Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Cancer, an intricate and formidable disease, continues to challenge Medical Science with its diverse manifestations and relentless progression. In the pursuit of novel therapeutic strategies, organic heterocyclic compounds have emerged as promising candidates due to their versatile chemical structures and intricate interactions with biological systems. Among these, pyrazine derivatives are characterized by a six-membered aromatic ring containing four carbon and two nitrogen atoms situated in a 1,4-orientation. These compounds garnered significant attention for their potential as anticancer agents. This comprehensive review provides a detailed analysis of the advancements made during this timeframe, encompassing the chemical diversity of pyrazine derivatives, their mechanisms of action at the cellular level, and structure-activity relationships, spanning the years 2010 to 2024. By examining their therapeutic potential, challenges, and future prospects, this review offers valuable insights into the evolving landscape of pyrazine derivatives as potent tools in the fight against cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206333399240912071555
2024-09-24
2025-01-14
Loading full text...

Full text loading...

References

  1. MustafaM. AbbasK. AlamM. AhmadW. MoinuddinU.N. SiddiquiS.A. HabibS. Molecular pathways and therapeutic targets linked to triple-negative breast cancer (TNBC).Mol. Cell. Biochem.20232023202311910.1007/s11010‑023‑04772‑6 37247161
    [Google Scholar]
  2. AlharbiF. VakanskiA. Machine learning methods for cancer classification using gene expression data: A review.Bioengineering (Basel)202310217310.3390/bioengineering10020173
    [Google Scholar]
  3. FontanaA. Unravelling the nexus: Towards a unified model of development, ageing, and cancer.Biosystems202323110496610.1016/j.biosystems.2023.104966 37419274
    [Google Scholar]
  4. MasoudiR. GopalanV. Cancer stem cells in cancer initiation and progression.Cancer Stem Cells: Basic Concept and Therapeutic Implications.SingaporeSpringer202311913310.1007/978‑981‑99‑3185‑9_7
    [Google Scholar]
  5. KirklandJ.L. Tumor dormancy and disease recurrence.Cancer Metastasis Rev.202342191210.1007/s10555‑023‑10096‑0 36877312
    [Google Scholar]
  6. SinghA.K. SinghS.V. KumarR. KumarS. SenapatiS. PandeyA.K. Current therapeutic modalities and chemopreventive role of natural products in liver cancer: Progress and promise.World J. Hepatol.202315111810.4254/wjh.v15.i1.1 36744169
    [Google Scholar]
  7. WangQ. ShaoX. ZhangY. ZhuM. WangF.X.C. MuJ. LiJ. YaoH. ChenK. Role of tumor microenvironment in cancer progression and therapeutic strategy.Cancer Med.20231210111491116510.1002/cam4.5698 36807772
    [Google Scholar]
  8. Mohammad Abu-TaweelG. AlharthiS.S. Al-SaidiH.M. BabalghithA.O. IbrahimM.M. KhanS. Heterocyclic organic compounds as a fluorescent chemosensor for cell imaging applications: A review.Crit. Rev. Anal. Chem.202311610.1080/10408347.2023.2186695 36880659
    [Google Scholar]
  9. AlrooqiM. KhanS. AlhumaydhiF.A. AsiriS.A. AlshamraniM. MashraqiM.M. AlzamamiA. AlshahraniA.M. AldahishA.A. A therapeutic journey of pyridine-based heterocyclic compounds as potent anticancer agents: A review (from 2017 to 2021).Anticancer. Agents Med. Chem.202222152775278710.2174/1871520622666220324102849 35331100
    [Google Scholar]
  10. KhanS. AlhumaydhiF.A. IbrahimM.M. AlqahtaniA. AlshamraniM. AlruwailiA.S. HassanianA.A. KhanS. Recent advances and therapeutic journey of schiff base complexes with selected metals (Pt, Pd, Ag, Au) as potent anticancer agents: A review.Anticancer. Agents Med. Chem.202222183086309610.2174/1871520622666220511125600 35546764
    [Google Scholar]
  11. Mohammad Abu-TaweelG. IbrahimM.M. KhanS. Al-SaidiH.M. AlshamraniM. AlhumaydhiF.A. AlharthiS.S. Medicinal importance and chemosensing applications of pyridine derivatives: A review.Crit. Rev. Anal. Chem.202454359961610.1080/10408347.2022.2089839 35724248
    [Google Scholar]
  12. Abdullah Al AwadhA. Biomedical applications of selective metal complexes of indole, benzimidazole, benzothiazole and benzoxazole: A review (From 2015 to 2022).Saudi Pharm. J.202331910169810.1016/j.jsps.2023.101698 37533494
    [Google Scholar]
  13. BaranwalJ. KushwahaS. SinghS. JyotiA. A review on the synthesis and pharmacological activity of heterocyclic compounds.Curr. Phys. Chem.202313121910.2174/1877946813666221021144829
    [Google Scholar]
  14. KhanS. MuhammadM. Al-SaidiH.M. HassanianA.A. AlharbiW. AlharbiK.H. Synthesis, characterization and applications of schiff base chemosensor for determination of Cu2+ ions.J. Saudi Chem. Soc.202226410150310.1016/j.jscs.2022.101503
    [Google Scholar]
  15. Al-SaidiH.M. KhanS. A review on organic fluorimetric and colorimetric chemosensors for the detection of Ag(I) ions.Crit. Rev. Anal. Chem.20225461810183610.1080/10408347.2022.2133561 36251012
    [Google Scholar]
  16. AlhamamiM.A.M. AlgethamiJ.S. KhanS. A review on thiazole based colorimetric and fluorimetric chemosensors for the detection of heavy metal ions.Crit. Rev. Anal. Chem.202312510.1080/10408347.2023.2197073 37029905
    [Google Scholar]
  17. Al-SaidiH.M. KhanS. Recent advances in thiourea based colorimetric and fluorescent chemosensors for detection of anions and neutral analytes: A review.Crit. Rev. Anal. Chem.20225419310910.1080/10408347.2022.2063017
    [Google Scholar]
  18. KhanS. ChenX. AlmahriA. AllehyaniE.S. AlhumaydhiF.A. IbrahimM.M. AliS. Recent developments in fluorescent and colorimetric chemosensors based on schiff bases for metallic cations detection: A review.J. Environ. Chem. Eng.20219610638110.1016/j.jece.2021.106381
    [Google Scholar]
  19. HouW. DaiW. HuangH. LiuS.L. LiuJ. HuangL.J. HuangX.H. ZengJ.L. GanZ.W. ZhangZ.Y. LanJ.X. Pharmacological activity and mechanism of pyrazines.Eur. J. Med. Chem.202325811554410.1016/j.ejmech.2023.115544 37300915
    [Google Scholar]
  20. ChoudharyD. GargS. KaurM. SohalH.S. MalhiD.S. KaurL. VermaM. SharmaA. MutrejaV. Advances in the synthesis and bio-applications of pyrazine derivatives: A review.Polycycl. Aromat. Compd.20224354512457810.1080/10406638.2022.2092873
    [Google Scholar]
  21. GoelR. LuxamiV. PaulK. Synthesis, in vitro anticancer activity and SAR studies of arylated imidazo[1,2-a]pyrazine–coumarin hybrids.RSC Advances2015547378873789510.1039/C5RA00584A
    [Google Scholar]
  22. AndrejevićT.P. AleksicI. KljunJ. PočkajM. ZlatarM. VojnovicS. Nikodinovic-RunicJ. TurelI. DjuranM.I. GlišićB.Đ. Copper(ii) and silver(i) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): The influence of the metal ion on the antimicrobial potential of the complex.RSC Advances20231374376439310.1039/D2RA07401J 36744286
    [Google Scholar]
  23. FoksH. Pancechowska-KsepkoD. KędziaA. ZwolskaZ. JanowiecM. Augustynowicz-KopećE. Synthesis and antibacterial activity of 1H-pyrazolo[3,4-b]pyrazine and -pyridine derivatives.Farmaco2005606-751351710.1016/j.farmac.2005.05.002 15950227
    [Google Scholar]
  24. GobisK. FoksH. KędziaA. WierzbowskaM. ZwolskaZ. Synthesis and antibacterial activity of novel pyridine and pyrazine derivatives obtained from amidoximes.J. Heterocycl. Chem.20094661271127910.1002/jhet.251
    [Google Scholar]
  25. El-KashefH. El-EmaryT. VerhaegheP. VanelleP. SamyM. Anticancer and anti-inflammatory activities of some new pyrazolo[3,4- b]pyrazines.Molecules20182310265710.3390/molecules23102657
    [Google Scholar]
  26. SilvaY.K.C. AugustoC.V. BarbosaM.L.C. MeloG.M.A. QueirozA.C. DiasT.L.M.F. JúniorW.B. BarreiroE.J. LimaL.M. Alexandre-MoreiraM.S. Synthesis and pharmacological evaluation of pyrazine N-acylhydrazone derivatives designed as novel analgesic and anti-inflammatory drug candidates.Bioorg. Med. Chem.201018145007501510.1016/j.bmc.2010.06.002 20598893
    [Google Scholar]
  27. ZakiR.M. Kamal El-DeanA.M. RadwanS.M. Abd ul-Malik, M.a. A convenient synthesis, reactions and biological activities of some novel thieno[3,2-e]pyrazolo[3,4-b]pyrazine compounds as anti-microbial and anti-inflammatory agents.Curr. Org. Synth.20181586387110.2174/1570179415666180607105627
    [Google Scholar]
  28. Kucerova-ChlupacovaM. DosedelM. KunesJ. Soltesova-PrnovaM. MajekovaM. StefekM. Chalcones and their pyrazine analogs: Synthesis, inhibition of aldose reductase, antioxidant activity, and molecular docking study.Monatsh. Chem.2018149592192910.1007/s00706‑018‑2146‑6
    [Google Scholar]
  29. StepanićV. MatijašićM. HorvatT. VerbanacD. ChlupáćováM.K. SasoL. ŽarkovićN. Antioxidant activities of alkyl substituted pyrazine derivatives of chalcones — In vitro and in silico study.Antioxidants2019849010.3390/antiox8040090
    [Google Scholar]
  30. DolezalM. ZitkoJ. Pyrazine derivatives: A patent review (June 2012 – present).Expert Opin. Ther. Pat.2014251334710.1517/13543776.2014.982533
    [Google Scholar]
  31. FerreiraS.B. KaiserC.R. Pyrazine derivatives: A patent review (2008 – present).Expert Opin. Ther. Pat.20122291033105110.1517/13543776.2012.714370
    [Google Scholar]
  32. TambatN. MulaniS.K. AhmadA. ShaikhS.B. AhmedK. Pyrazine derivatives—versatile scaffold.Russ. J. Bioorg. Chem.202248586589510.1134/S1068162022050259
    [Google Scholar]
  33. HuigensR.W. BrummelB.R. TennetiS. GarrisonA.T. XiaoT. Pyrazine and phenazine heterocycles: Platforms for total synthesis and drug discovery.Molecules2022273111210.3390/molecules27031112
    [Google Scholar]
  34. HodoňJ. FrydrychI. TrhlíkováZ. PokornýJ. BorkováL. BenickáS. VlkM. LiškováB. KubíčkováA. MedvedíkováM. PisárM. ŠarekJ. DasV. LigasováA. KobernaK. DžubákP. HajdúchM. UrbanM. Triterpenoid pyrazines and pyridines – Synthesis, cytotoxicity, mechanism of action, preparation of prodrugs.Eur. J. Med. Chem.202224311477710.1016/j.ejmech.2022.114777 36174412
    [Google Scholar]
  35. MyadaraboinaS. AllaM. SaddanapuV. BommenaV.R. AddlagattaA. Structure activity relationship studies of imidazo[1,2-a]pyrazine derivatives against cancer cell lines.Eur. J. Med. Chem.201045115208521610.1016/j.ejmech.2010.08.035 20832916
    [Google Scholar]
  36. KékesiL. SiposA. NémethG. PatóJ. BrezaN. BaskaF. ŐrfiL. KériG. Synthesis and biological evaluation of novel pyrido[2,3-b]pyrazines inhibiting both erlotinib-sensitive and erlotinib-resistant cell lines.Bioorg. Med. Chem. Lett.201323226152615510.1016/j.bmcl.2013.09.005 24095095
    [Google Scholar]
  37. SanghaiN. JainV. PreetR. KandekarS. DasS. TrivediN. MohapatraP. PriyadarshaniG. KashyapM. DasD. SatapathyS.R. SiddharthS. GuchhaitS.K. KunduC.N. BharatamP.V. Combretastatin A-4 inspired novel 2-aryl-3-arylamino-imidazo-pyridines/pyrazines as tubulin polymerization inhibitors, antimitotic and anticancer agents.MedChemComm20145676678210.1039/C3MD00357D
    [Google Scholar]
  38. ZhangH. WangY. ZhuP. LiuJ. XuS. YaoH. JiangJ. YeW. WuX. XuJ. Design, synthesis and antitumor activity of triterpenoid pyrazine derivatives from 23-hydroxybetulinic acid.Eur. J. Med. Chem.20159723524410.1016/j.ejmech.2015.04.057 25984840
    [Google Scholar]
  39. LalithaP. VeenaV. VidhyapriyaP. LakshmiP. KrishnaR. SakthivelN. anticancer potential of pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (ppdhmp) extracted from a new marine bacterium, staphylococcus sp. strain mb30.Apoptosis201621556657710.1007/s10495‑016‑1221‑x 26852140
    [Google Scholar]
  40. ArgyrosO. LougiakisN. KouvariE. PapafotikaA. RaptopoulouC.P. PsycharisV. ChristoforidisS. PouliN. MarakosP. TamvakopoulosC. Design and synthesis of novel 7-aminosubstituted pyrido[2,3-b]pyrazines exhibiting anti-breast cancer activity.Eur. J. Med. Chem.201712695496810.1016/j.ejmech.2016.12.025 28006668
    [Google Scholar]
  41. FangK. ZhangX.H. HanY.T. WuG.R. CaiD.S. XueN.N. GuoW.B. YangY.Q. ChenM. ZhangX.Y. Design, synthesis, and cytotoxic analysis of novel hederagenin–pyrazine derivatives based on partial least squares discriminant analysis.Int. J. Mol. Sci.20181910299410.3390/ijms19102994
    [Google Scholar]
  42. PatilS.R. SarkateA.P. KarnikK.S. ArsondkarA. PatilV. SangshettiJ.N. BobadeA.S. ShindeD.B. A facile synthesis of substituted 2‐(5‐(benzylthio)‐1,3,4‐oxadiazol‐2‐yl)pyrazine using microwave irradiation and conventional method with antioxidant and anticancer activities.J. Heterocycl. Chem.201956385986610.1002/jhet.3464
    [Google Scholar]
  43. LiY. WeiX. BaiS. XuZ.G. LvM. One‐pot synthesis of benzimidazole‐pyrazines and their anticancer activities.J. Heterocycl. Chem.201956123429343410.1002/jhet.3701
    [Google Scholar]
  44. SinghI. LuxamiV. PaulK. Effective synthesis of benzimidazoles-imidazo[1,2-a]pyrazine conjugates: A comparative study of mono-and bis-benzimidazoles for antitumor activity.Eur. J. Med. Chem.201918054656110.1016/j.ejmech.2019.07.042 31344614
    [Google Scholar]
  45. De WangX. LiT. LiY. YuanW.H. ZhaoY.Q. 2-Pyrazine-PPD, a novel dammarane derivative, showed anticancer activity by reactive oxygen species-mediate apoptosis and endoplasmic reticulum stress in gastric cancer cells.Eur. J. Pharmacol.202088117321110.1016/j.ejphar.2020.173211 32464194
    [Google Scholar]
  46. WangS. YuanX. QianH. LiN. WangJ. Design, synthesis, and biological evaluation of two series of novel a-ring fused steroidal pyrazines as potential anticancer agents.Int. J. Mol. Sci.2020215166510.3390/ijms21051665
    [Google Scholar]
  47. ZakiR.M. Abdul-MalikM.A. SaberS.H. RadwanS.M. El-DeanA.M.K. A convenient synthesis, reactions and biological evaluation of novel pyrazolo[3,4-b]selenolo[3,2-e]pyrazine heterocycles as potential anticancer and antimicrobial agents.Med. Chem. Res.202029122130214510.1007/s00044‑020‑02635‑z
    [Google Scholar]
  48. TantawyE.S. AmerA.M. MohamedE.K. Abd AllaM.M. NafieM.S. Synthesis, characterization of some pyrazine derivatives as anti-cancer agents: In vitro and in silico approaches.J. Mol. Struct.2020121012801310.1016/j.molstruc.2020.128013
    [Google Scholar]
  49. RodriguesJ.M. CalhelhaR.C. NogueiraA. FerreiraI.C.F.R. BarrosL. QueirozM.J.R.P. Synthesis of novel methyl 7-[(hetero)arylamino]thieno[2,3-b]pyrazine-6-carboxylates and antitumor activity evaluation: Effects in human tumor cells growth, cell cycle analysis, apoptosis and toxicity in non-tumor cells.Molecule20212616482310.3390/molecules26164823
    [Google Scholar]
  50. GhoneimA.A. Ali HassanA.G. An efficient procedure of synthesis acyclic c-glycosides of thiazolo[4,5-b]pyrazine and imidazo[4,5-d]thiazole with expected anti-cancer activities.20204663328333810.1080/10406638.2020.1866035
    [Google Scholar]
  51. RachalaM.R. MaringantiT.C. SyedT. EppakayalaL. Synthesis and biological evaluation of 1,3,4-oxadiazole bearing pyrimidine-pyrazine derivatives as anticancer agents.Synth. Commun.202353151262126810.1080/00397911.2023.2219354
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206333399240912071555
Loading
/content/journals/acamc/10.2174/0118715206333399240912071555
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test