Skip to content
2000
Volume 24, Issue 19
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction

Sorafenib (Sor) is the first-line treatment option in clinics for treating advanced unresectable hepatocellular carcinoma (HCC). However, acquired chemoresistance and adverse side effects associated with Sor monotherapy limit its clinical benefits. We have previously reported the exceptional anti-HCC potential of uttroside B (Utt-B), a furostanol saponin isolated in our lab from Linn. leaves. The current study has evaluated the supremacy of a combinatorial regimen of Sor and Utt-B over Sor monotherapy.

Methods

MTT assay was used for cytotoxicity studies. A clonogenic assay was conducted to assess the anti-proliferative effect of the combination. Annexin V/PI staining, confocal microscopy, FACS cell cycle analysis, and Western blotting experiments were performed to validate the pro-apoptotic potential of the combination in HepG2 and Huh7 cell lines. Pharmacological safety evaluation was performed in Swiss albino mice.

Results

Our results indicate that Utt-B augments Sor-induced cytotoxicity in HepG2 and Huh7 cells. The combination inhibits the proliferation of liver cancer cells by inducing apoptosis through activation of the caspases 7 and 3, leading to PARP cleavage. Furthermore, the combination does not induce any acute toxicity , even at a dose five times that of the effective therapeutic dose.

Conclusion

Our results highlight the potential of Utt-B as an effective chemosensitizer, which can augment the efficacy of Sor against HCC and circumvent Sor-induced toxic side effects. Moreover, this is the first and only report to date on the chemosensitizing potential of Utt-B and the only report that demonstrates the therapeutic efficacy and pharmacological safety of a novel combinatorial regimen involving Utt-B and Sor for combating HCC.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206316190240527160242
2024-12-01
2025-06-19
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. LiuX.T. HuangY. LiuD. JiangY.C. ZhaoM. ChungL.H. HanX.D. ZhaoY. ChenJ. ColemanP. TingK.K. TranC. SuY. DennisC.V. BhatnagarA. LiuK. DonA.S. VadasM.A. GorrellM.D. ZhangS. MurrayM. KavurmaM.M. McCaughanG.W. GambleJ.R. QiY. Targeting the SphK1/S1P/PFKFB3 axis suppresses hepatocellular carcinoma progression by disrupting glycolytic energy supply that drives tumor angiogenesis.J. Transl. Med.20242214310.1186/s12967‑023‑04830‑z 38200582
    [Google Scholar]
  3. KeatingG.M. SantoroA. Sorafenib.Drugs200969222324010.2165/00003495‑200969020‑00006 19228077
    [Google Scholar]
  4. HsuC-H. ShenY.C. ShaoY.Y. HsuC. ChengA.L. Sorafenib in advanced hepatocellular carcinoma: Current status and future perspectives.J. Hepatocell. Carcinoma201418599 27508178
    [Google Scholar]
  5. RimassaL. SantoroA. Sorafenib therapy in advanced hepatocellular carcinoma: The SHARP trial.Expert Rev. Anticancer Ther.20099673974510.1586/era.09.41 19496710
    [Google Scholar]
  6. SanoffH.K. ChangY. LundJ.L. O’NeilB.H. DusetzinaS.B. Sorafenib effectiveness in advanced hepatocellular carcinoma.Oncologist20162191113112010.1634/theoncologist.2015‑0478 27185615
    [Google Scholar]
  7. HamptonT. Cancer drug trials show modest benefit: Drugs target liver, gastric, head and neck cancers.JAMA2007298327327510.1001/jama.298.3.273 17635880
    [Google Scholar]
  8. OtsukaT. EguchiY. KawazoeS. YanagitaK. ArioK. KitaharaK. KawasoeH. KatoH. MizutaT. Skin toxicities and survival in advanced hepatocellular carcinoma patients treated with sorafenib.Hepatol. Res.201242987988610.1111/j.1872‑034X.2012.00991.x 22469363
    [Google Scholar]
  9. BlanchetB. BillemontB. BareteS. GarrigueH. CabanesL. CoriatR. FrancèsC. KnebelmannB. GoldwasserF. Toxicity of sorafenib: Clinical and molecular aspects.Expert Opin. Drug Saf.20109227528710.1517/14740330903510608 20078249
    [Google Scholar]
  10. Di CostanzoG.G. TortoraR. De LucaM. GaleotaL.A. LampasiF. TartaglioneM.T. PicciottoF.P. ImparatoM. MatteraS. CordoneG. AscioneA. Impact of age on toxicity and efficacy of sorafenib-targeted therapy in cirrhotic patients with hepatocellular carcinoma.Med. Oncol.201330144610.1007/s12032‑012‑0446‑y 23307255
    [Google Scholar]
  11. LaiX. WanQ. JiaoS.F. SunX.C. HuJ.F. PengH.W. Cardiovascular toxicities following the use of tyrosine kinase inhibitors in hepatocellular cancer patients: A retrospective, pharmacovigilance study.Expert Opin. Drug Saf.202423328729610.1080/14740338.2023.2251398 37608525
    [Google Scholar]
  12. JiangL. LiL. LiuY. ZhanM. LuL. YuanS. LiuY. Drug resistance mechanism of kinase inhibitors in the treatment of hepatocellular carcinoma.Front. Pharmacol.202314109727710.3389/fphar.2023.1097277 36891274
    [Google Scholar]
  13. ZhuY. ZhengB. WangH. ChenL. New knowledge of the mechanisms of sorafenib resistance in liver cancer.Acta Pharmacol. Sin.201738561462210.1038/aps.2017.5 28344323
    [Google Scholar]
  14. WangT. HongY. ChenZ. WuD. LiY. WuX. HuangH. ZhangQ. JiaC. Synergistic effects of α-Mangostin and sorafenib in hepatocellular carcinoma: New insights into α-mangostin cytotoxicity.Biochem. Biophys. Res. Commun.2021558142110.1016/j.bbrc.2021.04.047 33894673
    [Google Scholar]
  15. KimY.S. LeeY.M. OhT.I. ShinD. KimG.H. KanS.Y. KangH. KimJ. KimB. YimW. LimJ.H. Emodin sensitizes hepatocellular carcinoma cells to the anti-cancer effect of sorafenib through suppression of cholesterol metabolism.Int. J. Mol. Sci.20181910312710.3390/ijms19103127 30321984
    [Google Scholar]
  16. YaoX. ZhaoC. YinH. WangK. GaoJ. Synergistic antitumor activity of sorafenib and artesunate in hepatocellular carcinoma cells.Acta Pharmacol. Sin.202041121609162010.1038/s41401‑020‑0395‑5 32300243
    [Google Scholar]
  17. ChanY.P. ChuangC.H. LeeI. YangN.C. Lycopene in combination with sorafenib additively inhibits tumor metastasis in mice xenografted with lewis lung carcinoma cells.Front. Nutr.2022988698810.3389/fnut.2022.886988 35711540
    [Google Scholar]
  18. RodriguezS. SkeetK. Mehmetoglu-GurbuzT. GoldfarbM. KarriS. RochaJ. ShahinianM. YazadiA. PoudelS. SubramaniR. Phytochemicals as an alternative or integrative option, in conjunction with conventional treatments for hepatocellular carcinoma.Cancers 20211322575310.3390/cancers13225753 34830907
    [Google Scholar]
  19. ZhuX.F. SunZ.L. MaJ. HuB. YuM.C. LiuX.J. YangP. XuY. JuD. MuQ. Synergistic anticancer effect of flavonoids from Sophora alopecuroides with Sorafenib against hepatocellular carcinoma.Phytother. Res.202337259261010.1002/ptr.7637 36180975
    [Google Scholar]
  20. KhatoonE. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Seminars in Cancer Biology.Elsevier202210.1016/j.semcancer.2020.06.014
    [Google Scholar]
  21. HuY. LuoZ. CaiS. XieQ. ZhengS. Glycyrrhizic acid attenuates sorafenib resistance by inducing ferroptosisviatargeting mTOR signaling in hepatocellular carcinoma.Scand. J. Gastroenterol.20241710.1080/00365521.2024.2315317 38426342
    [Google Scholar]
  22. ZaafarD. KhalilH.M.A. ElnaggarR. SaadD.Z. RasheedR.A. Protective role of hesperetin in sorafenib-induced hepato- and neurotoxicity in mice via modulating apoptotic pathways and mitochondrial reprogramming.Life Sci.202433612229510.1016/j.lfs.2023.122295 38007145
    [Google Scholar]
  23. FengX.Q. RongL.W. WangR.X. ZhengX.L. ZhangL. ZhangL. LinY. WangX. LiZ.P. Luteolin and sorafenib combination kills human hepatocellular carcinoma cells through apoptosis potentiation and JNK activation.Oncol. Lett.201816164865310.3892/ol.2018.8640 29928452
    [Google Scholar]
  24. MaoJ. YangH. CuiT. PanP. KabirN. ChenD. MaJ. ChenX. ChenY. YangY. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT.Eur. J. Pharmacol.2018832394910.1016/j.ejphar.2018.05.027 29782854
    [Google Scholar]
  25. LiR.S. LiL.Y. ZhuX.F. LiX. WangC.Y. QiuS.J. ZhouJ. FanJ. HuB. MuQ. Annonaceous acetogenins synergistically inhibit hepatocellular carcinoma with sorafenib.J. Nat. Prod.2024871142710.1021/acs.jnatprod.3c00667 38233978
    [Google Scholar]
  26. ZhengL. FangS. ChenA. ChenW. QiaoE. ChenM. ShuG. ZhangD. KongC. WengQ. XuS. ZhaoZ. JiJ. Piperlongumine synergistically enhances the antitumour activity of sorafenib by mediating ROS-AMPK activation and targeting CPSF7 in liver cancer.Pharmacol. Res.202217710614010.1016/j.phrs.2022.106140 35202819
    [Google Scholar]
  27. NathL.R. GorantlaJ.N. ThulasidasanA.K.T. VijayakurupV. ShahS. AnwerS. JosephS.M. AntonyJ. VeenaK.S. SundaramS. MarelliU.K. LankalapalliR.S. AntoR.J. Evaluation of uttroside B, a saponin from Solanum nigrum Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma.Sci. Rep.2016613631810.1038/srep36318 27808117
    [Google Scholar]
  28. NathL.R. SwethaM. VijayakurupV. ThangarasuA.K. HarithaN.H. ShabnaA. AiswaryaS.U. RayginiaT.P. KeerthanaC.K. KalimuthuK. SundaramS. LankalapalliR.S. PillaiS. TownerR. IsakovN. AntoR.J. Blockade of uttroside b-induced autophagic pro-survival signals augments its chemotherapeutic efficacy against hepatocellular carcinoma.Front. Oncol.20221281259810.3389/fonc.2022.812598 35211405
    [Google Scholar]
  29. SwethaM. KeerthanaC.K. RayginiaT.P. NathL.R. HarithaN.H. ShabnaA. KalimuthuK. ThangarasuA.K. AiswaryaS.U. JannetS. PillaiS. HarikumarK.B. SundaramS. AntoN.P. WuD.H. LankalapalliR.S. TownerR. IsakovN. DeepaS.S. AntoR.J. Augmented efficacy of uttroside B over sorafenib in a murine model of human hepatocellular carcinoma.Pharmaceuticals202215563610.3390/ph15050636 35631464
    [Google Scholar]
  30. ChouT.C. Drug combination studies and their synergy quantification using the Chou-Talalay method.Cancer Res.201070244044610.1158/0008‑5472.CAN‑09‑1947 20068163
    [Google Scholar]
  31. HunterJ.E. ButterworthJ. PerkinsN.D. BatesonM. RichardsonC.A. Using body temperature, food and water consumption as biomarkers of disease progression in mice with Eμ-myc lymphoma.Br. J. Cancer2014110492893410.1038/bjc.2013.818 24407190
    [Google Scholar]
  32. FanG. WeiX. XuX. Is the era of sorafenib over? A review of the literature.Ther. Adv. Med. Oncol.20201210.1177/1758835920927602 32518599
    [Google Scholar]
  33. IyerR. FetterlyG. LugadeA. ThanavalaY. Sorafenib: A clinical and pharmacologic review.Expert Opin. Pharmacother.201011111943195510.1517/14656566.2010.496453 20586710
    [Google Scholar]
  34. BaldanF.G. CoelhoF.Q.J. BerlofaV.M. OliveiraV.C. CursinoM.A. SampaioA.L. BritoB. PereiraT.T. de OliveiraG.J.P. de GodoyT.N. PassosL.C.S. MorielP. Outcomes in hepatocellular carcinoma patients undergoing sorafenib treatment: Toxicities, cellular oxidative stress, treatment adherence, and quality of life.Anticancer Drugs202031552352710.1097/CAD.0000000000000902 32107349
    [Google Scholar]
  35. StauferK. FischerL. SeegersB. VettorazziE. NashanB. SterneckM. High toxicity of sorafenib for recurrent hepatocellular carcinoma after liver transplantation.Transpl. Int.201225111158116410.1111/j.1432‑2277.2012.01540.x 22882364
    [Google Scholar]
  36. LiY. GaoZ.H. QuX.J. The adverse effects of sorafenib in patients with advanced cancers.Basic Clin. Pharmacol. Toxicol.2015116321622110.1111/bcpt.12365 25495944
    [Google Scholar]
  37. WongH. TangY.F. YaoT.J. ChiuJ. LeungR. ChanP. CheungT.T. ChanA.C. PangR.W. PoonR. FanS.T. YauT. The outcomes and safety of single-agent sorafenib in the treatment of elderly patients with advanced hepatocellular carcinoma (HCC).Oncologist201116121721172810.1634/theoncologist.2011‑0192 22135121
    [Google Scholar]
  38. HuangY. WangK. GuC. YuG. ZhaoD. MaiW. ZhongY. LiuS. NieY. YangH. Berberine, a natural plant alkaloid, synergistically sensitizes human liver cancer cells to sorafenib.Oncol. Rep.20184031525153210.3892/or.2018.6552 30015938
    [Google Scholar]
  39. LuoJ. LiL. ZhuZ. ChangB. DengF. WangD. LuX. ZuoD. ChenQ. ZhouJ. Fucoidan inhibits EGFR redistribution and potentiates sorafenib to overcome sorafenib-resistant hepatocellular carcinoma.Biomed. Pharmacother.202215411360210.1016/j.biopha.2022.113602 36029544
    [Google Scholar]
  40. SinghD. KhanM.A. MishraD. GoelA. AnsariM.A. AkhtarK. SiddiqueH.R. Apigenin enhances sorafenib anti-tumour efficacy in hepatocellular carcinoma.Transl. Oncol.20244310192010.1016/j.tranon.2024.101920 38394865
    [Google Scholar]
  41. TongL.W. LeJ.Q. SongX.H. LiC.L. YuS.J. LinY.Q. TuY.F. ShaoJ.W. Synergistic anti-tumor effect of dual drug co-assembled nanoparticles based on ursolic acid and sorafenib.Colloids Surf. B Biointerfaces202423411372410.1016/j.colsurfb.2023.113724 38183870
    [Google Scholar]
  42. HussainY. SinghJ. MeenaA. SinhaR.A. LuqmanS. Escin‐sorafenib synergy up‐regulates LC3‐II and p62 to induce apoptosis in hepatocellular carcinoma cells.Environ. Toxicol.202439284085610.1002/tox.23988 37853854
    [Google Scholar]
  43. GaoM. DengC. DangF. Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway.Food Nutr. Res.2021656510.29219/fnr.v65.3602 34776832
    [Google Scholar]
  44. BortA. SpínolaE. Rodríguez-HencheN. Díaz-LaviadaI. Capsaicin exerts synergistic antitumor effect with sorafenib in hepatocellular carcinoma cells through AMPK activation.Oncotarget2017850876848769810.18632/oncotarget.21196 29152112
    [Google Scholar]
  45. NairB. AntoR.J. M, S.; Nath, L.R. Kaempferol-mediated sensitization enhances chemotherapeutic efficacy of sorafenib against hepatocellular carcinoma: An in silico and in vitro approach.Adv. Pharm. Bull.202010347247610.34172/apb.2020.058 32665908
    [Google Scholar]
  46. LlovetJ.M. RicciS. MazzaferroV. HilgardP. GaneE. BlancJ.F. de OliveiraA.C. SantoroA. RaoulJ.L. FornerA. SchwartzM. PortaC. ZeuzemS. BolondiL. GretenT.F. GalleP.R. SeitzJ.F. BorbathI. HäussingerD. GiannarisT. ShanM. MoscoviciM. VoliotisD. BruixJ. Sorafenib in advanced hepatocellular carcinoma.N. Engl. J. Med.2008359437839010.1056/NEJMoa0708857 18650514
    [Google Scholar]
  47. ZhangH. WangQ. LiuJ. CaoH. Inhibition of the PI3K/Akt signaling pathway reverses sorafenib derived chemo resistance in hepatocellular carcinoma.Oncol. Lett.20181569377938410.3892/ol.2018.8536 29928334
    [Google Scholar]
  48. KimY. JungK.Y. KimY.H. XuP. KangB.E. JoY. PanditN. KwonJ. GarianiK. GarianiJ. LeeJ. VerbeekJ. NamS. BaeS.J. HaK.T. YiH.S. ShongM. KimK.H. KimD. JungH.J. LeeC.W. KimK.R. SchoonjansK. AuwerxJ. RyuD. Inhibition of SIRT7 overcomes sorafenib acquired resistance by suppressing ERK1/2 phosphorylation via the DDX3X-mediated NLRP3 inflammasome in hepatocellular carcinoma.Drug Resist. Updat.20247310105410.1016/j.drup.2024.101054 38277756
    [Google Scholar]
  49. WuB. LiA. ZhangY. LiuX. ZhouS. GanH. CaiS. LiangY. TangX. Resistance of hepatocellular carcinoma to sorafenib can be overcome with co-delivery of PI3K/mTOR inhibitor BEZ235 and sorafenib in nanoparticles.Expert Opin. Drug Deliv.202017457358710.1080/17425247.2020.1730809 32056461
    [Google Scholar]
  50. ZhaiB. HuF. JiangX. XuJ. ZhaoD. LiuB. PanS. DongX. TanG. WeiZ. QiaoH. JiangH. SunX. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma.Mol. Cancer Ther.20141361589159810.1158/1535‑7163.MCT‑13‑1043 24705351
    [Google Scholar]
  51. KeerthanaC.K. RayginiaT.P. ShifanaS.C. AntoN.P. KalimuthuK. IsakovN. AntoR.J. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment.Front. Immunol.202314111458210.3389/fimmu.2023.1114582 36875093
    [Google Scholar]
  52. IshijimaN. KankiK. ShimizuH. ShiotaG. Activation of AMP ‐activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib.Cancer Sci.2015106556757510.1111/cas.12633 25683251
    [Google Scholar]
  53. LaiH.Y. TsaiH.H. YenC.J. HungL.Y. YangC.C. HoC.H. LiangH.Y. ChenF.W. LiC.F. WangJ.M. Metformin resensitizes sorafenib-resistant HCC cells through AMPK-dependent autophagy activation.Front. Cell Dev. Biol.2021859665510.3389/fcell.2020.596655 33681180
    [Google Scholar]
  54. BortA. SánchezB.G. Mateos-GómezP.A. Vara-CiruelosD. Rodríguez-HencheN. Díaz-LaviadaI. Targeting AMP ‐activated kinase impacts hepatocellular cancer stem cells induced by long‐term treatment with sorafenib.Mol. Oncol.20191351311133110.1002/1878‑0261.12488 30959553
    [Google Scholar]
  55. LingS. SongL. FanN. FengT. LiuL. YangX. WangM. LiY. TianY. ZhaoF. LiuY. HuangQ. HouZ. XuF. ShiL. LiY. Combination of metformin and sorafenib suppresses proliferation and induces autophagy of hepatocellular carcinoma via targeting the mTOR pathway.Int. J. Oncol.201750129730910.3892/ijo.2016.3799 27959383
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206316190240527160242
Loading
/content/journals/acamc/10.2174/0118715206316190240527160242
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test