Skip to content
2000
Volume 24, Issue 19
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Objectives

Non-Small Cell Lung Cancer (NSCLC) has attracted much attention on account of the high incidence and mortality of cancers. Vascular Endothelial Growth Factor Receptor 3 (VEGFR3/FLT4), which is a highly expressed receptor in NSCLC, greatly regulates cancer proliferation and migration. Pseudolaric Acid B (PAB) is a diterpenoid acid with antitumor activity isolated from . This study aimed to explore the inhibitory effect of PAB targeting FLT4 in NSCLC.

Methods

Cell membrane chromatography was used to evaluate the affinity of PAB binding on FLT4. NCI-H1299 cells were used in this study, and an MTT assay was performed to determine the anti-proliferation effect of PAB. Cell cycle analysis was conducted to study the cycle arrest of PAB. Wound healing and Transwell assays assessed the rate of cell migration. Western blot analysis evaluated the expression of related proteins.

Results

PAB showed strong affinity to FLT4 with a value of 3.01 × 10-6 M. Targeting FLT4 by PAB inactivated downstream P38MAPK and PI3K/AKT pathways, which inhibited the proliferation of NCI-H1299 cells. Meanwhile, PAB promoted G2/M phase arrest by influencing CyclinB1 and CDK1 complex formation to inhibit NCI-H1299 cell growth, but the effect was attenuated by knocking down the FLT4. Besides, PAB regulated MMP9 secretion through the Wnt/β-catenin signaling pathway to inhibit NCI-H1299 cell migration. However, the ability of PAB to inhibit migration was significantly weakened by FLT4 knockdown in NCI-H1299 cells.

Conclusion

PAB can inhibit the proliferation and migration of NSCLC cells through targeting FLT4 and is expected to be a promising FLT4 inhibitor for NSCLC treatment.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206313028240819103933
2024-12-01
2025-06-26
Loading full text...

Full text loading...

References

  1. WuF. WangL. ZhouC. Lung cancer in China: current and prospect.Curr. Opin. Oncol.2021331404610.1097/CCO.0000000000000703 33165004
    [Google Scholar]
  2. DesaiA. PetersS. Immunotherapy-based combinations in metastatic NSCLC.Cancer Treat. Rev.202311610254510.1016/j.ctrv.2023.102545 37030062
    [Google Scholar]
  3. RemarkR. BeckerC. GomezJ.E. DamotteD. Dieu-NosjeanM.C. Sautès-FridmanC. FridmanW.H. PowellC.A. AltorkiN.K. MeradM. GnjaticS. The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome.Am. J. Respir. Crit. Care Med.2015191437739010.1164/rccm.201409‑1671PP 25369536
    [Google Scholar]
  4. XiaoH. ZhaoR. MengW. LiaoY. Effects and translatomics characteristics of a small-molecule inhibitor of METTL3 against non-small cell lung cancer.J. Pharm. Anal.202313662563910.1016/j.jpha.2023.04.009 37440912
    [Google Scholar]
  5. AlexanderM. KimS.Y. ChengH. Update 2020: Management of Non-Small Cell Lung Cancer.Lung2020198689790710.1007/s00408‑020‑00407‑5 33175991
    [Google Scholar]
  6. ChenP. LiuY. WenY. ZhouC. Non‐small cell lung cancer in China.Cancer Commun. (Lond.)2022421093797010.1002/cac2.12359 36075878
    [Google Scholar]
  7. AlessiJ.V. ElkriefA. RicciutiB. WangX. CortelliniA. VazV.R. LambertiG. FriasR.L. VenkatramanD. FulgenziC.A.M. PecciF. RecondoG. Di FedericoA. BarrichelloA. ParkH. NishinoM. HambeltonG.M. EggerJ.V. LadanyiM. DigumarthyS. JohnsonB.E. ChristianiD.C. LinX. GainorJ.F. LinJ.J. PinatoD.J. SchoenfeldA.J. AwadM.M. Clinicopathologic and genomic factors impacting efficacy of first-line chemoimmunotherapy in advanced NSCLC.J. Thorac. Oncol.202318673174310.1016/j.jtho.2023.01.091 36775193
    [Google Scholar]
  8. ImyanitovE.N. IyevlevaA.G. LevchenkoE.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives.Crit. Rev. Oncol. Hematol.202115710319410.1016/j.critrevonc.2020.103194 33316418
    [Google Scholar]
  9. AokiM.N. AmaranteM.K. de OliveiraC.E.C. WatanabeM.A.E. Biomarkers in non-small cell lung cancer: Perspectives of individualized targeted therapy.Anticancer. Agents Med. Chem.201918152070207710.2174/1871520618666180827102101 30147015
    [Google Scholar]
  10. LeiT. XuT. ZhangN. ZouX. KongZ. WeiC. WangZ. Anlotinib combined with osimertinib reverses acquired osimertinib resistance in NSCLC by targeting the c-MET/MYC/AXL axis.Pharmacol. Res.202318810666810.1016/j.phrs.2023.106668 36681369
    [Google Scholar]
  11. PaikP.K. FanP.D. QeriqiB. NamakydoustA. DalyB. AhnL. KimR. PlodkowskiA. NiA. ChangJ. FanaroffR. LadanyiM. de StanchinaE. RudinC.M. Targeting NFE2L2/KEAP1 mutations in advanced NSCLC with the TORC1/2 inhibitor TAK-228.J. Thorac. Oncol.202318451652610.1016/j.jtho.2022.09.225 36240971
    [Google Scholar]
  12. SkribekM. RounisK. TsakonasG. EkmanS. Complications following novel therapies for non‐small cell lung cancer.J. Intern. Med.2022291673275410.1111/joim.13445 35032058
    [Google Scholar]
  13. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature25183 29364287
    [Google Scholar]
  14. OlssonA.K. DimbergA. KreugerJ. Claesson-WelshL. VEGF receptor signalling? In control of vascular function.Nat. Rev. Mol. Cell Biol.20067535937110.1038/nrm1911 16633338
    [Google Scholar]
  15. SaikiaQ. ReeveH. AlzahraniA. CritchleyW.R. ZeqirajE. DivanA. HarrisonM.A. PonnambalamS. VEGFR endocytosis: Implications for angiogenesis.Prog. Mol. Biol. Transl. Sci.202319410913910.1016/bs.pmbts.2022.06.021 36631189
    [Google Scholar]
  16. ZhaoY. GuoS. DengJ. ShenJ. DuF. WuX. ChenY. LiM. ChenM. LiX. LiW. GuL. SunY. WenQ. LiJ. XiaoZ. VEGF/VEGFR-targeted therapy and immunotherapy in non-small cell lung cancer: Targeting the tumor microenvironment.Int. J. Biol. Sci.20221893845385810.7150/ijbs.70958 35813484
    [Google Scholar]
  17. ShibuyaM. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases.J. Biochem.20131531131910.1093/jb/mvs136 23172303
    [Google Scholar]
  18. WautierJ.L. WautierM.P. Vascular permeability in diseases.Int. J. Mol. Sci.2022237364510.3390/ijms23073645 35409010
    [Google Scholar]
  19. ChristingerH.W. FuhG. de VosA.M. WiesmannC. The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1.J. Biol. Chem.200427911103821038810.1074/jbc.M313237200 14684734
    [Google Scholar]
  20. ZhengH. ChenC. LuoY. YuM. HeW. AnM. GaoB. KongY. YaY. LinY. LiY. XieK. HuangJ. LinT. Tumor‐derived exosomal BCYRN1 activates WNT5A/VEGF‐C/VEGFR3 feedforward loop to drive lymphatic metastasis of bladder cancer.Clin. Transl. Med.2021117e49710.1002/ctm2.497 34323412
    [Google Scholar]
  21. JannawayM. IyerD. MastrogiacomoD.M. LiK. SungD.C. YangY. KahnM.L. ScallanJ.P. VEGFR3 is required for button junction formation in lymphatic vessels.Cell Rep.202342711277710.1016/j.celrep.2023.112777 37454290
    [Google Scholar]
  22. KuonquiK. CampbellA.C. SarkerA. RobertsA. PollackB.L. ParkH.J. ShinJ. BrownS. MehraraB.J. KataruR.P. Dysregulation of lymphatic endothelial VEGFR3 signaling in disease.Cells20231316810.3390/cells13010068 38201272
    [Google Scholar]
  23. HanK.Y. ChangJ.H. Dugas-FordJ. AlexanderJ.S. AzarD.T. Involvement of lysosomal degradation in VEGF‐C‐induced down‐regulation of VEGFR‐3.FEBS Lett.2014588234357436310.1016/j.febslet.2014.09.034 25281926
    [Google Scholar]
  24. ZhaoL. ZhuZ. YaoC. HuangY. ZhiE. ChenH. TianR. LiP. YuanQ. XueY. WanZ. YangC. GongY. HeZ. LiZ. VEGFC/VEGFR3 signaling regulates mouse spermatogonial cell proliferation via the activation of AKT/MAPK and cyclin D1 pathway and mediates the apoptosis by affecting caspase 3/9 and Bcl-2.Cell Cycle201817222523910.1080/15384101.2017.1407891 29169284
    [Google Scholar]
  25. MaL. LiW. ZhangY. QiL. ZhaoQ. LiN. LuY. ZhangL. ZhouF. WuY. HeY. YuH. HeY. WeiB. WangH. FLT4/VEGFR3 activates AMPK to coordinate glycometabolic reprogramming with autophagy and inflammasome activation for bacterial elimination.Autophagy20221861385140010.1080/15548627.2021.1985338 34632918
    [Google Scholar]
  26. HuangB. LuY. GuiM. GuanJ. LinM. ZhaoJ. MaoQ. LinJ. Qingjie Fuzheng Granule suppresses lymphangiogenesis in colorectal cancer via the VEGF-C/VEGFR-3 dependent PI3K/AKT pathway.Biomed. Pharmacother.202113711133110.1016/j.biopha.2021.111331 33578235
    [Google Scholar]
  27. KorhonenE.A. MurtomäkiA. JhaS.K. AnisimovA. PinkA. ZhangY. StrittS. LiaqatI. StanczukL. AlderferL. SunZ. KapiainenE. SinghA. SultanI. LanttaA. LeppänenV.M. EklundL. HeY. AugustinH.G. VaahtomeriK. SaharinenP. MäkinenT. AlitaloK. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression.J. Clin. Invest.202213215e15547810.1172/JCI155478 35763346
    [Google Scholar]
  28. YamashitaM. NiisatoM. KawasakiY. KaramanS. RobciucM.R. ShibataY. IshidaY. NishioR. MasudaT. SugaiT. OnoM. TuderR.M. AlitaloK. YamauchiK. VEGF-C/VEGFR-3 signalling in macrophages ameliorates acute lung injury.Eur. Respir. J.2022594210088010.1183/13993003.00880‑2021 34446463
    [Google Scholar]
  29. ChangT.M. ChuP.Y. LinH.Y. HuangK.W. HungW.C. ShanY.S. ChenL.T. TsaiH.J. PTEN regulates invasiveness in pancreatic neuroendocrine tumors through DUSP19-mediated VEGFR3 dephosphorylation.J. Biomed. Sci.20222919210.1186/s12929‑022‑00875‑2 36336681
    [Google Scholar]
  30. Torres-RuizS. TormoE. Garrido-CanoI. LameirinhasA. RojoF. Madoz-GúrpideJ. BurguésO. HernandoC. BermejoB. MartínezM.T. LluchA. CejalvoJ.M. ErolesP. High VEGFR3 expression reduces doxorubicin efficacy in triple-negative breast cancer.Int. J. Mol. Sci.2023244360110.3390/ijms24043601 36835014
    [Google Scholar]
  31. YanZ. HuaH. XuY. SamaranayakeL.P. Potent antifungal activity of pure compounds from traditional chinese medicine extracts against six oral Candida species and the synergy with fluconazole against azole-resistant Candida albicans.Evid. Based Complement. Alternat. Med.201220121610.1155/2012/106583 22454653
    [Google Scholar]
  32. YinM. LiN. ZhangL. LinJ. WangQ. GuL. ZhengH. ZhaoG. LiC. Pseudolaric acid B ameliorates fungal keratitis progression by suppressing inflammation and reducing fungal load.ACS Infect. Dis.2023961196120510.1021/acsinfecdis.2c00536 37141176
    [Google Scholar]
  33. MiaoY. YinQ. PingL. ShengH. ChangJ. LiW. LvS. Pseudolaric acid B triggers ferritinophagy and ferroptosis via upregulating NCOA4 in lung adenocarcinoma cells.J. Cancer Res. Ther.20231961646165310.4103/jcrt.jcrt_806_23 38156933
    [Google Scholar]
  34. YaoG. YangJ. LiQ. ZhangY. QiM. FanS. HayashiT. TashiroS. OnoderaS. IkejimaT. Activation of p53 contributes to pseudolaric acid B-induced senescence in human lung cancer cells in vitro.Acta Pharmacol. Sin.201637791992910.1038/aps.2016.8 27041461
    [Google Scholar]
  35. YinZ. CaiH. WangZ. JiangY. Pseudolaric acid B inhibits proliferation, invasion, and angiogenesis in esophageal squamous cell carcinoma through regulating CD147.Drug Des. Devel. Ther.2020144561457310.2147/DDDT.S269915 33149553
    [Google Scholar]
  36. WangZ. DingY. WangX. LuS. WangC. HeC. WangL. PiaoM. ChiG. LuoY. GeP. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT.Cancer Lett.2018428213310.1016/j.canlet.2018.04.021 29702192
    [Google Scholar]
  37. WongV.K.W. ChiuP. ChungS.S.M. ChowL.M.C. ZhaoY.Z. YangB.B. KoB.C.B. Pseudolaric acid B, a novel microtubule-destabilizing agent that circumvents multidrug resistance phenotype and exhibits antitumor activity in vivo.Clin. Cancer Res.200511166002601110.1158/1078‑0432.CCR‑05‑0209 16115945
    [Google Scholar]
  38. SunQ. LiY. The inhibitory effect of pseudolaric acid B on gastric cancer and multidrug resistance via Cox-2/PKC-α/P-gp pathway.PLoS One201499e10783010.1371/journal.pone.0107830 25250794
    [Google Scholar]
  39. YuH.J. KimJ.H. ChoiS.J. ChoS.D. In vitro antimetastatic potential of pseudolaric acid B in HSC-3 human tongue squamous carcinoma cell line.Arch. Oral Biol.202416210594010.1016/j.archoralbio.2024.105940 38479277
    [Google Scholar]
  40. WuX. ShengH. ZhaoL. JiangM. LouH. MiaoY. ChengN. ZhangW. DingD. LiW. Co-loaded lapatinib/PAB by ferritin nanoparticles eliminated ECM-detached cluster cells via modulating EGFR in triple-negative breast cancer.Cell Death Dis.202213655710.1038/s41419‑022‑05007‑0 35725558
    [Google Scholar]
  41. MaW. YangL. LvY. FuJ. ZhangY. HeL. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.J. Chromatogr. A20171503122010.1016/j.chroma.2017.04.053 28495080
    [Google Scholar]
  42. BeiY. HuangZ. FengX. LiL. WeiM. ZhuY. LiuS. ChenC. YinM. JiangH. XiaoJ. Lymphangiogenesis contributes to exercise-induced physiological cardiac growth.J. Sport Health Sci.202211446647810.1016/j.jshs.2022.02.005 35218948
    [Google Scholar]
  43. KamranvarS.A. RaniB. JohanssonS. Cell Cycle Regulation by Integrin-Mediated Adhesion.Cells20221116252110.3390/cells11162521 36010598
    [Google Scholar]
  44. Pons-TostivintE. BennounaJ. Treatments for non-small-cell lung cancer: The multiple options for precision medicine.Curr. Oncol.202229107106710810.3390/curroncol29100558 36290835
    [Google Scholar]
  45. GaoY. LiuP. ShiR. Anlotinib as a molecular targeted therapy for tumors. (Review)Oncol. Lett.20202021001101410.3892/ol.2020.11685 32724339
    [Google Scholar]
  46. ChenF. TakenakaK. OgawaE. YanagiharaK. OtakeY. WadaH. TanakaF. Flt-4-positive endothelial cell density and its clinical significance in non-small cell lung cancer.Clin. Cancer Res.200410248548855310.1158/1078‑0432.CCR‑04‑0950 15623638
    [Google Scholar]
  47. DonnemT. Al-SaadS. Al-ShibliK. BusundL.T. BremnesR.M. Co-expression of PDGF-B and VEGFR-3 strongly correlates with lymph node metastasis and poor survival in non-small-cell lung cancer.Ann. Oncol.201021222323110.1093/annonc/mdp296 19628565
    [Google Scholar]
  48. MaW. WangC. LiuR. WangN. LvY. DaiB. HeL. Advances in cell membrane chromatography.J. Chromatogr. A2021163946191610.1016/j.chroma.2021.461916 33548663
    [Google Scholar]
  49. ChaiX. GuY. LvL. ChenC. FengF. CaoY. LiuY. ZhuZ. HongZ. ChaiY. ChenX. Screening of immune cell activators from Astragali Radix using a comprehensive two-dimensional NK-92MI cell membrane chromatography/C18 column/time-of-flight mass spectrometry system.J. Pharm. Anal.202212572573210.1016/j.jpha.2022.05.006 36320599
    [Google Scholar]
  50. FuJ. JiaQ. LiangP. WangS. ZhouH. ZhangL. WangH. GaoC. LvY. HanS. HeL. Enhanced stability designs of cell membrane chromatography for screening drug leads.J. Sep. Sci.202245142498250710.1002/jssc.202200200 35561141
    [Google Scholar]
  51. EngelandK. Cell cycle regulation: p53-p21-RB signaling.Cell Death Differ.202229594696010.1038/s41418‑022‑00988‑z 35361964
    [Google Scholar]
  52. SchaferK.A. The cell cycle: A review.Vet. Pathol.199835646147810.1177/030098589803500601 9823588
    [Google Scholar]
  53. QuL. LiuY. DengJ. MaX. FanD. Ginsenoside Rk3 is a novel PI3K/AKT-targeting therapeutics agent that regulates autophagy and apoptosis in hepatocellular carcinoma.J. Pharm. Anal.202313546348210.1016/j.jpha.2023.03.006 37305788
    [Google Scholar]
  54. SwantonC. Cell-cycle targeted therapies.Lancet Oncol.200451273610.1016/S1470‑2045(03)01321‑4 14700606
    [Google Scholar]
  55. BarnabaN. LaRocqueJ.R. Targeting cell cycle regulation via the G2-M checkpoint for synthetic lethality in melanoma.Cell Cycle202120111041105110.1080/15384101.2021.1922806 33966611
    [Google Scholar]
  56. BaoY. WuX. JinX. KanematsuA. NojimaM. KakehiY. YamamotoS. Apigenin inhibits renal cell carcinoma cell proliferation through G2/M phase cell cycle arrest.Oncol. Rep.20224736010.3892/or.2022.8271 35088891
    [Google Scholar]
  57. YaoG. QiM. JiX. FanS. XuL. HayashiT. TashiroS. OnoderaS. IkejimaT. ATM–p53 pathway causes G2/M arrest, but represses apoptosis in pseudolaric acid B-treated HeLa cells.Arch. Biochem. Biophys.2014558516010.1016/j.abb.2014.05.029 24929187
    [Google Scholar]
  58. OhE.T. KimH.G. KimC.H. LeeJ. KimC. LeeJ.S. ChoY. ParkH.J. NQO1 regulates cell cycle progression at the G2/M phase.Theranostics202313387389510.7150/thno.77444 36793872
    [Google Scholar]
  59. EvanG.I. VousdenK.H. Proliferation, cell cycle and apoptosis in cancer.Nature2001411683534234810.1038/35077213 11357141
    [Google Scholar]
  60. PolacheckW.J. ZervantonakisI.K. KammR.D. Tumor cell migration in complex microenvironments.Cell. Mol. Life Sci.20137081335135610.1007/s00018‑012‑1115‑1 22926411
    [Google Scholar]
  61. KarimiE. YuM.W. MaritanS.M. PerusL.J.M. RezanejadM. SorinM. DanknerM. FallahP. DoréS. ZuoD. FisetB. KloostermanD.J. RamsayL. WeiY. LamS. AlsajjanR. WatsonI.R. Roldan UrgoitiG. ParkM. BrandsmaD. SengerD.L. ChanJ.A. AkkariL. PetreccaK. GuiotM.C. SiegelP.M. QuailD.F. WalshL.A. Single-cell spatial immune landscapes of primary and metastatic brain tumours.Nature2023614794855556310.1038/s41586‑022‑05680‑3 36725935
    [Google Scholar]
  62. YinL. LiuX. ShaoX. FengT. XuJ. WangQ. HuaS. The role of exosomes in lung cancer metastasis and clinical applications: an updated review.J. Transl. Med.202119131210.1186/s12967‑021‑02985‑1 34281588
    [Google Scholar]
  63. HendriksL.E. KerrK.M. MenisJ. MokT.S. NestleU. PassaroA. PetersS. PlanchardD. SmitE.F. SolomonB.J. VeronesiG. ReckM. Non-oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up.Ann. Oncol.202334435837610.1016/j.annonc.2022.12.013 36669645
    [Google Scholar]
  64. LiH.J. KeF.Y. LinC.C. LuM.Y. KuoY.H. WangY.P. LiangK.H. LinS.C. ChangY.H. ChenH.Y. YangP.C. WuH.C. ENO1 promotes lung cancer metastasis via HGFR and WNT signaling–driven epithelial-to-mesenchymal transition.Cancer Res.202181154094410910.1158/0008‑5472.CAN‑20‑3543 34145039
    [Google Scholar]
  65. LiY. LiuC. ZhangX. HuangX. LiangS. XingF. TianH. CCT5 induces epithelial-mesenchymal transition to promote gastric cancer lymph node metastasis by activating the Wnt/β-catenin signalling pathway.Br. J. Cancer2022126121684169410.1038/s41416‑022‑01747‑0 35194191
    [Google Scholar]
  66. GoreA.V. SwiftM.R. ChaY.R. LoB. McKinneyM.C. LiW. CastranovaD. DavisA. MukouyamaY. WeinsteinB.M. Rspo1/Wnt signaling promotes angiogenesis via Vegfc/Vegfr3.Development2011138224875488610.1242/dev.068460 22007135
    [Google Scholar]
  67. LiZ. MaoL. YuB. LiuH. ZhangQ. BianZ. ZhangX. LiaoW. SunS. GB7 acetate, a galbulimima alkaloid from Galbulimima belgraveana, possesses anticancer effects in colorectal cancer cells.J. Pharm. Anal.202212233934910.1016/j.jpha.2021.06.007 35582406
    [Google Scholar]
  68. SuJ.L. YangP.C. ShihJ.Y. YangC.Y. WeiL.H. HsiehC.Y. ChouC.H. JengY.M. WangM.Y. ChangK.J. HungM.C. KuoM.L. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells.Cancer Cell20069320922310.1016/j.ccr.2006.02.018 16530705
    [Google Scholar]
  69. GuanL. FanP. WangY. LiuX. LiuR. MaW. BaiH. Lymphangiogenic responses of lymphatic endothelial cells to steady direct-current electric fields.Cell Adhes. Migr.202317111410.1080/19336918.2023.2271260 37889090
    [Google Scholar]
  70. FengY. HuJ. MaJ. FengK. ZhangX. YangS. WangW. ZhangJ. ZhangY. RNAi-mediated silencing of VEGF-C inhibits non-small cell lung cancer progression by simultaneously down-regulating the CXCR4, CCR7, VEGFR-2 and VEGFR-3-dependent axes-induced ERK, p38 and AKT signalling pathways.Eur. J. Cancer201147152353236310.1016/j.ejca.2011.05.006 21680174
    [Google Scholar]
  71. WangJ. GongM. FanX. HuangD. ZhangJ. HuangC. Autophagy-related signaling pathways in non-small cell lung cancer.Mol. Cell. Biochem.2022477238539310.1007/s11010‑021‑04280‑5 34757567
    [Google Scholar]
  72. Yangming-Fan Jianjun-Ge, Pentoxifylline prevents restenosis by inhibiting cell proliferation via p38MAPK pathway in rat vein graft model.Cell Transplant.20223110.1177/09636897221122999 36066039
    [Google Scholar]
  73. ReddyD. KumavathR. GhoshP. BarhD. LanatosideC. Lanatoside C induces G2/M cell cycle arrest and suppresses cancer cell growth by attenuating MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR signaling pathways.Biomolecules201991279210.3390/biom9120792 31783627
    [Google Scholar]
  74. TongJ. YinS. DongY. GuoX. FanL. YeM. HuH. Pseudolaric acid B induces caspase-dependent apoptosis and autophagic cell death in prostate cancer cells.Phytother. Res.201327688589110.1002/ptr.4808 22903438
    [Google Scholar]
  75. LuoD. HeF. LiuJ. DongX. FangM. LiangY. ChenM. GuiX. WangW. ZengL. FanX. WuQ. Pseudolaric acid B suppresses NSCLC progression through the ROS/AMPK/mTOR/autophagy signalling pathway.Biomed. Pharmacother.202417511661410.1016/j.biopha.2024.116614 38670047
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206313028240819103933
Loading
/content/journals/acamc/10.2174/0118715206313028240819103933
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test