Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Previous studies have reported that the cGMP-specific PDE5 isozyme is overexpressed in colon adenomas and adenocarcinomas and essential for colon cancer cell proliferation, while PDE5 selective inhibitors (., sildenafil) have been reported to have cancer chemopreventive activity.

Aim

This study aimed to determine the anticancer activity of a novel PDE5 inhibitor, RF26, using colorectal cancer (CRC) cells and the role of PDE5 in CRC tumor growth .

Objective

The objective of this study was to characterize the anticancer activity of a novel celecoxib derivative, RF26, in CRC cells previously reported to lack COX-2 inhibition but have potent PDE5 inhibitory activity.

Methods

Anticancer activity of RF26 was studied using human CRC cell lines. Effects on cell growth, cGMP-dependent protein kinase (PKG) activity, β-catenin levels, TCF/LEF transcriptional activity, cell cycle distribution, and apoptosis were measured. CRISPR/cas9 PDE5 knockout techniques were used to determine if PDE5 mediates the anticancer activity of RF26 and validate PDE5 as a cancer target.

Results

RF26 was appreciably more potent than celecoxib and sildenafil to suppress CRC cell growth and was effective at concentrations that activated PKG signaling. RF26 suppressed β-catenin levels and TCF/LEF transcriptional activity and induced G1 cell cycle arrest and apoptosis within the same concentration range. CRISPR/cas9 PDE5 knockout CRC cells displayed reduced sensitivity to RF26, proliferated slower than parental cells, and failed to establish tumors in mice.

Conclusion

Further evaluation of RF26 for the prevention or treatment of cancer and studying the role of PDE5 in tumorigenesis are warranted.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206318802240821114353
2025-01-01
2025-01-10
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. Goding SauerA. FedewaS.A. ButterlyL.F. AndersonJ.C. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2020.CA Cancer J. Clin.202070314516410.3322/caac.2160132133645
    [Google Scholar]
  2. WaltherA. JohnstoneE. SwantonC. MidgleyR. TomlinsonI. KerrD. Genetic prognostic and predictive markers in colorectal cancer.Nat. Rev. Cancer20099748949910.1038/nrc264519536109
    [Google Scholar]
  3. GilesR.H. van EsJ.H. CleversH. Caught up in a Wnt storm: Wnt signaling in cancer.Biochim. Biophys. Acta20031653112412781368
    [Google Scholar]
  4. PowellS.M. ZilzN. Beazer-BarclayY. BryanT.M. HamiltonS.R. ThibodeauS.N. VogelsteinB. KinzlerK.W. APC mutations occur early during colorectal tumorigenesis.Nature1992359639223523710.1038/359235a01528264
    [Google Scholar]
  5. CavalloR.A. CoxR.T. MolineM.M. RooseJ. PolevoyG.A. CleversH. PeiferM. BejsovecA. Drosophila Tcf and Groucho interact to repress Wingless signalling activity.Nature1998395670260460810.1038/269829783586
    [Google Scholar]
  6. GossK.H. GrodenJ. Biology of the adenomatous polyposis coli tumor suppressor.J. Clin. Oncol.20001891967197910.1200/JCO.2000.18.9.196710784639
    [Google Scholar]
  7. KorinekV. BarkerN. MorinP.J. van WichenD. de WegerR. KinzlerK.W. VogelsteinB. CleversH. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC-/- colon carcinoma.Science199727553071784178710.1126/science.275.5307.17849065401
    [Google Scholar]
  8. MorinP.J. SparksA.B. KorinekV. BarkerN. CleversH. VogelsteinB. KinzlerK.W. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC.Science199727553071787179010.1126/science.275.5307.17879065402
    [Google Scholar]
  9. GiardielloF.M. HamiltonS.R. KrushA.J. PiantadosiS. HylindL.M. CelanoP. BookerS.V. RobinsonC.R. OfferhausG.J.A. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis.N. Engl. J. Med.1993328181313131610.1056/NEJM1993050632818058385741
    [Google Scholar]
  10. SteinbachG. LynchP.M. PhillipsR.K.S. WallaceM.H. HawkE. GordonG.B. WakabayashiN. SaundersB. ShenY. FujimuraT. SuL.K. LevinB. GodioL. PattersonS. Rodriguez-BigasM.A. JesterS.L. KingK.L. SchumacherM. AbbruzzeseJ. DuBoisR.N. HittelmanW.N. ZimmermanS. ShermanJ.W. KelloffG. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis.N. Engl. J. Med.2000342261946195210.1056/NEJM20000629342260310874062
    [Google Scholar]
  11. GurpinarE. GrizzleW.E. PiazzaG.A. NSAIDs inhibit tumorigenesis, but how?Clin. Cancer Res.20142051104111310.1158/1078‑0432.CCR‑13‑157324311630
    [Google Scholar]
  12. PiazzaG.A. AlbertsD.S. HixsonL.J. ParankaN.S. LiH. FinnT. BogertC. GuillenJ.M. BrendelK. GrossP.H. SperlG. RitchieJ. BurtR.W. EllsworthL. AhnenD.J. PamukcuR. Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels.Cancer Res.19975714290929159230200
    [Google Scholar]
  13. CharalambousD. O’BrienP. Inhibition of colon cancer precursors in the rat by sulindac sulphone is not dependent on inhibition of prostaglandin synthesis.J. Gastroenterol. Hepatol.199611430731010.1111/j.1440‑1746.1996.tb01376.x8713695
    [Google Scholar]
  14. PiazzaG.A. RahmA.L.K. KrutzschM. SperlG. ParankaN.S. GrossP.H. BrendelK. BurtR.W. AlbertsD.S. PamukcuR. Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis.Cancer Res.19955514311031167606732
    [Google Scholar]
  15. ArberN. KuwadaS. LeshnoM. SjodahlR. HultcrantzR. RexD. Sporadic adenomatous polyp regression with exisulind is effective but toxic: a randomised, double blind, placebo controlled, dose-response study.Gut200655336737310.1136/gut.2004.06143216150858
    [Google Scholar]
  16. PiazzaG.A. KeetonA.B. TinsleyH.N. GaryB.D. WhittJ.D. MathewB. ThaiparambilJ. CowardL. GormanG. LiY. SaniB. HobrathJ.V. MaxuitenkoY.Y. ReynoldsR.C. A novel sulindac derivative that does not inhibit cyclooxygenases but potently inhibits colon tumor cell growth and induces apoptosis with antitumor activity.Cancer Prev. Res. (Phila.)20092657258010.1158/1940‑6207.CAPR‑09‑000119470791
    [Google Scholar]
  17. GröschS. TegederI. NiederbergerE. BräutigamL. GeisslingerG. COX‐2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX‐2 inhibitor celecoxib.FASEB J.2001151412210.1096/fj.01‑0299fje11606477
    [Google Scholar]
  18. SadeA. TunçayS. Çimenİ. SevercanF. BanerjeeS. Celecoxib reduces fluidity and decreases metastatic potential of colon cancer cell lines irrespective of COX-2 expression.Biosci. Rep.2012321354410.1042/BSR2010014921401528
    [Google Scholar]
  19. SchiffmannS. MaierT.J. WobstI. JanssenA. Corban-WilhelmH. AngioniC. GeisslingerG. GröschS. The anti-proliferative potency of celecoxib is not a class effect of coxibs.Biochem. Pharmacol.200876217918710.1016/j.bcp.2008.04.01718547544
    [Google Scholar]
  20. ZhuJ. HuangJ.W. TsengP.H. YangY.T. FowbleJ. ShiauC.W. ShawY.J. KulpS.K. ChenC.S. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors.Cancer Res.200464124309431810.1158/0008‑5472.CAN‑03‑406315205346
    [Google Scholar]
  21. ThompsonW.J. PiazzaG.A. LiH. LiuL. FetterJ. ZhuB. SperlG. AhnenD. PamukcuR. Exisulind induction of apoptosis involves guanosine 3′,5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated β-catenin.Cancer Res.200060133338334210910034
    [Google Scholar]
  22. PiazzaG.A. ThompsonW.J. PamukcuR. AlilaH.W. WhiteheadC.M. LiuL. FetterJ.R. GreshW.E.Jr Klein-SzantoA.J. FarnellD.R. EtoI. GrubbsC.J. Exisulind, a novel proapoptotic drug, inhibits rat urinary bladder tumorigenesis.Cancer Res.200161103961396811358813
    [Google Scholar]
  23. KwonI.K. SchoenleinP.V. DelkJ. LiuK. ThangarajuM. DulinN.O. GanapathyV. BergerF.G. BrowningD.D. Expression of cyclic guanosine monophosphate‐dependent protein kinase in metastatic colon carcinoma cells blocks tumor angiogenesis.Cancer200811271462147010.1002/cncr.2333418260092
    [Google Scholar]
  24. SahaS. ChowdhuryP. PalA. ChakrabartiM.K. Downregulation of human colon carcinoma cell (COLO‐205) proliferation through PKG‐MAP kinase mediated signaling cascade by E. coli heat stable enterotoxin (STa), a potent anti‐angiogenic and anti‐metastatic molecule.J. Appl. Toxicol.200828447548310.1002/jat.129717828804
    [Google Scholar]
  25. ShailubhaiK. YuH.H. KarunanandaaK. WangJ.Y. EberS.L. WangY. JooN.S. KimH.D. MiedemaB.W. AbbasS.Z. BoddupalliS.S. CurrieM.G. ForteL.R. Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP.Cancer Res.200060185151515711016642
    [Google Scholar]
  26. TinsleyH.N. GaryB.D. ThaiparambilJ. LiN. LuW. LiY. MaxuitenkoY.Y. KeetonA.B. PiazzaG.A. Colon tumor cell growth-inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition.Cancer Prev. Res. (Phila.)20103101303131310.1158/1940‑6207.CAPR‑10‑003020876730
    [Google Scholar]
  27. TinsleyH.N. GaryB.D. KeetonA.B. ZhangW. AbadiA.H. ReynoldsR.C. PiazzaG.A. Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G.Mol. Cancer Ther.20098123331334010.1158/1535‑7163.MCT‑09‑075819996273
    [Google Scholar]
  28. TinsleyH.N. GaryB.D. KeetonA.B. LuW. LiY. PiazzaG.A. Inhibition of PDE5 by sulindac sulfide selectively induces apoptosis and attenuates oncogenic Wnt/β-catenin-mediated transcription in human breast tumor cells.Cancer Prev. Res. (Phila.)2011481275128410.1158/1940‑6207.CAPR‑11‑009521505183
    [Google Scholar]
  29. LiN. XiY. TinsleyH.N. GurpinarE. GaryB.D. ZhuB. LiY. ChenX. KeetonA.B. AbadiA.H. MoyerM.P. GrizzleW.E. ChangW.C. ClapperM.L. PiazzaG.A. Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling.Mol. Cancer Ther.20131291848185910.1158/1535‑7163.MCT‑13‑004823804703
    [Google Scholar]
  30. LiN. ChenX. ZhuB. Ramírez-AlcántaraV. CanzoneriJ.C. LeeK. SiglerS. GaryB. LiY. ZhangW. MoyerM.P. SalterE.A. WierzbickiA. KeetonA.B. PiazzaG.A. Suppression of β-catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10.Oncotarget2015629274032741510.18632/oncotarget.474126299804
    [Google Scholar]
  31. WhittJ.D. LiN. TinsleyH.N. ChenX. ZhangW. LiY. GaryB.D. KeetonA.B. XiY. AbadiA.H. GrizzleW.E. PiazzaG.A. A novel sulindac derivative that potently suppresses colon tumor cell growth by inhibiting cGMP phosphodiesterase and β-catenin transcriptional activity.Cancer Prev. Res. (Phila.)20125682283310.1158/1940‑6207.CAPR‑11‑055922556201
    [Google Scholar]
  32. IslamB.N. SharmanS.K. HouY. BridgesA.E. SinghN. KimS. KolheR. Trillo-TinocoJ. RodriguezP.C. BergerF.G. SridharS. BrowningD.D. Sildenafil suppresses inflammation-driven colorectal cancer in mice.Cancer Prev. Res. (Phila.)201710737738810.1158/1940‑6207.CAPR‑17‑001528468928
    [Google Scholar]
  33. LinS. WangJ. WangL. WenJ. GuoY. QiaoW. ZhouJ. XuG. ZhiF. Phosphodiesterase-5 inhibition suppresses colonic inflammation-induced tumorigenesis via blocking the recruitment of MDSC.Am. J. Cancer Res.201771415228123846
    [Google Scholar]
  34. BhagavathulaA.S. TesfayeW. VidyasagarK. Phosphodiesterase type 5 inhibitors use and risk of colorectal cancer: A systematic review and meta-analysis.Int. J. Colorectal Dis.202136122577258410.1007/s00384‑021‑04022‑534508301
    [Google Scholar]
  35. MeiX-L. YangY. ZhangY-J. LiY. ZhaoJ-M. QiuJ-G. ZhangW-J. JiangQ-W. XueY-Q. ZhengD-W. ChenY. QinW.M. WeiM.N. ShiZ. Sildenafil inhibits the growth of human colorectal cancer in vitro and in vivo. Am. J. Cancer Res.20155113311332426807313
    [Google Scholar]
  36. KleinT. EltzeM. GrebeT. HatzelmannA. KömhoffM. Celecoxib dilates guinea-pig coronaries and rat aortic rings and amplifies NO/cGMP signaling by PDE5 inhibition.Cardiovasc. Res.200775239039710.1016/j.cardiores.2007.02.02617383621
    [Google Scholar]
  37. Abdel-HalimM. SiglerS. RacheedN.A.S. HefnawyA. FathallaR.K. HammamM.A. MaherA. MaxuitenkoY. KeetonA.B. HartmannR.W. EngelM. PiazzaG.A. AbadiA.H. From celecoxib to a novel class of phosphodiesterase 5 inhibitors: Trisubstituted pyrazolines as novel phosphodiesterase 5 inhibitors with extremely high potency and phosphodiesterase isozyme selectivity.J. Med. Chem.20216484462447710.1021/acs.jmedchem.0c0112033793216
    [Google Scholar]
  38. Abdel-HalimM. TinsleyH. KeetonA.B. WeamM. AttaN.H. HammamM.A. HefnawyA. HartmannR.W. EngelM. PiazzaG.A. AbadiA.H. Discovery of trisubstituted pyrazolines as a novel scaffold for the development of selective phosphodiesterase 5 inhibitors.Bioorg. Chem.202010410432210.1016/j.bioorg.2020.10432233142429
    [Google Scholar]
  39. ButtE. AbelK. KriegerM. PalmD. HoppeV. HoppeJ. WalterU. cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets.J. Biol. Chem.199426920145091451710.1016/S0021‑9258(17)36652‑88182057
    [Google Scholar]
  40. TinsleyH.N. GrizzleW.E. AbadiA. KeetonA. ZhuB. XiY. PiazzaG.A. New NSAID targets and derivatives for colorectal cancer chemoprevention.Recent Results Cancer Res.201319110512010.1007/978‑3‑642‑30331‑9_622893202
    [Google Scholar]
  41. VighiE. RentschA. HenningP. ComitatoA. HoffmannD. BertinettiD. BertolottiE. SchwedeF. HerbergF.W. GenieserH.G. MarigoV. New cGMP analogues restrain proliferation and migration of melanoma cells.Oncotarget2018945301532010.18632/oncotarget.2368529435180
    [Google Scholar]
  42. ZhuB. LindseyA. LiN. LeeK. Ramirez-AlcantaraV. CanzoneriJ.C. FajardoA. Madeira da SilvaL. ThomasM. PiazzaJ.T. YetL. EberhardtB.T. GurpinarE. OtaliD. GrizzleW. ValiyaveettilJ. ChenX. KeetonA.B. PiazzaG.A. Phosphodiesterase 10A is overexpressed in lung tumor cells and inhibitors selectively suppress growth by blocking β-catenin and MAPK signaling.Oncotarget2017841692646928010.18632/oncotarget.2056629050202
    [Google Scholar]
  43. DingP.R. TiwariA.K. OhnumaS. LeeJ.W.K.K. AnX. DaiC.L. LuQ.S. SinghS. YangD.H. TaleleT.T. AmbudkarS.V. ChenZ.S. The phosphodiesterase-5 inhibitor vardenafil is a potent inhibitor of ABCB1/P-glycoprotein transporter.PLoS One201164e1932910.1371/journal.pone.001932921552528
    [Google Scholar]
  44. HussainM. JaveedA. AshrafM. Al-ZaubaiN. StewartA. MukhtarM.M. Non-steroidal anti-inflammatory drugs, tumour immunity and immunotherapy.Pharmacol. Res.201266171810.1016/j.phrs.2012.02.00322449788
    [Google Scholar]
  45. ZelenayS. van der VeenA.G. BöttcherJ.P. SnelgroveK.J. RogersN. ActonS.E. ChakravartyP. GirottiM.R. MaraisR. QuezadaS.A. SahaiE. Reis e SousaC. Cyclooxygenase-dependent tumor growth through evasion of immunity.Cell201516261257127010.1016/j.cell.2015.08.01526343581
    [Google Scholar]
  46. PiazzaG.A. WardA. ChenX. MaxuitenkoY. ColeyA. AboelellaN.S. BuchsbaumD.J. BoydM.R. KeetonA.B. ZhouG. PDE5 and PDE10 inhibition activates cGMP/PKG signaling to block Wnt/β-catenin transcription, cancer cell growth, and tumor immunity.Drug Discov. Today20202581521152710.1016/j.drudis.2020.06.00832562844
    [Google Scholar]
  47. SerafiniP. MeckelK. KelsoM. NoonanK. CalifanoJ. KochW. DolcettiL. BronteV. BorrelloI. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function.J. Exp. Med.2006203122691270210.1084/jem.2006110417101732
    [Google Scholar]
  48. NoonanK.A. GhoshN. RudrarajuL. BuiM. BorrelloI. Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma.Cancer Immunol. Res.20142872573110.1158/2326‑6066.CIR‑13‑021324878583
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206318802240821114353
Loading
/content/journals/acamc/10.2174/0118715206318802240821114353
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): celecoxib; cGMP; colorectal cancer; PDE5; PKG; pyrazolines; β-catenin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test