Skip to content
2000
Volume 24, Issue 16
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

The association between oxidative stress and prostate cancer (PC) has been demonstrated both epidemiologically and experimentally. Balance in reactive oxygen species (ROS) levels depends on multiple factors, such as the expression of , , and genes. Natural polyphenols, such as resveratrol (RSV) and gallic acid (GA), affect cellular oxidative profiles.

Objective

The present study investigated the possible effects of GA and RSV on the oxidative profiles of PC3 and DU145 cells, as well as , , and gene expression to achieve an understanding of the mechanisms involved.

Methods

PC3 and DU145 cells were treated with ascending concentrations of RSV and GA for 72 h. Then cell growth and mRNA expression of , , and genes were analyzed by real-time PCR. Various spectrophotometric analyses were performed to measure oxidative stress markers.

Results

RSV and GA significantly decreased the growth of PC3 and DU145 cells compared to the control group in a concentration-dependent manner. RSV and GA also decreased ROS production in PC3 cells, but in DU145 cells, only the latter polyphenol significantly decreased ROS content. In addition, RSV and GA had ameliorating effects on SOD, GR, GPX, and CAT activities and GSH levels in both cell lines. Also, RSV and GA induced HO-1 and Nrf2 gene expression in both cell lines. gene expression was induced by RSV only at lower concentrations, in contrast to GA in both cell lines.

Conclusion

Our data suggest that RSV and GA can prevent the growth of prostate cancer cells by disrupting oxidative stress-related pathways, such as changes in , , and gene expression.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206317999240708062744
2024-10-01
2025-04-22
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  2. KitamuraH. MotohashiH. NRF2 addiction in cancer cells.Cancer Sci.2018109490091110.1111/cas.13537 29450944
    [Google Scholar]
  3. BellezzaI. ScarpelliP. PizzoS.V. GrottelliS. CostanziE. MinelliA. ROS-independent Nrf2 activation in prostate cancer.Oncotarget2017840675066751810.18632/oncotarget.18724 28978049
    [Google Scholar]
  4. ZuoJ. ZhangZ. LiM. YangY. ZhengB. WangP. HuangC. ZhouS. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role.Mol. Cancer20222113010.1186/s12943‑021‑01488‑3 35081965
    [Google Scholar]
  5. AbbasiA. Mostafavi-PourZ. AmiriA. KeshavarziF. NejabatN. RamezaniF. SardarianA. ZalF. Chemoprevention of prostate cancer cells by vitamin C plus quercetin: Role of Nrf2 in inducing oxidative stress.Nutr. Cancer20202020111 32924610
    [Google Scholar]
  6. DodsonM. Castro-PortuguezR. ZhangD.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis.Redox Biol.20192310110710.1016/j.redox.2019.101107 30692038
    [Google Scholar]
  7. Redza-DutordoirM. Averill-BatesD.A. Activation of apoptosis signalling pathways by reactive oxygen species.Biochim. Biophys. Acta Mol. Cell Res.20161863122977299210.1016/j.bbamcr.2016.09.012 27646922
    [Google Scholar]
  8. Brigelius-FlohéR. FlohéL. Basic principles and emerging concepts in the redox control of transcription factors.Antioxid. Redox Signal.20111582335238110.1089/ars.2010.3534 21194351
    [Google Scholar]
  9. ZhangM.J. SunW.W. YangJ. ShiD.D. DaiX.F. LiX.M. The effect of preventing oxidative stress and its mechanisms in the extract from Sonchus brachyotus DC. Based on the Nrf2-Keap1-ARE signaling pathway.Antioxidants2023129167710.3390/antiox12091677 37759980
    [Google Scholar]
  10. BellezzaI. GrottelliS. GatticchiL. MierlaA.L. MinelliA. α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells.Gene201453911710.1016/j.gene.2014.02.009 24530478
    [Google Scholar]
  11. FerrandoM. GueronG. ElgueroB. GiudiceJ. SallesA. LeskowF.C. Jares-ErijmanE.A. ColomboL. MeissR. NavoneN. De SierviA. VazquezE. Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer.Angiogenesis201114446747910.1007/s10456‑011‑9230‑4 21833623
    [Google Scholar]
  12. ChappleS.J. KeeleyT.P. MastronicolaD. ArnoM. Vizcay-BarrenaG. FleckR. SiowR.C.M. MannG.E. Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels.Free Radic. Biol. Med.20169215216210.1016/j.freeradbiomed.2015.12.013 26698668
    [Google Scholar]
  13. OgawaK. SunJ. TaketaniS. NakajimaO. NishitaniC. SassaS. HayashiN. YamamotoM. ShibaharaS. FujitaH. IgarashiK. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1.EMBO J.200120112835284310.1093/emboj/20.11.2835 11387216
    [Google Scholar]
  14. SchultzM.A. Abdel-MageedA.B. MondalD. The nrf1 and nrf2 balance in oxidative stress regulation and androgen signaling in prostate cancer cells.Cancers2010221354137810.3390/cancers2021354 24281119
    [Google Scholar]
  15. GueronG. GiudiceJ. ValaccoP. PaezA. ElgueroB. ToscaniM. JaworskiF. LeskowF.C. CotignolaJ. MartiM. BinaghiM. NavoneN. VazquezE. Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells.Oncotarget20145124087410210.18632/oncotarget.1826 24961479
    [Google Scholar]
  16. LeonardiD.B. AnselminoN. BrandaniJ.N. JaworskiF.M. PáezA.V. MazairaG. MeissR.P. NuñezM. NemirovskyS.I. GiudiceJ. GalignianaM. PecciA. GueronG. VazquezE. CotignolaJ. Heme oxygenase 1 impairs glucocorticoid receptor activity in prostate cancer.Int. J. Mol. Sci.2019205100610.3390/ijms20051006 30813528
    [Google Scholar]
  17. ShajariN. DavudianS. KazemiT. MansooriB. SalehiS. Khaze ShahgoliV. ShanehbandiD. MohammadiA. DuijfP.H.G. BaradaranB. Silencing of BACH1 inhibits invasion and migration of prostate cancer cells by altering metastasis-related gene expression.Artif. Cells Nanomed. Biotechnol.20184671495150410.1080/21691401.2017.1374284 28889753
    [Google Scholar]
  18. Samare-NajafM. ZalF. SafariS. Primary and secondary markers of doxorubicin-induced female infertility and the alleviative properties of quercetin and vitamin E in a rat model.Reprod. Toxicol.20209631632610.1016/j.reprotox.2020.07.015 32810592
    [Google Scholar]
  19. JangY.G. GoR.E. HwangK.A. ChoiK.C. Resveratrol inhibits DHT-induced progression of prostate cancer cell line through interfering with the AR and CXCR4 pathway.J. Steroid Biochem. Mol. Biol.201919210540610.1016/j.jsbmb.2019.105406 31185279
    [Google Scholar]
  20. KahkeshaniN. FarzaeiF. FotouhiM. AlaviS.S. BahramsoltaniR. NaseriR. MomtazS. AbbasabadiZ. RahimiR. FarzaeiM.H. BishayeeA. Pharmacological effects of gallic acid in health and diseases: A mechanistic review.Iran. J. Basic Med. Sci.2019223225237 31156781
    [Google Scholar]
  21. Sagdicoglu CelepA.G. DemirkayaA. SolakE.K. Antioxidant and anticancer activities of gallic acid loaded sodium alginate microspheres on colon cancer.Curr. Appl. Phys.202240304210.1016/j.cap.2020.06.002
    [Google Scholar]
  22. AruomaO. MurciaA. ButlerJ. HalliwellB. Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J AGR.Food Chem.2008200841
    [Google Scholar]
  23. IqbalM.J. KabeerA. AbbasZ. SiddiquiH.A. CalinaD. Sharifi-RadJ. ChoW.C. Interplay of oxidative stress, cellular communication and signaling pathways in cancer.Cell Commun. Signal.2024221710.1186/s12964‑023‑01398‑5 38167159
    [Google Scholar]
  24. BouyahyaA. BakrimS. AboulaghrasS. El KadriK. AannizT. KhalidA. AbdallaA.N. AbdallahA.A. ArdiantoC. MingL.C. El OmariN. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress.Biomed. Pharmacother.202417411643210.1016/j.biopha.2024.116432 38520868
    [Google Scholar]
  25. TossettaG. FantoneS. MarzioniD. MazzucchelliR. Role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.Cancers20231511303710.3390/cancers15113037 37296999
    [Google Scholar]
  26. AshrafizadehM. ZarrabiA. MirzaeiS. HashemiF. SamarghandianS. ZabolianA. HushmandiK. AngH.L. SethiG. KumarA.P. AhnK.S. NabaviN. KhanH. MakvandiP. VarmaR.S. Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery.Food Chem. Toxicol.202115711257610.1016/j.fct.2021.112576 34571052
    [Google Scholar]
  27. KaurM. VelmuruganB. RajamanickamS. AgarwalR. AgarwalC. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice.Pharm. Res.20092692133214010.1007/s11095‑009‑9926‑y 19543955
    [Google Scholar]
  28. ReddivariL. VanamalaJ. SafeS.H. MillerJ.C.Jr The bioactive compounds α-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells.Nutr. Cancer201062560161010.1080/01635580903532358 20574921
    [Google Scholar]
  29. Saffari-ChaleshtoriJ. Heidari-SureshjaniE. MoradiF. JaziH.M. HeidarianE. The study of apoptosis-inducing effects of three pre-apoptotic factors by gallic acid, using simulation analysis and the comet assay technique on the prostatic cancer cell line PC3.Malays. J. Med. Sci.2017244182910.21315/mjms2017.24.4.3 28951686
    [Google Scholar]
  30. KuwajerwalaN. CifuentesE. GautamS. MenonM. BarrackE.R. ReddyG.P. Resveratrol induces prostate cancer cell entry into s phase and inhibits DNA synthesis.Cancer Res.200262924882492 11980638
    [Google Scholar]
  31. RashidA. LiuC. SanliT. TsianiE. SinghG. BristowR.G. DayesI. LukkaH. WrightJ. TsakiridisT. Resveratrol enhances prostate cancer cell response to ionizing radiation. Modulation of the AMPK, Akt and mTOR pathways.Radiat. Oncol.20116114410.1186/1748‑717X‑6‑144 22029423
    [Google Scholar]
  32. ZalF. KhademiF. TaheriR. Mostafavi-PourZ. Antioxidant ameliorating effects against H2O2-induced cytotoxicity in primary endometrial cells.Toxicol. Mech. Methods201828212212910.1080/15376516.2017.1372540 28849685
    [Google Scholar]
  33. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  34. MoghadamD. ZareiR. VakiliS. GhojoghiR. ZarezadeV. VeisiA. SabaghanM. AzadbakhtO. BehroujH. The effect of natural polyphenols Resveratrol, Gallic acid, and Kuromanin chloride on human telomerase reverse transcriptase (hTERT) expression in HepG2 hepatocellular carcinoma: role of SIRT1/Nrf2 signaling pathway and oxidative stress.Mol. Biol. Rep.2023501778410.1007/s11033‑022‑08031‑7 36307623
    [Google Scholar]
  35. AebiH. Catalase in vitro. Methods in enzymologyElsevier1984121126
    [Google Scholar]
  36. MaianiG. MobarhanS. NicastroA. VirgiliF. ScacciniC. Ferro-LuzziA. Determination of glutathione reductase activity in erythrocytes and whole blood as an indicator of riboflavin nutrition.Acta Vitaminol. Enzymol.198353171178 6650303
    [Google Scholar]
  37. ZalF. Mostafavi-PourZ. AminiF. HeidariA. Effect of vitamin E and C supplements on lipid peroxidation and GSH-dependent antioxidant enzyme status in the blood of women consuming oral contraceptives.Contraception2012861626610.1016/j.contraception.2011.11.006 22494786
    [Google Scholar]
  38. Gupta-EleraG. GarrettA.R. RobisonR.A. O’NeillK.L. The role of oxidative stress in prostate cancer.Eur. J. Cancer Prev.201221215516210.1097/CEJ.0b013e32834a8002 21857523
    [Google Scholar]
  39. KhandrikaL. KumarB. KoulS. MaroniP. KoulH.K. Oxidative stress in prostate cancer.Cancer Lett.2009282212513610.1016/j.canlet.2008.12.011 19185987
    [Google Scholar]
  40. AbbasiA. MovahedpourA. AmiriA. NajafM.S. Mostafavi-PourZ. Darolutamide as a second-generation androgen receptor inhibitor in the treatment of prostate cancer.Curr. Mol. Med.2020214332346
    [Google Scholar]
  41. SaikolappanS. KumarB. ShishodiaG. KoulS. KoulH.K. Reactive oxygen species and cancer: A complex interaction.Cancer Lett.201945213214310.1016/j.canlet.2019.03.020 30905813
    [Google Scholar]
  42. HayesJ.D. Dinkova-KostovaA.T. TewK.D. Oxidative stress in cancer.Cancer Cell202038216719710.1016/j.ccell.2020.06.001 32649885
    [Google Scholar]
  43. KumarB. KoulS. KhandrikaL. MeachamR.B. KoulH.K. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype.Cancer Res.20086861777178510.1158/0008‑5472.CAN‑07‑5259 18339858
    [Google Scholar]
  44. RussellL.H.Jr MazzioE. BadisaR.B. ZhuZ.P. AgharahimiM. OriakuE.T. GoodmanC.B. Autoxidation of gallic acid induces ROS-dependent death in human prostate cancer LNCaP cells.Anticancer Res.201232515951602 22593437
    [Google Scholar]
  45. ZhengX. JiaB. TianX.T. SongX. WuM.L. KongQ.Y. LiH. LiuJ. Correlation of reactive oxygen species levels with resveratrol sensitivities of anaplastic thyroid cancer cells.Oxid. Med. Cell. Longev.2018201811210.1155/2018/6235417 30116486
    [Google Scholar]
  46. SongJ. HuangY. ZhengW. YanJ. ChengM. ZhaoR. ChenL. HuC. JiaW. Resveratrol reduces intracellular reactive oxygen species levels by inducing autophagy through the AMPK-mTOR pathway.Front. Med.201812669770610.1007/s11684‑018‑0655‑7 30421395
    [Google Scholar]
  47. Rodríguez-EnríquezS. Pacheco-VelázquezS.C. Marín-HernándezÁ. Gallardo-PérezJ.C. Robledo-CadenaD.X. Hernández-ReséndizI. García-GarcíaJ.D. Belmont-DíazJ. López-MarureR. Hernández-EsquivelL. Sánchez-ThomasR. Moreno-SánchezR. Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress.Toxicol. Appl. Pharmacol.2019370657710.1016/j.taap.2019.03.008 30878505
    [Google Scholar]
  48. AggarwalV. TuliH. VarolA. ThakralF. YererM. SakK. VarolM. JainA. KhanM. SethiG. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements.Biomolecules201991173510.3390/biom9110735 31766246
    [Google Scholar]
  49. ValentiG.E. TassoB. TraversoN. DomenicottiC. MarengoB. Glutathione in cancer progression and chemoresistance: An update. Redox.Experim. Med.202320231e220023
    [Google Scholar]
  50. TraversoN. RicciarelliR. NittiM. MarengoB. FurfaroA.L. PronzatoM.A. MarinariU.M. DomenicottiC. Role of glutathione in cancer progression and chemoresistance.Oxid. Med. Cell. Longev.2013201311010.1155/2013/972913 23766865
    [Google Scholar]
  51. SharmilaG. BhatF.A. ArunkumarR. ElumalaiP. RajaS.P. SenthilkumarK. ArunakaranJ. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model.Clin. Nutr.201433471872610.1016/j.clnu.2013.08.011 24080313
    [Google Scholar]
  52. TangX. DingH. LiangM. ChenX. YanY. WanN. ChenQ. ZhangJ. CaoJ. Curcumin induces ferroptosis in non‐small‐cell lung cancer via activating autophagy.Thorac. Cancer20211281219123010.1111/1759‑7714.13904 33656766
    [Google Scholar]
  53. LeeJ. JangC.H. KimY. OhJ. KimJ.S. Quercetin-induced glutathione depletion sensitizes colorectal cancer cells to oxaliplatin.Foods2023128173310.3390/foods12081733 37107528
    [Google Scholar]
  54. GuhaP. DeyA. SenR. ChatterjeeM. ChattopadhyayS. BandyopadhyayS.K. Intracellular GSH depletion triggered mitochondrial Bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell line.J. Pharmacol. Exp. Ther.2011336120621410.1124/jpet.110.171983 20876229
    [Google Scholar]
  55. NaH.K. SurhY.J. Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1.Free Radic. Biol. Med.20146735336510.1016/j.freeradbiomed.2013.10.819 24200599
    [Google Scholar]
  56. ChiangS.K. ChenS.E. ChangL.C. The Role of HO-1 and its crosstalk with oxidative stress in cancer cell survival.Cells2021109240110.3390/cells10092401 34572050
    [Google Scholar]
  57. SchultzM.A. HaganS.S. DattaA. ZhangY. FreemanM.L. SikkaS.C. Abdel-MageedA.B. MondalD. Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells.PLoS One201491e8720410.1371/journal.pone.0087204 24466341
    [Google Scholar]
  58. KhuranaN. SikkaS. Targeting crosstalk between Nrf-2, NF-κB and androgen receptor signaling in prostate cancer.Cancers2018101035210.3390/cancers10100352 30257470
    [Google Scholar]
  59. TianX. CongF. GuoH. FanJ. ChaoG. SongT. Downregulation of Bach1 protects osteoblasts against hydrogen peroxide-induced oxidative damage in vitro by enhancing the activation of Nrf2/ARE signaling.Chem. Biol. Interact.201930910870610.1016/j.cbi.2019.06.019 31194955
    [Google Scholar]
  60. DavudianS. ShajariN. KazemiT. MansooriB. SalehiS. MohammadiA. ShanehbandiD. ShahgoliV.K. AsadiM. BaradaranB. BACH1 silencing by siRNA inhibits migration of HT-29 colon cancer cells through reduction of metastasis-related genes.Biomed. Pharmacother.20168419119810.1016/j.biopha.2016.09.021 27657827
    [Google Scholar]
  61. LiangY. WuH. LeiR. ChongR.A. WeiY. LuX. TagkopoulosI. KungS.Y. YangQ. HuG. KangY. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis.J. Biol. Chem.201228740335333354410.1074/jbc.M112.392332 22875853
    [Google Scholar]
  62. ZhuG.D. LiuF. OuYangS. ZhouR. JiangF.N. ZhangB. LiaoW.J. BACH1 promotes the progression of human colorectal cancer through BACH1/CXCR4 pathway.Biochem. Biophys. Res. Commun.2018499212012710.1016/j.bbrc.2018.02.178 29481800
    [Google Scholar]
  63. YunJ. FrankenbergerC.A. KuoW.L. BoelensM.C. EvesE.M. ChengN. LiangH. LiW.H. IshwaranH. MinnA.J. RosnerM.R. Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer.EMBO J.201130214500451410.1038/emboj.2011.312 21873975
    [Google Scholar]
  64. KasparJ.W. JaiswalA.K. Antioxidant-induced phosphorylation of tyrosine 486 leads to rapid nuclear export of Bach1 that allows Nrf2 to bind to the antioxidant response element and activate defensive gene expression.J. Biol. Chem.2010285115316210.1074/jbc.M109.040022 19897490
    [Google Scholar]
  65. GlorieuxC. EnríquezC. GonzálezC. Aguirre-MartínezG. Buc CalderonP. The multifaceted roles of NRF2 in Cancer: friend or foe?Antioxidants20241317010.3390/antiox13010070 38247494
    [Google Scholar]
  66. WielC. Le GalK. IbrahimM.X. JahangirC.A. KashifM. YaoH. ZieglerD.V. XuX. GhoshT. MondalT. KanduriC. LindahlP. SayinV.I. BergoM.O. BACH1 stabilization by antioxidants stimulates lung cancer metastasis.Cell20191782330345.e2210.1016/j.cell.2019.06.005 31257027
    [Google Scholar]
  67. ReczekC.R. ChandelN.S. The two faces of reactive oxygen species in cancer.Annu. Rev. Cancer Biol.201711799810.1146/annurev‑cancerbio‑041916‑065808
    [Google Scholar]
  68. PiskounovaE. AgathocleousM. MurphyM.M. HuZ. HuddlestunS.E. ZhaoZ. LeitchA.M. JohnsonT.M. DeBerardinisR.J. MorrisonS.J. Oxidative stress inhibits distant metastasis by human melanoma cells.Nature2015527757718619110.1038/nature15726 26466563
    [Google Scholar]
  69. SchaferZ.T. GrassianA.R. SongL. JiangZ. Gerhart-HinesZ. IrieH.Y. GaoS. PuigserverP. BruggeJ.S. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment.Nature2009461726010911310.1038/nature08268 19693011
    [Google Scholar]
  70. GaladariS. RahmanA. PallichankandyS. ThayyullathilF. Reactive oxygen species and cancer paradox: To promote or to suppress?Free Radic. Biol. Med.201710414416410.1016/j.freeradbiomed.2017.01.004 28088622
    [Google Scholar]
  71. KhanF. KhanI. FarooquiA. AnsariI.A. Carvacrol induces reactive oxygen species (ROS)-mediated apoptosis along with cell cycle arrest at G0/G1 in human prostate cancer cells.Nutr. Cancer20176971075108710.1080/01635581.2017.1359321 28872904
    [Google Scholar]
  72. WangD. GaoZ. ZhangX. Resveratrol induces apoptosis in murine prostate cancer cells via hypoxia-inducible factor 1-alpha (HIF-1α)/reactive oxygen species (ROS)/P53 signaling.Med. Sci. Monit.2018248970897610.12659/MSM.913290 30531685
    [Google Scholar]
  73. KimU. KimC.Y. LeeJ.M. OhH. RyuB. KimJ. ParkJ.H. Phloretin inhibits the human prostate cancer cells through the generation of reactive oxygen species.Pathol. Oncol. Res.202026297798410.1007/s12253‑019‑00643‑y 30937835
    [Google Scholar]
  74. KandothC. McLellanM.D. VandinF. YeK. NiuB. LuC. XieM. ZhangQ. McMichaelJ.F. WyczalkowskiM.A. LeisersonM.D.M. MillerC.A. WelchJ.S. WalterM.J. WendlM.C. LeyT.J. WilsonR.K. RaphaelB.J. DingL. Mutational landscape and significance across 12 major cancer types.Nature2013502747133333910.1038/nature12634 24132290
    [Google Scholar]
  75. GoldsteinL.D. LeeJ. GnadF. KlijnC. SchaubA. ReederJ. DaemenA. BakalarskiC.E. HolcombT. ShamesD.S. HartmaierR.J. ChmieleckiJ. SeshagiriS. GentlemanR. StokoeD. Recurrent loss of NFE2L2 exon 2 is a mechanism for Nrf2 pathway activation in human cancers.Cell Rep.201616102605261710.1016/j.celrep.2016.08.010 27568559
    [Google Scholar]
  76. FabrizioF.P. CostantiniM. CopettiM. la TorreA. SparaneoA. FontanaA. PoetaL. GallucciM. SentinelliS. GrazianoP. ParenteP. PompeoV. SalvoL.D. SimoneG. PapaliaR. PicardoF. BalsamoT. FlammiaG.P. TrombettaD. PantaloneA. KokK. ParanitaF. MuscarellaL.A. FazioV.M. Keap1/Nrf2 pathway in kidney cancer: frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma.Oncotarget201787111871119810.18632/oncotarget.14492 28061437
    [Google Scholar]
  77. InamiY. WaguriS. SakamotoA. KounoT. NakadaK. HinoO. WatanabeS. AndoJ. IwadateM. YamamotoM. LeeM.S. TanakaK. KomatsuM. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells.J. Cell Biol.2011193227528410.1083/jcb.201102031 21482715
    [Google Scholar]
  78. KomatsuM. KurokawaH. WaguriS. TaguchiK. KobayashiA. IchimuraY. SouY.S. UenoI. SakamotoA. TongK.I. KimM. NishitoY. IemuraS. NatsumeT. UenoT. KominamiE. MotohashiH. TanakaK. YamamotoM. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1.Nat. Cell Biol.201012321322310.1038/ncb2021 20173742
    [Google Scholar]
  79. DeNicolaG.M. KarrethF.A. HumptonT.J. GopinathanA. WeiC. FreseK. MangalD. YuK.H. YeoC.J. CalhounE.S. ScrimieriF. WinterJ.M. HrubanR.H. Iacobuzio-DonahueC. KernS.E. BlairI.A. TuvesonD.A. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis.Nature2011475735410610910.1038/nature10189 21734707
    [Google Scholar]
  80. OkazakiK. PapagiannakopoulosT. MotohashiH. Metabolic features of cancer cells in NRF2 addiction status.Biophys. Rev.202012243544110.1007/s12551‑020‑00659‑8 32112372
    [Google Scholar]
  81. ZhangP. SinghA. YegnasubramanianS. EsopiD. KombairajuP. BodasM. WuH. BovaS.G. BiswalS. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth.Mol. Cancer Ther.20109233634610.1158/1535‑7163.MCT‑09‑0589 20124447
    [Google Scholar]
  82. LuD.Y. YehW.L. HuangS.M. TangC.H. LinH.Y. ChouS.J. Osteopontin increases heme oxygenase–1 expression and subsequently induces cell migration and invasion in glioma cells.Neuro-oncol.201214111367137810.1093/neuonc/nos262 23074199
    [Google Scholar]
  83. ZhuJ. WangH. SunQ. JiX. ZhuL. CongZ. ZhouY. LiuH. ZhouM. Nrf2 is required to maintain the self-renewal of glioma stem cells.BMC Cancer201313138010.1186/1471‑2407‑13‑380 23937621
    [Google Scholar]
  84. ShenH. YangY. XiaS. RaoB. ZhangJ. WangJ. Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment.Dis. Esophagus201427768569210.1111/dote.12124 24028437
    [Google Scholar]
  85. DoM.T. KimH.G. KhanalT. ChoiJ.H. KimD.H. JeongT.C. JeongH.G. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways.Toxicol. Appl. Pharmacol.2013271222923810.1016/j.taap.2013.05.010 23707609
    [Google Scholar]
  86. MaD. FangQ. WangP. GaoR. WuW. LuT. CaoL. HuX. WangJ. Induction of heme oxygenase-1 by Na+-H+ exchanger 1 protein plays a crucial role in imatinib-resistant chronic myeloid leukemia cells.J. Biol. Chem.201529020125581257110.1074/jbc.M114.626960 25802333
    [Google Scholar]
  87. ZhongY. ZhangF. SunZ. ZhouW. LiZ.Y. YouQ.D. GuoQ.L. HuR. Drug resistance associates with activation of Nrf2 in MCF ‐7/DOX cells, and wogonin reverses it by down‐regulating Nrf2‐mediated cellular defense response.Mol. Carcinog.2013521082483410.1002/mc.21921 22593043
    [Google Scholar]
  88. BaoL-J. JaramilloM.C. ZhangZ-B. ZhengY-X. YaoM. ZhangD.D. YiX-F. Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma.Int. J. Clin. Exp. Pathol.20147415021513 24817946
    [Google Scholar]
  89. JayakumarS. KunwarA. SandurS.K. PandeyB.N. ChaubeyR.C. Differential response of DU145 and PC3 prostate cancer cells to ionizing radiation: Role of reactive oxygen species, GSH and Nrf2 in radiosensitivity.Biochim. Biophys. Acta, Gen. Subj.20141840148549410.1016/j.bbagen.2013.10.006 24121106
    [Google Scholar]
  90. FurfaroA.L. TraversoN. DomenicottiC. PirasS. MorettaL. MarinariU.M. PronzatoM.A. NittiM. The Nrf2/HO-1 axis in cancer cell growth and chemoresistance.Oxid. Med. Cell. Longev.2016201611410.1155/2016/1958174 26697129
    [Google Scholar]
  91. GorriniC. HarrisI.S. MakT.W. Modulation of oxidative stress as an anticancer strategy.Nat. Rev. Drug Discov.2013121293194710.1038/nrd4002 24287781
    [Google Scholar]
  92. SinghC.K. ChhabraG. NdiayeM.A. SiddiquiI.A. PanackalJ.E. MintieC.A. AhmadN. Quercetin–resveratrol combination for prostate cancer management in TRAMP mice.Cancers 2020128214110.3390/cancers12082141 32748838
    [Google Scholar]
  93. FonsecaJ. MoradiF. MaddalenaL.A. Ferreira-TollstadiusB. SelimS. StuartJ.A. Resveratrol integrates metabolic and growth effects in PC3 prostate cancer cells-involvement of prolyl hydroxylase and hypoxia inducible factor-1.Oncol. Lett.2019171697705 30655819
    [Google Scholar]
  94. ZhangJ. WangX. VikashV. YeQ. WuD. LiuY. DongW. ROS and ROS-mediated cellular signaling.Oxid. Med. Cell. Longev.2016201611810.1155/2016/4350965 26998193
    [Google Scholar]
  95. RudrapalM. KhairnarS.J. KhanJ. DukhyilA.B. AnsariM.A. AlomaryM.N. AlshabrmiF.M. PalaiS. DebP.K. DeviR. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action.Front. Pharmacol.20221380647010.3389/fphar.2022.806470 35237163
    [Google Scholar]
  96. ButtariB. AreseM. Oberley-DeeganR.E. SasoL. ChatterjeeA. NRF2: A crucial regulator for mitochondrial metabolic shift and prostate cancer progression.Front. Physiol.20221398979310.3389/fphys.2022.989793 36213236
    [Google Scholar]
  97. ShiotaM. Oxidative stress and prostate cancer. Cancer2nd ed; Preedy, V.R.; Patel, V.B., Eds.; Academic Press: San Diego2021152610.1016/B978‑0‑12‑819547‑5.00002‑X
    [Google Scholar]
  98. OhB. FigtreeG. CostaD. EadeT. HrubyG. LimS. ElfikyA. MartineN. RosenthalD. ClarkeS. BackM. Oxidative stress in prostate cancer patients: A systematic review of case control studies.Prostate Int.201643718710.1016/j.prnil.2016.05.002 27689064
    [Google Scholar]
  99. ShuklaS. SrivastavaJ.K. ShankarE. KanwalR. NawabA. SharmaH. BhaskaranN. PonskyL.E. FuP. MacLennanG.T. GuptaS. Oxidative stress and antioxidant status in high-risk prostate cancer subjects.Diagnostics202010312610.3390/diagnostics10030126 32120827
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206317999240708062744
Loading
/content/journals/acamc/10.2174/0118715206317999240708062744
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): BACH1; HO-1; Nrf2; oxidative stress; polyphenols; Prostate cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test