Skip to content
2000
Volume 24, Issue 16
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

With conventional cancer treatments facing limitations, interest in plant-derived natural products as potential alternatives is increasing. Although resveratrol has demonstrated antitumor effects in various cancers, its impact and mechanism on nasopharyngeal carcinoma remain unclear.

Objective

This study aimed to systematically investigate the anti-cancer effects of resveratrol on nasopharyngeal carcinoma using a combination of experimental pharmacology, network pharmacology, and molecular docking approaches.

Methods

CCK-8, scratch wound, and transwell assays were employed to confirm the inhibitory effect of resveratrol on the proliferation, migration, and invasion of nasopharyngeal carcinoma cells. H&E and TUNEL stainings were used to observe the morphological changes and apoptosis status of resveratrol-treated cells. The underlying mechanisms were elucidated using a network pharmacology approach. Immunohistochemistry and Western blotting were utilized to validate key signaling pathways.

Results

Resveratrol inhibited the proliferation, invasion, and migration of nasopharyngeal carcinoma cells, ultimately inducing apoptosis in a time- and dose-dependent manner. Network pharmacology analysis revealed that resveratrol may exert its anti-nasopharyngeal carcinoma effect mainly through the MAPK pathway. Immunohistochemistry results from clinical cases showed MAPK signaling activation in nasopharyngeal carcinoma tissues compared to adjacent tissues. Western blotting validated the targeting effect of resveratrol, demonstrating significant inhibition of the MAPK signaling pathway. Furthermore, molecular docking supported its multi-target role with MAPK, TP53, PIK3CA, SRC, .

Conclusion

Resveratrol has shown promising potential in inhibiting human nasopharyngeal carcinoma cells by primarily targeting the MAPK pathway. These findings position resveratrol as a potential therapeutic agent for nasopharyngeal carcinoma.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206319761240705115109
2024-10-01
2025-04-22
Loading full text...

Full text loading...

References

  1. ChuaM.L.K. WeeJ.T.S. HuiE.P. ChanA.T.C. Nasopharyngeal carcinoma.Lancet2016387100221012102410.1016/S0140‑6736(15)00055‑0 26321262
    [Google Scholar]
  2. WongK.C.W. HuiE.P. LoK.W. LamW.K.J. JohnsonD. LiL. TaoQ. ChanK.C.A. ToK.F. KingA.D. MaB.B.Y. ChanA.T.C. Nasopharyngeal carcinoma: An evolving paradigm.Nat. Rev. Clin. Oncol.2021181167969510.1038/s41571‑021‑00524‑x 34194007
    [Google Scholar]
  3. BossiP. ChanA.T. LicitraL. TramaA. OrlandiE. HuiE.P. HalámkováJ. MattheisS. BaujatB. HardilloJ. SmeeleL. van HerpenC. CastroA. MachielsJ.P. Nasopharyngeal carcinoma: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up†.Ann. Oncol.202132445246510.1016/j.annonc.2020.12.007 33358989
    [Google Scholar]
  4. TangL.L. ChenY.P. ChenC.B. ChenM.Y. ChenN.Y. ChenX.Z. DuX.J. FangW.F. FengM. GaoJ. HanF. HeX. HuC.S. HuD. HuG.Y. JiangH. JiangW. JinF. LangJ.Y. LiJ.G. LinS.J. LiuX. LiuQ.F. MaL. MaiH.Q. QinJ.Y. ShenL.F. SunY. WangP.G. WangR.S. WangR.Z. WangX.S. WangY. WuH. XiaY.F. XiaoS.W. YangK.Y. YiJ.L. ZhuX.D. MaJ. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma.Cancer Commun. (Lond.)202141111195122710.1002/cac2.12218 34699681
    [Google Scholar]
  5. HuangT. PlonerA. ChangE.T. LiuQ. CaiY. ZhangZ. ChenG. HuangQ. XieS. CaoS. JiaW. ZhengY. LiaoJ. ChenY. LinL. ErnbergI. HuangG. ZengY. ZengY. AdamiH.O. YeW. Dietary patterns and risk of nasopharyngeal carcinoma: A population-based case-control study in southern China.Am. J. Clin. Nutr.2021114246247110.1093/ajcn/nqab114 33963745
    [Google Scholar]
  6. ChenY. ChangE.T. LiuZ. LiuQ. CaiY. ZhangZ. ChenG. HuangQ.H. XieS.H. CaoS.M. JiaW.H. ZhengY. LiY. LinL. ErnbergI. ZhaoH. FengR. HuangG. ZengY. ZengY.X. AdamiH.O. YeW. Residence characteristics and risk of nasopharyngeal carcinoma in southern China: A population-based case-control study.Environ. Int.202115110645510.1016/j.envint.2021.106455 33652252
    [Google Scholar]
  7. ChenY. ChangE.T. LiuQ. CaiY. ZhangZ. ChenG. HuangQ.H. XieS.H. CaoS.M. JiaW.H. ZhengY. LiY. LinL. ErnbergI. WangD. ChenW. FengR. HuangG. ZengY.X. AdamiH.O. YeW. Occupational exposures and risk of nasopharyngeal carcinoma in a high-risk area: A population-based case-control study.Cancer2021127152724273510.1002/cncr.33536 33823062
    [Google Scholar]
  8. ArgirionI. ZarinsK.R. RuterbuschJ.J. VatanasaptP. SriplungH. SeymourE.K. RozekL.S. Increasing incidence of epstein-barr virus–related nasopharyngeal carcinoma in the united states.Cancer2020126112113010.1002/cncr.32517 31524955
    [Google Scholar]
  9. SuZ.Y. SiakP.Y. LeongC.O. CheahS.C. The role of Epstein–Barr virus in nasopharyngeal carcinoma.Front. Microbiol.202314111614310.3389/fmicb.2023.1116143 36846758
    [Google Scholar]
  10. ZhangY. RumgayH. LiM. CaoS. ChenW. Nasopharyngeal cancer incidence and mortality in 185 countries in 2020 and the projected burden in 2040: Population-based global epidemiological profiling.JMIR Public Health Surveill.20239e4996810.2196/49968 37728964
    [Google Scholar]
  11. SuZ.Y. SiakP.Y. LeongC.O. CheahS.C. Nasopharyngeal carcinoma and its microenvironment: Past, current, and future perspectives.Front. Oncol.20221284046710.3389/fonc.2022.840467 35311066
    [Google Scholar]
  12. ToumiN. EnnouriS. CharfeddineI. DaoudJ. KhanfirA. Prognostic factors in metastatic nasopharyngeal carcinoma.Rev. Bras. Otorrinolaringol.202288221221910.1016/j.bjorl.2020.05.022 32690385
    [Google Scholar]
  13. GuanS. WeiJ. HuangL. WuL. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma.Eur. J. Med. Chem.202020711275810.1016/j.ejmech.2020.112758 32858472
    [Google Scholar]
  14. HashemS. AliT.A. AkhtarS. NisarS. SageenaG. AliS. Al-MannaiS. TherachiyilL. MirR. ElfakiI. MirM.M. JamalF. MasoodiT. UddinS. SinghM. HarisM. MachaM. BhatA.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents.Biomed. Pharmacother.202215011305410.1016/j.biopha.2022.113054 35658225
    [Google Scholar]
  15. RenX. XieX. ChenB. LiuL. JiangC. QianQ. Marine natural products: A potential source of anti-hepatocellular carcinoma drugs.J. Med. Chem.202164127879789910.1021/acs.jmedchem.0c02026 34128674
    [Google Scholar]
  16. MaL. ZhangM. ZhaoR. WangD. MaY. AiL. Plant natural products: Promising resources for cancer chemoprevention.Molecules202126493310.3390/molecules26040933 33578780
    [Google Scholar]
  17. Gallego-JaraJ. Lozano-TerolG. Sola-MartínezR.A. Cánovas-DíazM. de Diego PuenteT. A compressive review about taxol®: History and future challenges.Molecules20202524598610.3390/molecules25245986 33348838
    [Google Scholar]
  18. Sharifi-RadJ. QuispeC. PatraJ.K. SinghY.D. PandaM.K. DasG. AdetunjiC.O. MichaelO.S. SytarO. PolitoL. ŽivkovićJ. Cruz-MartinsN. Klimek-SzczykutowiczM. EkiertH. ChoudharyM.I. AyatollahiS.A. TynybekovB. KobarfardF. MunteanA.C. GrozeaI. DaştanS.D. ButnariuM. SzopaA. CalinaD. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy.Oxid. Med. Cell. Longev.2021202112410.1155/2021/3687700 34707776
    [Google Scholar]
  19. YuD.L. LouZ.P. MaF.Y. NajafiM. The interactions of paclitaxel with tumour microenvironment.Int. Immunopharmacol.202210510855510.1016/j.intimp.2022.108555 35121223
    [Google Scholar]
  20. KumarS. ChangY-C. LaiK-H. HwangT-L. Resveratrol, a molecule with anti-inflammatory and anti-cancer activities: Natural product to chemical synthesis.Curr. Med. Chem.202128193773378610.2174/1875533XMTEwrMDQh5 32957870
    [Google Scholar]
  21. YangJ. WangY. CaiX. QuB. ZhangY. SunZ. YanJ. Comparative pharmacokinetics and tissue distribution of polydatin, resveratrol, and emodin after oral administration of Huzhang and Huzhang-Guizhi herb-pair extracts to rats. J. Ethnopharmacol.2024318Pt B11701010.1016/j.jep.2023.117010 37557937
    [Google Scholar]
  22. BangT.H. ParkB.S. KangH.M. KimJ.H. KimI.R. Polydatin, a glycoside of resveratrol, induces apoptosis and inhibits metastasis oral squamous cell carcinoma cells in vitro.Pharmaceuticals (Basel)202114990210.3390/ph14090902 34577602
    [Google Scholar]
  23. HuH.C. LeiY.H. ZhangW.H. LuoX.Q. antioxidant and anti-inflammatory properties of resveratrol in diabetic nephropathy: A systematic review and meta-analysis of animal studies.Front. Pharmacol.20221384181810.3389/fphar.2022.841818 35355720
    [Google Scholar]
  24. WangQ. YuQ. WuM. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases.Front. Pharmacol.20221394888910.3389/fphar.2022.948889 36133823
    [Google Scholar]
  25. BartraC. YuanY. VuraićK. Valdés-QuirozH. Garcia-BaucellsP. SlevinM. PastorelloY. SuñolC. SanfeliuC. Resveratrol activates antioxidant protective mechanisms in cellular models of alzheimer’s disease inflammation.Antioxidants202413217710.3390/antiox13020177 38397775
    [Google Scholar]
  26. ZhangB. ZhangY. LiuX. ZhaoC. YinJ. LiX. ZhangX. WangJ. WangS. Distinctive anti-inflammatory effects of resveratrol, dihydroresveratrol, and 3-(4-hydroxyphenyl)-propionic acid on DSS-induced colitis in pseudo-germ-free mice.Food Chem.202340013390410.1016/j.foodchem.2022.133904 36055136
    [Google Scholar]
  27. HuL.F. LanH.R. LiX.M. JinK.T. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: Focus on the antioxidant, antiapoptotic, and anti-inflammatory activities.Oxid. Med. Cell. Longev.2021202111910.1155/2021/2951697 34471463
    [Google Scholar]
  28. ChenL. MusaA.E. Boosting immune system against cancer by resveratrol.Phytother. Res.202135105514552610.1002/ptr.7189 34101276
    [Google Scholar]
  29. ZucchiA. ClapsF. PastoreA.L. PerottiA. BiaginiA. SallicandroL. GentileR. CagliotiC. PalazzettiF. FiorettiB. Focus on the use of resveratrol in bladder cancer.Int. J. Mol. Sci.2023245456210.3390/ijms24054562 36901993
    [Google Scholar]
  30. NadileM. RetsidouM.I. GiotiK. BeloukasA. TsianiE. Resveratrol against cervical cancer: Evidence from in vitro and in vivo studies.Nutrients20221424527310.3390/nu14245273 36558430
    [Google Scholar]
  31. FukudaM. OgasawaraY. HayashiH. InoueK. SakashitaH. Resveratrol inhibits proliferation and induces autophagy by blocking SREBP1 expression in oral cancer cells.Molecules20222723825010.3390/molecules27238250 36500345
    [Google Scholar]
  32. HuangT.T. LinH.C. ChenC.C. LuC.C. WeiC.F. WuT.S. LiuF.G. LaiH.C. Resveratrol induces apoptosis of human nasopharyngeal carcinoma cells via activation of multiple apoptotic pathways.J. Cell. Physiol.2011226372072810.1002/jcp.22391 20717957
    [Google Scholar]
  33. YangH.Y. LiuM.L. LuoP. YaoX.S. ZhouH. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine.Phytomedicine202210415426810.1016/j.phymed.2022.154268 35777118
    [Google Scholar]
  34. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  35. ZhangP. ZhangD. ZhouW. WangL. WangB. ZhangT. LiS. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine.Brief. Bioinform.2023251bbad51810.1093/bib/bbad518
    [Google Scholar]
  36. GaoF. NiuY. SunL. LiW. XiaH. ZhangY. GengS. GuoZ. LinH. DuG. Integrating network pharmacology and transcriptomic validation to investigate the efficacy and mechanism of Mufangji decoction preventing lung cancer.J. Ethnopharmacol.202229811557310.1016/j.jep.2022.115573 35917893
    [Google Scholar]
  37. ZhengY. ZhongZ. GuoX. Network pharmacology-based and molecular docking analysis of resveratrol’s pharmacological effects on type I endometrial cancer.Anticancer. Agents Med. Chem.202222101933194410.2174/1871520621666211015140455 34773964
    [Google Scholar]
  38. LinF. ZhangG. YangX. WangM. WangR. WanM. WangJ. WuB. YanT. JiaY. A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway.J. Ethnopharmacol.202330311593310.1016/j.jep.2022.115933 36403742
    [Google Scholar]
  39. WangZ. XieJ. YanM. WangJ. WangX. ZhangJ. ZhangY. LiP. LeiX. HuangQ. LinS. GuoX. LiuQ. Downregulation of ATOH8 induced by EBV-encoded LMP1 contributes to the malignant phenotype of nasopharyngeal carcinoma.Oncotarget2016718267652677910.18632/oncotarget.8503 27049918
    [Google Scholar]
  40. GuanZ. ZhangJ. WangJ. WangH. ZhengF. PengJ. XuY. YanM. LiuB. CuiB. HuangY. LiuQ. SOX1 down-regulates β-catenin and reverses malignant phenotype in nasopharyngeal carcinoma.Mol. Cancer201413125710.1186/1476‑4598‑13‑257 25427424
    [Google Scholar]
  41. YanM. ZhangY. HeB. XiangJ. WangZ. ZhengF. XuJ. ChenM. ZhuY. WenH. WanX. YueC. YangN. ZhangW. ZhangJ. WangJ. WangY. LiL. ZengY. LamE.W.F. HungM.C. LiuQ. IKKα restoration via EZH2 suppression induces nasopharyngeal carcinoma differentiation.Nat. Commun.201451366110.1038/ncomms4661 24739462
    [Google Scholar]
  42. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  43. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: new data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa971 33151290
    [Google Scholar]
  44. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz382 31106366
    [Google Scholar]
  45. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx1037 29126136
    [Google Scholar]
  46. WangX. ShenY. WangS. LiS. ZhangW. LiuX. LaiL. PeiJ. LiH. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database.Nucleic Acids Res.201745W1W356W36010.1093/nar/gkx374 28472422
    [Google Scholar]
  47. McGarveyP.B. NightingaleA. LuoJ. HuangH. MartinM.J. WuC. ConsortiumU.P. UniProt genomic mapping for deciphering functional effects of missense variants.Hum. Mutat.201940669470510.1002/humu.23738 30840782
    [Google Scholar]
  48. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.201948D1gkz102110.1093/nar/gkz1021 31680165
    [Google Scholar]
  49. FishilevichS. ZimmermanS. KohnA. Iny SteinT. OlenderT. KolkerE. SafranM. LancetD. Genic insights from integrated human proteomics in GeneCards.Database (Oxford)20162016baw03010.1093/database/baw030 27048349
    [Google Scholar]
  50. ZhouY. ZhangY. ZhaoD. YuX. ShenX. ZhouY. WangS. QiuY. ChenY. ZhuF. TTD: Therapeutic target database describing target druggability information.Nucleic Acids Res.202452D1D1465D147710.1093/nar/gkad751 37713619
    [Google Scholar]
  51. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku1205 25428349
    [Google Scholar]
  52. DavisA.P. GrondinC.J. JohnsonR.J. SciakyD. WiegersJ. WiegersT.C. MattinglyC.J. Comparative Toxicogenomics Database (CTD): update 2021.Nucleic Acids Res.202149D1D1138D114310.1093/nar/gkaa891 33068428
    [Google Scholar]
  53. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  54. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: a software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  55. SkB. Impact of Structural Biologists and theProtein Data Bank2021
    [Google Scholar]
  56. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  57. SinghA.P. SinghR. VermaS.S. RaiV. KaschulaC.H. MaitiP. GuptaS.C. Health benefits of resveratrol: Evidence from clinical studies.Med. Res. Rev.20193951851189110.1002/med.21565 30741437
    [Google Scholar]
  58. RenB. KwahM.X.Y. LiuC. MaZ. ShanmugamM.K. DingL. XiangX. HoP.C.L. WangL. OngP.S. GohB.C. Resveratrol for cancer therapy: Challenges and future perspectives.Cancer Lett.2021515637210.1016/j.canlet.2021.05.001 34052324
    [Google Scholar]
  59. TinworthC.P. YoungR.J. Facts, patterns, and principles in drug discovery: Appraising the rule of 5 with measured physicochemical data.J. Med. Chem.20206318100911010810.1021/acs.jmedchem.9b01596 32324397
    [Google Scholar]
  60. ChimentoA. De AmicisF. SirianniR. SinicropiM.S. PuociF. CasaburiI. SaturninoC. PezziV. Progress to improve oral bioavailability and beneficial effects of resveratrol.Int. J. Mol. Sci.2019206138110.3390/ijms20061381 30893846
    [Google Scholar]
  61. LiY. ZhangR. ZhangQ. LuoM. LuF. HeZ. JiangQ. ZhangT. Dual strategy for improving the oral bioavailability of resveratrol: Enhancing water solubility and inhibiting glucuronidation.J. Agric. Food Chem.202169329249925810.1021/acs.jafc.1c02602 34357767
    [Google Scholar]
  62. PannuN. BhatnagarA. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases.Biomed. Pharmacother.20191092237225110.1016/j.biopha.2018.11.075 30551481
    [Google Scholar]
  63. KatilaN. DuwaR. BhurtelS. KhanalS. MaharjanS. JeongJ.H. LeeS. ChoiD.Y. YookS. Enhancement of blood–brain barrier penetration and the neuroprotective effect of resveratrol.J. Control. Release202234611910.1016/j.jconrel.2022.04.003 35398173
    [Google Scholar]
  64. Velásquez-JiménezD. Corella-SalazarD.A. Zuñiga-MartínezB.S. Domínguez-AvilaJ.A. Montiel-HerreraM. Salazar-LópezN.J. Rodrigo-GarciaJ. Villegas-OchoaM.A. González-AguilarG.A. Phenolic compounds that cross the blood–brain barrier exert positive health effects as central nervous system antioxidants.Food Funct.20211221103561036910.1039/D1FO02017J 34608925
    [Google Scholar]
  65. KiskovaT. KubatkaP. BüsselbergD. KassayovaM. The plant-derived compound resveratrol in brain cancer: A review.Biomolecules202010116110.3390/biom10010161 31963897
    [Google Scholar]
  66. AngellottiG. Di PrimaG. BelfioreE. CampisiG. De CaroV. Chemopreventive and anticancer role of resveratrol against oral squamous cell carcinoma.Pharmaceutics202315127510.3390/pharmaceutics15010275 36678905
    [Google Scholar]
  67. MikamiS. OtaI. MasuiT. UchiyamaT. OkamotoH. KimuraT. TakasawaS. KitaharaT. Resveratrol induced REG III expression enhances chemo and radiosensitivity in head and neck cancer in xenograft mice.Oncol. Rep.201942143644210.3892/or.2019.7137 31059079
    [Google Scholar]
  68. YueJ. LópezJ.M. Understanding MAPK Signaling Pathways in Apoptosis.Int. J. Mol. Sci.2020217234610.3390/ijms21072346 32231094
    [Google Scholar]
  69. RonkinaN. GaestelM. MAPK-Activated Protein Kinases: Servant or Partner?Annu. Rev. Biochem.202291150554010.1146/annurev‑biochem‑081720‑114505 35303787
    [Google Scholar]
  70. YuanJ. DongX. YapJ. HuJ. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy.J. Hematol. Oncol.202013111310.1186/s13045‑020‑00949‑4 32807225
    [Google Scholar]
  71. LeeS. RauchJ. KolchW. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity.Int. J. Mol. Sci.2020213110210.3390/ijms21031102 32046099
    [Google Scholar]
  72. RezatabarS. KarimianA. RameshkniaV. ParsianH. MajidiniaM. KopiT.A. BishayeeA. SadeghiniaA. YousefiM. MonirialamdariM. YousefiB. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression.J. Cell. Physiol.20192349149511496510.1002/jcp.28334 30811039
    [Google Scholar]
  73. TanG.X. WangX.N. TangY.Y. CenW.J. LiZ.H. WangG.C. JiangJ.W. WangX.C. PP-22 promotes autophagy and apoptosis in the nasopharyngeal carcinoma cell line CNE-2 by inducing endoplasmic reticulum stress, downregulating STAT3 signaling, and modulating the MAPK pathway.J. Cell. Physiol.201923432618263010.1002/jcp.27076 30191969
    [Google Scholar]
  74. PuaL.J.W. MaiC.W. ChungF.F.L. KhooA.S.B. LeongC.O. LimW.M. HiiL.W. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma.Int. J. Mol. Sci.2022233110810.3390/ijms23031108 35163030
    [Google Scholar]
  75. JiangX. YangX. ShiY. LongY. SuW. HeW. WeiK. MiaoJ. Maackiain inhibits proliferation and promotes apoptosis of nasopharyngeal carcinoma cells by inhibiting the MAPK/Ras signaling pathway.Chin. J. Nat. Med.202321318519610.1016/S1875‑5364(23)60420‑0 37003641
    [Google Scholar]
  76. HankittichaiP. ThaklaewphanP. WikanN. RuttanapattanakulJ. PotikanondS. SmithD.R. NimlamoolW. Resveratrol enhances cytotoxic effects of cisplatin by inducing cell cycle arrest and apoptosis in ovarian adenocarcinoma SKOV-3 cells through activating the p38 MAPK and suppressing AKT.Pharmaceuticals (Basel)202316575510.3390/ph16050755 37242538
    [Google Scholar]
  77. YangM.D. SunY. ZhouW.J. XieX.Z. ZhouQ.M. LuY.Y. SuS.B. Resveratrol enhances inhibition effects of cisplatin on cell migration and invasion and tumor growth in breast cancer mda-mb-231 cell models in vivo and in vitro.Molecules2021268220410.3390/molecules26082204 33921192
    [Google Scholar]
  78. RenM. ZhouX. GuM. JiaoW. YuM. WangY. LiuS. YangJ. JiF. Resveratrol synergizes with cisplatin in antineoplastic effects against AGS gastric cancer cells by inducing endoplasmic reticulum stress mediated apoptosis and G2/M phase arrest.Oncol. Rep.20204441605161510.3892/or.2020.7708 32945472
    [Google Scholar]
  79. XiongH. ChengJ. JiangS. WenJ. JianY. WeiL. ZheZ. Fu-QiangJ. PengX. The antitumor effect of resveratrol on nasopharyngeal carcinoma cells.Front. Biosci.201924596197010.2741/4761 30844723
    [Google Scholar]
  80. KohandelZ. FarkhondehT. AschnerM. Pourbagher-ShahriA.M. SamarghandianS. STAT3 pathway as a molecular target for resveratrol in breast cancer treatment.Cancer Cell Int.202121146810.1186/s12935‑021‑02179‑1 34488773
    [Google Scholar]
  81. FuX. LiM. TangC. HuangZ. NajafiM. Targeting of cancer cell death mechanisms by resveratrol: A review.Apoptosis20212611-1256157310.1007/s10495‑021‑01689‑7 34561763
    [Google Scholar]
  82. KhanH. RealeM. UllahH. SuredaA. TejadaS. WangY. ZhangZ.J. XiaoJ. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: Updates and future directions.Biotechnol. Adv.20203810738510.1016/j.biotechadv.2019.04.007 31004736
    [Google Scholar]
  83. AlmatroodiS.A. A. AlsahliM. S.M. AljohaniA. AlhumaydhiF.A. BabikerA.Y. KhanA.A. RahmaniA.H. Potential therapeutic targets of resveratrol, a plant polyphenol, and its role in the therapy of various types of cancer.Molecules2022279266510.3390/molecules27092665 35566016
    [Google Scholar]
  84. ShenY.A. LinC.H. ChiW.H. WangC.Y. HsiehY.T. WeiY.H. ChenY.J. Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation.Evid. Based Complement. Alternat. Med.2013201311310.1155/2013/590393 23737838
    [Google Scholar]
  85. ZhangM. ZhouX. ZhouK. Resveratrol inhibits human nasopharyngeal carcinoma cell growth via blocking pAkt/p70S6K signaling pathways.Int. J. Mol. Med.201331362162710.3892/ijmm.2013.1237 23314035
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206319761240705115109
Loading
/content/journals/acamc/10.2174/0118715206319761240705115109
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test