710.1111/cbdd.1415236198093
    [Google Scholar]
  53. WangL. WangX. ChenH. ZuX. MaF. LiuK. BodeA.M. DongZ. KimD.J. Gossypin inhibits gastric cancer growth by direct targeting of AURKA and RSK2.Phytother. Res.201933364065010.1002/ptr.625330536456
    [Google Scholar]
  54. CinarI. Apoptosis-inducing activity and antiproliferative effect of gossypin on PC-3 prostate cancer cells.Anticancer. Agents Med. Chem.202121444545010.2174/187152062066620072110342232698736
    [Google Scholar]
  55. ShiL. ChenJ. WangY. SunG. LiuJ. ZhangJ. YanW. QianC. LiuN. FuZ. YouY. ZengY. Gossypin induces G2/M arrest in human malignant glioma U251 cells by the activation of Chk1/Cdc25C pathway.Cell. Mol. Neurobiol.201232228929610.1007/s10571‑011‑9760‑821984341
    [Google Scholar]
  56. FengJ. ChenX. WangY. DuY. SunQ. ZangW. ZhaoG. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells.Mol. Cell. Biochem.20154081-216317010.1007/s11010‑015‑2492‑126112905
    [Google Scholar]
  57. ReipasK.M. LawJ.H. CoutoN. IslamS. LiY. LiH. CherkasovA. JungK. CheemaA.S. JonesS.J.M. HassellJ.A. DunnS.E. Luteolin is a novel p90 ribosomal S6 kinase (RSK) inhibitor that suppresses Notch4 signaling by blocking the activation of Y-box binding protein-1 (YB-1).Oncotarget20134232934510.18632/oncotarget.83423593654
    [Google Scholar]
  58. RamasamyK. Dwyer-NieldL.D. SerkovaN.J. HasebroockK.M. TyagiA. RainaK. SinghR.P. MalkinsonA.M. AgarwalR. Silibinin prevents lung tumorigenesis in wild-type but not in iNOS-/- mice: potential of real-time micro-CT in lung cancer chemoprevention studies.Clin. Cancer Res.201117475376110.1158/1078‑0432.CCR‑10‑229021148748
    [Google Scholar]
  59. ZengJ. SunY. WuK. LiL. ZhangG. YangZ. WangZ. ZhangD. XueY. ChenY. ZhuG. WangX. HeD. Chemopreventive and chemotherapeutic effects of intravesical silibinin against bladder cancer by acting on mitochondria.Mol. Cancer Ther.201110110411610.1158/1535‑7163.MCT‑10‑057721220495
    [Google Scholar]
  60. LeeM.H. HuangZ. KimD.J. KimS.H. KimM.O. LeeS.Y. XieH. ParkS.J. KimJ.Y. KunduJ.K. BodeA.M. SurhY.J. DongZ. Direct targeting of MEK1/2 and RSK2 by silybin induces cell-cycle arrest and inhibits melanoma cell growth.Cancer Prev. Res.20136545546510.1158/1940‑6207.CAPR‑12‑042523447564
    [Google Scholar]
  61. KimJ.E. HeoY.S. LeeK.W. Osajin inhibits solar UV‐induced cyclooxygenase‐2 expression through direct inhibition of RSK2.J. Cell. Biochem.2017118114080408710.1002/jcb.2606328409880
    [Google Scholar]
  62. YaoK. ChenH. LiuK. LangfaldA. YangG. ZhangY. YuD.H. KimM.O. LeeM.H. LiH. BaeK.B. KimH.G. MaW.Y. BodeA.M. DongZ. DongZ. Kaempferol targets RSK2 and MSK1 to suppress UV radiation-induced skin cancer.Cancer Prev. Res. (Phila.)20147995896710.1158/1940‑6207.CAPR‑14‑012624994661
    [Google Scholar]
  63. WangL. ZhangY. LiuK. ChenH. YangR. MaX. KimH.G. BodeA.M. KimD.J. DongZ. Carnosol suppresses patient-derived gastric tumor growth by targeting RSK2.Oncotarget2018976342003421210.18632/oncotarget.2440930344937
    [Google Scholar]
  64. ChenH. YaoK. ChangX. ShimJ.H. KimH.G. MalakhovaM. KimD.J. BodeA.M. DongZ. Computational and biochemical discovery of rsk2 as a novel target for epigallocatechin gallate (EGCG).PLoS One2015106e013004910.1371/journal.pone.013004926083344
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206329546240830055233
Loading
/content/journals/acamc/10.2174/0118715206329546240830055233
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-cancer; apoptosis; inhibitor; metastasis; natural products; proliferation; RSK2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test