Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Currently, breast cancer is the most common cancer type, accounting for 1 in every 4 cancer cases. Leading both in mortality and incidence, breast cancer causes 1 in 4 cancer deaths. To decrease the burden of breast cancer, novel therapeutic agents which target the key hallmarks of cancer, are being explored. The Bcl-2 family of proteins has a crucial role in governing cell death, making them an attractive target for cancer therapy. As cancer chemotherapies lead to oncogenic stress, cancer cells upregulate the Bcl-2 family to overcome apoptosis, leading to failure of treatment. To fix this issue, Bcl-2 family inhibitors, which can cause cell death, have been introduced as novel therapeutic agents. Members of this group have shown promising results in studies, and some are currently in clinical trials. In this review, we will investigate Bcl-2 family inhibitors, which are already in trials as monotherapy or combination therapy for breast cancer, and we will also highlight the result of studies of novel Bcl-2 family inhibitors on breast cancer cells. The findings of these studies have yielded encouraging outcomes regarding the identification of novel Bcl-2 family inhibitors. These compounds hold significant potential as efficacious agents for employment in both monotherapy and combination therapy settings.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206320224240910054728
2024-09-20
2025-01-15
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. HeerE. HarperA. EscandorN. SungH. McCormackV. Fidler-BenaoudiaM.M. Global burden and trends in premenopausal and postmenopausal breast cancer: A population-based study.Lancet Glob. Health202088e1027e103710.1016/S2214‑109X(20)30215‑1 32710860
    [Google Scholar]
  3. StrasserA. CoryS. AdamsJ.M. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases.EMBO J.201130183667368310.1038/emboj.2011.307 21863020
    [Google Scholar]
  4. ChonghaileT.N. SarosiekK.A. VoT.T. RyanJ.A. TammareddiA. MooreV.D.G. DengJ. AndersonK.C. RichardsonP. TaiY.T. MitsiadesC.S. MatulonisU.A. DrapkinR. StoneR. DeAngeloD.J. McConkeyD.J. SallanS.E. SilvermanL. HirschM.S. CarrascoD.R. LetaiA. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy.Science201133460591129113310.1126/science.1206727 22033517
    [Google Scholar]
  5. DawsonS-J. MakretsovN. BlowsF.M. DriverK.E. ProvenzanoE. Le QuesneJ. BagliettoL. SeveriG. GilesG.G. McLeanC.A. CallagyG. GreenA.R. EllisI. GelmonK. TurashviliG. LeungS. AparicioS. HuntsmanD. CaldasC. PharoahP. Bcl-2 in breast cancer: A favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received.Br. J. Cancer2010103566867510.1038/sj.bjc.6605736 20664598
    [Google Scholar]
  6. OakesS.R. VaillantF. LimE. LeeL. BreslinK. FeleppaF. DebS. RitchieM.E. TakanoE. WardT. FoxS.B. GeneraliD. SmythG.K. StrasserA. HuangD.C.S. VisvaderJ.E. LindemanG.J. Sensitization of BCL-2–expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737.Proc. Natl. Acad. Sci. USA201210982766277110.1073/pnas.1104778108 21768359
    [Google Scholar]
  7. VaillantF. MerinoD. LeeL. BreslinK. PalB. RitchieM.E. SmythG.K. ChristieM. PhillipsonL.J. BurnsC.J. MannG.B. VisvaderJ.E. LindemanG.J. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer.Cancer Cell201324112012910.1016/j.ccr.2013.06.002 23845444
    [Google Scholar]
  8. MerinoD. LokS.W. VisvaderJ.E. LindemanG.J. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer.Oncogene201635151877188710.1038/onc.2015.287 26257067
    [Google Scholar]
  9. PommierY. SordetO. AntonyS. HaywardR.L. KohnK.W. Apoptosis defects and chemotherapy resistance: Molecular interaction maps and networks.Oncogene200423162934294910.1038/sj.onc.1207515 15077155
    [Google Scholar]
  10. CarneiroB.A. El-DeiryW.S. Targeting apoptosis in cancer therapy.Nat. Rev. Clin. Oncol.202017739541710.1038/s41571‑020‑0341‑y 32203277
    [Google Scholar]
  11. ZhangC. WangH. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations.Biochim. Biophys. Acta Rev. Cancer20221877518879810.1016/j.bbcan.2022.188798 36096336
    [Google Scholar]
  12. Fowler-ShortenD.J. HellmichC. MarkhamM. BowlesK.M. RushworthS.A. BCL-2 inhibition in haematological malignancies: Clinical application and complications.Blood Rev.20246510119510.1016/j.blre.2024.101195 38523032
    [Google Scholar]
  13. CzabotarP.E. LesseneG. StrasserA. AdamsJ.M. Control of apoptosis by the Bcl-2 protein family: Implications for physiology and therapy.Nat. Rev. Mol. Cell Biol.2014151496310.1038/nrm3722 24355989
    [Google Scholar]
  14. RoyS. NicholsonD.W. Cross-talk in cell death signaling.J. Exp. Med.20001928F21F2610.1084/jem.192.8.F21 11034612
    [Google Scholar]
  15. WeiM.C. ZongW.X. ChengE.H.Y. LindstenT. PanoutsakopoulouV. RossA.J. RothK.A. MacGregorG.R. ThompsonC.B. KorsmeyerS.J. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death.Science2001292551772773010.1126/science.1059108 11326099
    [Google Scholar]
  16. LlambiF. MoldoveanuT. TaitS.W.G. Bouchier-HayesL. TemirovJ. McCormickL.L. DillonC.P. GreenD.R. A unified model of mammalian BCL-2 protein family interactions at the mitochondria.Mol. Cell201144451753110.1016/j.molcel.2011.10.001 22036586
    [Google Scholar]
  17. BrunelleJ.K. LetaiA. Control of mitochondrial apoptosis by the Bcl-2 family.J. Cell Sci.2009122443744110.1242/jcs.031682 19193868
    [Google Scholar]
  18. LetaiA. BassikM.C. WalenskyL.D. SorcinelliM.D. WeilerS. KorsmeyerS.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics.Cancer Cell20022318319210.1016/S1535‑6108(02)00127‑7 12242151
    [Google Scholar]
  19. SarosiekK.A. ChiX. BachmanJ.A. SimsJ.J. MonteroJ. PatelL. FlanaganA. AndrewsD.W. SorgerP. LetaiA. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response.Mol. Cell201351675176510.1016/j.molcel.2013.08.048 24074954
    [Google Scholar]
  20. AklH. VervloessemT. KiviluotoS. BittremieuxM. ParysJ.B. De SmedtH. BultynckG. A dual role for the anti-apoptotic Bcl-2 protein in cancer: Mitochondria versus endoplasmic reticulum.Biochim. Biophys. Acta Mol. Cell Res.20141843102240225210.1016/j.bbamcr.2014.04.017 24768714
    [Google Scholar]
  21. ChipukJ.E. GreenD.R. How do Bcl-2 proteins induce mitochondrial outer membrane permeabilization?Trends Cell Biol.200818415716410.1016/j.tcb.2008.01.007 18314333
    [Google Scholar]
  22. TaitS.W.G. GreenD.R. Mitochondria and cell death: Outer membrane permeabilization and beyond.Nat. Rev. Mol. Cell Biol.201011962163210.1038/nrm2952 20683470
    [Google Scholar]
  23. ColellA. RicciJ.E. TaitS. MilastaS. MaurerU. Bouchier-HayesL. FitzgeraldP. Guio-CarrionA. WaterhouseN.J. LiC.W. MariB. BarbryP. NewmeyerD.D. BeereH.M. GreenD.R. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation.Cell2007129598399710.1016/j.cell.2007.03.045 17540177
    [Google Scholar]
  24. LartigueL. KushnarevaY. SeongY. LinH. FaustinB. NewmeyerD.D. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release.Mol. Biol. Cell200920234871488410.1091/mbc.e09‑07‑0649 19793916
    [Google Scholar]
  25. GrossA. KatzS.G. Non-apoptotic functions of BCL-2 family proteins.Cell Death Differ.20172481348135810.1038/cdd.2017.22 28234359
    [Google Scholar]
  26. LiuT. WuZ. HeY. XiaoY. XiaC. Single and dual target inhibitors based on Bcl-2: Promising anti-tumor agents for cancer therapy.Eur. J. Med. Chem.202020111244610.1016/j.ejmech.2020.112446 32563811
    [Google Scholar]
  27. MoulderS.L. SymmansW.F. BooserD.J. MaddenT.L. LipsanenC. YuanL. BrewsterA.M. CristofanilliM. HuntK.K. BuchholzT.A. ZwiebelJ. ValeroV. HortobagyiG.N. EstevaF.J. Phase I/II study of G3139 (Bcl-2 antisense oligonucleotide) in combination with doxorubicin and docetaxel in breast cancer.Clin. Cancer Res.200814237909791610.1158/1078‑0432.CCR‑08‑1104 19047121
    [Google Scholar]
  28. RomJ. von MinckwitzG. MarméF. AtasevenB. KozianD. SievertM. SchleheB. SchuetzF. ScharfA. KaufmannM. SohnC. SchneeweissA. Phase I study of apoptosis gene modulation with oblimersen within preoperative chemotherapy in patients with primary breast cancer.Ann. Oncol.200920111829183510.1093/annonc/mdp208 19605509
    [Google Scholar]
  29. WangJ.L. LiuD. ZhangZ.J. ShanS. HanX. SrinivasulaS.M. CroceC.M. AlnemriE.S. HuangZ. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells.Proc. Natl. Acad. Sci. USA200097137124712910.1073/pnas.97.13.7124 10860979
    [Google Scholar]
  30. AnJ. ChenY. HuangZ. Critical upstream signals of cytochrome C release induced by a novel Bcl-2 inhibitor.J. Biol. Chem.200427918191331914010.1074/jbc.M400295200 14966123
    [Google Scholar]
  31. OliverC.L. MirandaM.B. ShangaryS. LandS. WangS. JohnsonD.E. (−)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-XL-mediated apoptosis resistance.Mol. Cancer Ther.200541233110.1158/1535‑7163.23.4.1 15657350
    [Google Scholar]
  32. BaggstromM.Q. QiY. KoczywasM. ArgirisA. JohnsonE.A. MillwardM.J. MurphyS.C. ErlichmanC. RudinC.M. GovindanR. A phase II study of AT-101 (Gossypol) in chemotherapy-sensitive recurrent extensive-stage small cell lung cancer.J. Thorac. Oncol.20116101757176010.1097/JTO.0b013e31822e2941 21918390
    [Google Scholar]
  33. SchenkR.L. StrasserA. DewsonG. BCL-2: Long and winding path from discovery to therapeutic target.Biochem. Biophys. Res. Commun.2017482345946910.1016/j.bbrc.2016.10.100 28212732
    [Google Scholar]
  34. KonoplevaM. WattJ. ContractorR. TsaoT. HarrisD. EstrovZ. BornmannW. KantarjianH. VialletJ. SamudioI. AndreeffM. Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15-070 (obatoclax).Cancer Res.20086893413342010.1158/0008‑5472.CAN‑07‑1919 18451169
    [Google Scholar]
  35. NguyenM. MarcellusR.C. RoulstonA. WatsonM. SerfassL. Murthy MadirajuS.R. GouletD. VialletJ. BélecL. BillotX. AcocaS. PurisimaE. WiegmansA. CluseL. JohnstoneR.W. BeauparlantP. ShoreG.C. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis.Proc. Natl. Acad. Sci. USA200710449195121951710.1073/pnas.0709443104 18040043
    [Google Scholar]
  36. WilsonW.H. O’ConnorO.A. CzuczmanM.S. LaCasceA.S. GerecitanoJ.F. LeonardJ.P. TulpuleA. DunleavyK. XiongH. ChiuY.L. CuiY. BusmanT. ElmoreS.W. RosenbergS.H. KrivoshikA.P. EnschedeS.H. HumerickhouseR.A. Navitoclax, a targeted high-affinity inhibitor of Bcl-2, in lymphoid malignancies: A phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity.Lancet Oncol.201011121149115910.1016/S1470‑2045(10)70261‑8 21094089
    [Google Scholar]
  37. OltersdorfT. ElmoreS.W. ShoemakerA.R. ArmstrongR.C. AugeriD.J. BelliB.A. BrunckoM. DeckwerthT.L. DingesJ. HajdukP.J. JosephM.K. KitadaS. KorsmeyerS.J. KunzerA.R. LetaiA. LiC. MittenM.J. NettesheimD.G. NgS. NimmerP.M. O’ConnorJ.M. OleksijewA. PetrosA.M. ReedJ.C. ShenW. TahirS.K. ThompsonC.B. TomaselliK.J. WangB. WendtM.D. ZhangH. FesikS.W. RosenbergS.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours.Nature2005435704267768110.1038/nature03579 15902208
    [Google Scholar]
  38. van DelftM.F. WeiA.H. MasonK.D. VandenbergC.J. ChenL. CzabotarP.E. WillisS.N. ScottC.L. DayC.L. CoryS. AdamsJ.M. RobertsA.W. HuangD.C.S. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized.Cancer Cell200610538939910.1016/j.ccr.2006.08.027 17097561
    [Google Scholar]
  39. TseC. ShoemakerA.R. AdickesJ. AndersonM.G. ChenJ. JinS. JohnsonE.F. MarshK.C. MittenM.J. NimmerP. RobertsL. TahirS.K. XiaoY. YangX. ZhangH. FesikS. RosenbergS.H. ElmoreS.W. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor.Cancer Res.20086893421342810.1158/0008‑5472.CAN‑07‑5836 18451170
    [Google Scholar]
  40. RobertsA.W. SeymourJ.F. BrownJ.R. WierdaW.G. KippsT.J. KhawS.L. CarneyD.A. HeS.Z. HuangD.C.S. XiongH. CuiY. BusmanT.A. McKeeganE.M. KrivoshikA.P. EnschedeS.H. HumerickhouseR. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease.J. Clin. Oncol.201230548849610.1200/JCO.2011.34.7898 22184378
    [Google Scholar]
  41. ZhangL. LuZ. ZhaoX. Targeting Bcl-2 for cancer therapy.Biochim. Biophys. Acta Rev. Cancer20211876118856910.1016/j.bbcan.2021.188569 34015412
    [Google Scholar]
  42. RobertsA.W. AdvaniR.H. KahlB.S. PerskyD. SweetenhamJ.W. CarneyD.A. YangJ. BusmanT.B. EnschedeS.H. HumerickhouseR.A. SeymourJ.F. Phase 1 study of the safety, pharmacokinetics, and antitumour activity of the BCL2 inhibitor navitoclax in combination with rituximab in patients with relapsed or refractory CD20+ lymphoid malignancies.Br. J. Haematol.2015170566967810.1111/bjh.13487 25942994
    [Google Scholar]
  43. KippsT.J. EradatH. GrosickiS. CatalanoJ. CosoloW. DyagilI.S. YalamanchiliS. ChaiA. SahasranamanS. PunnooseE. HurstD. PylypenkoH. A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia.Leuk. Lymphoma201556102826283310.3109/10428194.2015.1030638 25797560
    [Google Scholar]
  44. SchoenwaelderS.M. JarmanK.E. GardinerE.E. HuaM. QiaoJ. WhiteM.J. JosefssonE.C. AlwisI. OnoA. WillcoxA. AndrewsR.K. MasonK.D. SalemH.H. HuangD.C.S. KileB.T. RobertsA.W. JacksonS.P. Bcl-xL–inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets.Blood201111861663167410.1182/blood‑2011‑04‑347849 21673344
    [Google Scholar]
  45. KileB.T. The role of apoptosis in megakaryocytes and platelets.Br. J. Haematol.2014165221722610.1111/bjh.12757 24467740
    [Google Scholar]
  46. SouersA.J. LeversonJ.D. BoghaertE.R. AcklerS.L. CatronN.D. ChenJ. DaytonB.D. DingH. EnschedeS.H. FairbrotherW.J. HuangD.C.S. HymowitzS.G. JinS. KhawS.L. KovarP.J. LamL.T. LeeJ. MaeckerH.L. MarshK.C. MasonK.D. MittenM.J. NimmerP.M. OleksijewA. ParkC.H. ParkC.M. PhillipsD.C. RobertsA.W. SampathD. SeymourJ.F. SmithM.L. SullivanG.M. TahirS.K. TseC. WendtM.D. XiaoY. XueJ.C. ZhangH. HumerickhouseR.A. RosenbergS.H. ElmoreS.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets.Nat. Med.201319220220810.1038/nm.3048 23291630
    [Google Scholar]
  47. YangS. MaoY. ZhangH. XuY. AnJ. HuangZ. The chemical biology of apoptosis: Revisited after 17 years.Eur. J. Med. Chem.2019177637510.1016/j.ejmech.2019.05.019 31129454
    [Google Scholar]
  48. PanR. HogdalL.J. BenitoJ.M. BucciD. HanL. BorthakurG. CortesJ. DeAngeloD.J. DeboseL. MuH. DöhnerH. GaidzikV.I. GalinskyI. GolfmanL.S. HaferlachT. HarutyunyanK.G. HuJ. LeversonJ.D. MarcucciG. MüschenM. NewmanR. ParkE. RuvoloP.P. RuvoloV. RyanJ. SchindelaS. Zweidler-McKayP. StoneR.M. KantarjianH. AndreeffM. KonoplevaM. LetaiA.G. Selective Bcl-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia.Cancer Discov.20144336237510.1158/2159‑8290.CD‑13‑0609 24346116
    [Google Scholar]
  49. TouzeauC. DoussetC. Le GouillS. SampathD. LeversonJ.D. SouersA.J. MaïgaS. BénéM.C. MoreauP. Pellat-DeceunynckC. AmiotM. The Bcl-2 specific BH3 mimetic ABT-199: A promising targeted therapy for t(11;14) multiple myeloma.Leukemia201428121021210.1038/leu.2013.216 23860449
    [Google Scholar]
  50. RobertsA.W. DavidsM.S. PagelJ.M. KahlB.S. PuvvadaS.D. GerecitanoJ.F. KippsT.J. AndersonM.A. BrownJ.R. GressickL. WongS. DunbarM. ZhuM. DesaiM.B. CerriE. Heitner EnschedeS. HumerickhouseR.A. WierdaW.G. SeymourJ.F. Targeting Bcl-2 with venetoclax in relapsed chronic lymphocytic leukemia.N. Engl. J. Med.2016374431132210.1056/NEJMoa1513257 26639348
    [Google Scholar]
  51. StilgenbauerS. EichhorstB. ScheteligJ. CoutreS. SeymourJ.F. MunirT. PuvvadaS.D. WendtnerC.M. RobertsA.W. JurczakW. MulliganS.P. BöttcherS. MobasherM. ZhuM. DesaiM. ChylaB. VerdugoM. EnschedeS.H. CerriE. HumerickhouseR. GordonG. HallekM. WierdaW.G. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: A multicentre, open-label, phase 2 study.Lancet Oncol.201617676877810.1016/S1470‑2045(16)30019‑5 27178240
    [Google Scholar]
  52. SeymourJ.F. KippsT.J. EichhorstB. HillmenP. D’RozarioJ. AssoulineS. OwenC. GerecitanoJ. RobakT. De la SernaJ. JaegerU. CartronG. MontilloM. HumerickhouseR. PunnooseE.A. LiY. BoyerM. HumphreyK. MobasherM. KaterA.P. Venetoclax–rituximab in relapsed or refractory chronic lymphocytic leukemia.N. Engl. J. Med.2018378121107112010.1056/NEJMoa1713976 29562156
    [Google Scholar]
  53. LokS.W. WhittleJ.R. VaillantF. TehC.E. LoL.L. PolicheniA.N. BerginA.R.T. DesaiJ. FtouniS. GandolfoL.C. LiewD. LiuH.K. MannG.B. MoodieK. MurugasuA. PalB. RobertsA.W. RosenthalM.A. ShackletonK. SilvaM.J. SiowZ.R. SmythG.K. TaylorL. TraversA. YeoB. YeungM.M. BujakA.Z. DawsonS.J. GrayD.H.D. VisvaderJ.E. LindemanG.J. A phase Ib dose-escalation and expansion study of the Bcl-2 inhibitor venetoclax combined with tamoxifen in er and BCL2–positive metastatic breast cancer.Cancer Discov.20199335436910.1158/2159‑8290.CD‑18‑1151 30518523
    [Google Scholar]
  54. VoglerM. Targeting Bcl-2-proteins for the treatment of solid tumours.Adv. Med.2014201411410.1155/2014/943648 26556430
    [Google Scholar]
  55. LevesleyJ. SteeleL. Brüning-RichardsonA. DavisonA. ZhouJ. DingC. LawlerS. ShortS.C. Selective BCL-XL inhibition promotes apoptosis in combination with MLN8237 in medulloblastoma and pediatric glioblastoma cells.Neuro-oncol.201820220321410.1093/neuonc/nox134 29016820
    [Google Scholar]
  56. LesseneG. CzabotarP.E. SleebsB.E. ZobelK. LowesK.N. AdamsJ.M. BaellJ.B. ColmanP.M. DeshayesK. FairbrotherW.J. FlygareJ.A. GibbonsP. KerstenW.J.A. KulasegaramS. MossR.M. ParisotJ.P. SmithB.J. StreetI.P. YangH. HuangD.C.S. WatsonK.G. Structure-guided design of a selective BCL-XL inhibitor.Nat. Chem. Biol.20139639039710.1038/nchembio.1246 23603658
    [Google Scholar]
  57. AbedM.N. AbdullahM.I. RichardsonA. Antagonism of Bcl-XL is necessary for synergy between carboplatin and BH3 mimetics in ovarian cancer cells.J. Ovarian Res.2016912510.1186/s13048‑016‑0234‑y 27080533
    [Google Scholar]
  58. LucantoniF. LindnerA.U. O’DonovanN. DüssmannH. PrehnJ.H.M. Systems modeling accurately predicts responses to genotoxic agents and their synergism with BCL-2 inhibitors in triple negative breast cancer cells.Cell Death Dis.2018924210.1038/s41419‑017‑0039‑y 29352235
    [Google Scholar]
  59. TaoZ.F. HasvoldL. WangL. WangX. PetrosA.M. ParkC.H. BoghaertE.R. CatronN.D. ChenJ. ColmanP.M. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity.ACS Med. Chem. Lett.20145101088109310.1021/ml5001867
    [Google Scholar]
  60. WangL. DohertyG.A. JuddA.S. TaoZ.F. HansenT.M. FreyR.R. SongX. BrunckoM. KunzerA.R. WangX. WendtM.D. FlygareJ.A. CatronN.D. JudgeR.A. ParkC.H. ShekharS. PhillipsD.C. NimmerP. SmithM.L. TahirS.K. XiaoY. XueJ. ZhangH. LeP.N. MittenM.J. BoghaertE.R. GaoW. KovarP. ChooE.F. DiazD. FairbrotherW.J. ElmoreS.W. SampathD. LeversonJ.D. SouersA.J. Discovery of A-1331852, a first-in-class, potent, and orally-bioavailable BCL-X L Inhibitor.ACS Med. Chem. Lett.202011101829183610.1021/acsmedchemlett.9b00568 33062160
    [Google Scholar]
  61. LeversonJ.D. PhillipsD.C. MittenM.J. BoghaertE.R. DiazD. TahirS.K. BelmontL.D. NimmerP. XiaoY. MaX.M. LowesK.N. KovarP. ChenJ. JinS. SmithM. XueJ. ZhangH. OleksijewA. MagocT.J. VaidyaK.S. AlbertD.H. TarrantJ.M. LaN. WangL. TaoZ.F. WendtM.D. SampathD. RosenbergS.H. TseC. HuangD.C. FairbrotherW.J. ElmoreS.W. SouersA.J. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy.Sci. Transl. Med.20157279279ra4010.1126/scitranslmed.aaa4642 25787766
    [Google Scholar]
  62. FDA authorisation of first-in-human clinical trial with AstraZeneca’s DEP® product AZD0466.2024Available from: https://starpharma.com/news/view/view/436/fda-authorisation-of-first-in-human-clinical-trial-with-astrazenecaas-dep-product-azd0466
  63. PloumakiI. TriantafyllouE. KoumprentziotisI.A. KarampinosK. DrougkasK. KaravoliasI. TrontzasI. KotteasE.A. Bcl-2 pathway inhibition in solid tumors: A review of clinical trials.Clin. Transl. Oncol.20232561554157810.1007/s12094‑022‑03070‑9 36639602
    [Google Scholar]
  64. KehrS. VoglerM. It’s time to die: BH3 mimetics in solid tumors.Biochim. Biophys. Acta Mol. Cell Res.20211868511898710.1016/j.bbamcr.2021.118987 33600840
    [Google Scholar]
  65. KotschyA. SzlavikZ. MurrayJ. DavidsonJ. MaragnoA.L. Le Toumelin-BraizatG. ChanrionM. KellyG.L. GongJ.N. MoujalledD.M. BrunoA. CsekeiM. PaczalA. SzaboZ.B. SiposS. RadicsG. ProszenyakA. BalintB. OndiL. BlaskoG. RobertsonA. SurgenorA. DokurnoP. ChenI. MatassovaN. SmithJ. PedderC. GrahamC. StudenyA. Lysiak-AuvityG. GirardA.M. GravéF. SegalD. RiffkinC.D. PomilioG. GalbraithL.C.A. AubreyB.J. BrennanM.S. HeroldM.J. ChangC. GuasconiG. CauquilN. MelchioreF. Guigal-StephanN. LockhartB. CollandF. HickmanJ.A. RobertsA.W. HuangD.C.S. WeiA.H. StrasserA. LesseneG. GenesteO. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models.Nature2016538762647748210.1038/nature19830 27760111
    [Google Scholar]
  66. LeversonJ.D. ZhangH. ChenJ. TahirS.K. PhillipsD.C. XueJ. NimmerP. JinS. SmithM. XiaoY. KovarP. TanakaA. BrunckoM. SheppardG.S. WangL. GierkeS. KategayaL. AndersonD.J. WongC. Eastham-AndersonJ. LudlamM.J.C. SampathD. FairbrotherW.J. WertzI. RosenbergS.H. TseC. ElmoreS.W. SouersA.J. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax).Cell Death Dis.201561e1590e159010.1038/cddis.2014.561 25590800
    [Google Scholar]
  67. MerinoD. WhittleJ.R. VaillantF. SerranoA. GongJ.N. GinerG. MaragnoA.L. ChanrionM. SchneiderE. PalB. LiX. DewsonG. GräselJ. LiuK. LalaouiN. SegalD. HeroldM.J. HuangD.C.S. SmythG.K. GenesteO. LesseneG. VisvaderJ.E. LindemanG.J. Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer.Sci. Transl. Med.20179401eaam704910.1126/scitranslmed.aam7049 28768804
    [Google Scholar]
  68. SzlávikZ. OndiL. CsékeiM. PaczalA. SzabóZ.B. RadicsG. MurrayJ. DavidsonJ. ChenI. DavisB. HubbardR.E. PedderC. DokurnoP. SurgenorA. SmithJ. RobertsonA. LeToumelin-BraizatG. CauquilN. ZarkaM. DemarlesD. Perron-SierraF. ClaperonA. CollandF. GenesteO. KotschyA. Structure-guided discovery of a selective Mcl-1 inhibitor with cellular activity.J. Med. Chem.201962156913692410.1021/acs.jmedchem.9b00134 31339316
    [Google Scholar]
  69. FletcherS. MCL-1 inhibitors - Where are we now (2019)?Expert Opin. Ther. Pat.2019291190991910.1080/13543776.2019.1672661
    [Google Scholar]
  70. SzlavikZ. CsekeiM. PaczalA. SzaboZ.B. SiposS. RadicsG. ProszenyakA. BalintB. MurrayJ. DavidsonJ. ChenI. DokurnoP. SurgenorA.E. DanielsZ.M. HubbardR.E. Le Toumelin-BraizatG. ClaperonA. Lysiak-AuvityG. GirardA.M. BrunoA. ChanrionM. CollandF. MaragnoA.L. DemarlesD. GenesteO. KotschyA. Discovery of S64315, a potent and selective Mcl-1 inhibitor.J. Med. Chem.20206322137621379510.1021/acs.jmedchem.0c01234 33146521
    [Google Scholar]
  71. TronA.E. BelmonteM.A. AdamA. AquilaB.M. BoiseL.H. ChiarparinE. CidadoJ. EmbreyK.J. GanglE. GibbonsF.D. GregoryG.P. HargreavesD. HendricksJ.A. JohannesJ.W. JohnstoneR.W. KazmirskiS.L. KettleJ.G. LambM.L. MatulisS.M. NookaA.K. PackerM.J. PengB. RawlinsP.B. RobbinsD.W. SchullerA.G. SuN. YangW. YeQ. ZhengX. SecristJ.P. ClarkE.A. WilsonD.M. FawellS.E. HirdA.W. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia.Nat. Commun.201891534110.1038/s41467‑018‑07551‑w 30559424
    [Google Scholar]
  72. CaenepeelS. BrownS.P. BelmontesB. MoodyG. KeeganK.S. ChuiD. WhittingtonD.A. HuangX. PoppeL. ChengA.C. CardozoM. HouzeJ. LiY. LucasB. ParasN.A. WangX. TaygerlyJ.P. VimolratanaM. ZancanellaM. ZhuL. CajulisE. OsgoodT. SunJ. DamonL. EganR.K. GreningerP. McClanaghanJ.D. GongJ. MoujalledD. PomilioG. BeltranP. BenesC.H. RobertsA.W. HuangD.C. WeiA. CanonJ. CoxonA. HughesP.E. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies.Cancer Discov.20188121582159710.1158/2159‑8290.CD‑18‑0387 30254093
    [Google Scholar]
  73. SoderquistR.S. CrawfordL. LiuE. LuM. AgarwalA. AndersonG.R. LinK.H. WinterP.S. CakirM. WoodK.C. Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity.Nat. Commun.201891351310.1038/s41467‑018‑05815‑z 30158527
    [Google Scholar]
  74. SeillerC. MaigaS. TouzeauC. BellangerC. KervoëlenC. DescampsG. MailletL. MoreauP. Pellat-DeceunynckC. Gomez-BougieP. AmiotM. Dual targeting of BCL2 and MCL1 rescues myeloma cells resistant to BCL2 and MCL1 inhibitors associated with the formation of BAX/BAK hetero-complexes.Cell Death Dis.202011531610.1038/s41419‑020‑2505‑1 32371863
    [Google Scholar]
  75. PhillipsD.C. XiaoY. LamL.T. LitvinovichE. Roberts-RappL. SouersA.J. LeversonJ.D. Loss in MCL-1 function sensitizes non-Hodgkin’s lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199).Blood Cancer J.2015511e368e36810.1038/bcj.2015.88 26565405
    [Google Scholar]
  76. AlgarínE.M. Díaz-TejedorA. MogollónP. Hernández-GarcíaS. CorcheteL.A. San-SegundoL. Martín-SánchezM. González-MéndezL. SchoumacherM. BanquetS. Kraus-BerthierL. KloosI. DerrealA. HalilovicE. MaackeH. GutiérrezN.C. MateosM.V. PaínoT. GarayoaM. OcioE.M. Preclinical evaluation of the simultaneous inhibition of MCL-1 and BCL-2 with the combination of S63845 and venetoclax in multiple myeloma.Haematologica20201053e116e12010.3324/haematol.2018.212308 31320555
    [Google Scholar]
  77. ZhengC.H. ZhouY.J. ZhuJ. ChenJ. LiY.W. ShengC.Q. SongY.L. LuJ.G. JiangJ.H. LiuN. Property analysis of inhibitors-binding site of Bcl-2 protein.Chem. J. Chinese U.2008293591595
    [Google Scholar]
  78. ZhengC.H. ZhouY.J. ZhuJ. JiH.T. ChenJ. LiY.W. ShengC.Q. LuJ.G. JiangJ.H. TangH. SongY.L. Construction of a three-dimensional pharmacophore for Bcl-2 inhibitors by flexible docking and the multiple copy simultaneous search method.Bioorg. Med. Chem.200715196407641710.1016/j.bmc.2007.06.052 17629704
    [Google Scholar]
  79. HamdyR. ZiedanN.I. AliS. BordoniC. El-SadekM. LashinE. BrancaleA. JonesA.T. WestwellA.D. Synthesis and evaluation of 5-(1 H -indol-3-yl)- N -aryl-1,3,4-oxadiazol-2-amines as Bcl-2 inhibitory anticancer agents.Bioorg. Med. Chem. Lett.20172741037104010.1016/j.bmcl.2016.12.061 28087272
    [Google Scholar]
  80. KamathP.R. SunilD. DasS. Abdul SalamA.A. RaoB.S.S. Efficient T3P® mediated synthesis, differential cytotoxicity and apoptosis induction by indolo-triazolo-thiadiazoles in human breast adenocarcinoma cells.Chem. Biol. Interact.2017268536710.1016/j.cbi.2017.02.011 28235427
    [Google Scholar]
  81. KamathP.R. SunilD. AjeesA.A. PaiK.S.R. BiswasS.N. ′-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential.Eur. J. Med. Chem.201612013414710.1016/j.ejmech.2016.05.010 27187865
    [Google Scholar]
  82. ZhangZ. WuG. XieF. SongT. ChangX. 3-Thiomorpholin-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile (S1) based molecules as potent, dual inhibitors of B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1): structure-based design and structure-activity relationship studies.J. Med. Chem.20115441101110510.1021/jm101181u 21235240
    [Google Scholar]
  83. WangM. TianW. WangC. LuS. YangC. WangJ. SongY. ZhouY. ZhuJ. LiZ. ZhengC. Design, synthesis, and activity evaluation of selective inhibitors of anti-apoptotic Bcl-2 proteins: The effects on the selectivity of the P1 pockets in the active sites.Bioorg. Med. Chem. Lett.201626215207521110.1016/j.bmcl.2016.09.061 27712939
    [Google Scholar]
  84. FuH. HouX. WangL. DunY. YangX. FangH. Design, synthesis and biological evaluation of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 inhibitors.Bioorg. Med. Chem. Lett.201525225265526910.1016/j.bmcl.2015.09.051 26421995
    [Google Scholar]
  85. WangG. WangY. WangL. HanL. HouX. FuH. FangH. Design, synthesis and preliminary bioactivity studies of imidazolidine-2,4-dione derivatives as Bcl-2 inhibitors.Bioorg. Med. Chem.201523237359736510.1016/j.bmc.2015.10.023 26558516
    [Google Scholar]
  86. AboalhaijaN.H. ZihlifM.A. TahaM.O. Discovery of new selective cytotoxic agents against Bcl-2 expressing cancer cells using ligand-based modeling.Chem. Biol. Interact.2016250122610.1016/j.cbi.2016.03.006 26954606
    [Google Scholar]
  87. HamdyR. ElseginyS.A. ZiedanN.I. El-SadekM. LashinE. JonesA.T. WestwellA.D. Design, synthesis and evaluation of new bioactive oxadiazole derivatives as anticancer agents targeting Bcl-2.Int. J. Mol. Sci.20202123898010.3390/ijms21238980 33256166
    [Google Scholar]
  88. NagyM.I. DarwishK.M. KishkS.M. TantawyM.A. NasrA.M. QushawyM. SwidanS.A. MostafaS.M. SalamaI. Design, synthesis, anticancer activity, and solid lipid nanoparticle formulation of indole- and benzimidazole-based compounds as pro-apoptotic agents targeting Bcl-2 protein.Pharmaceuticals (Basel)202114211310.3390/ph14020113 33535550
    [Google Scholar]
  89. LamieP.F. PhiloppesJ.N. Design, synthesis, stereochemical determination, molecular docking study, in silico pre-ADMET prediction and anti-proliferative activities of indole-pyrimidine derivatives as Mcl-1 inhibitors.Bioorg. Chem.202111610533510.1016/j.bioorg.2021.105335 34509795
    [Google Scholar]
  90. DengH. HuangM. LiuH. ZhangH. LiuL. GaoB. LiX. LiJ. NiuQ. ZhangZ. LuanS. ZhangJ. JingY. LiuD. ZhaoL. Development of a series of novel Mcl-1 inhibitors bearing an indole carboxylic acid moiety.Bioorg. Chem.202212710601810.1016/j.bioorg.2022.106018 35901526
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206320224240910054728
Loading
/content/journals/acamc/10.2174/0118715206320224240910054728
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Bcl-2; Bcl-2 family inhibitors; Bcl-xL; breast cancer; Mcl-1; synthetic scaffolds
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test