Skip to content
2000
Volume 24, Issue 19
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction

The side effects of anti-cancer chemotherapy remain a concern for patients. So, designing alternative medications seems inevitable. In this research, the immunological mechanisms of BCc1 nanomedicine on tumor-bearing mice were investigated.

Methods

BALB/c mice underwent tumor transplantation and were assigned into four groups. Group 1 was orally administered with PBS buffer, Group 2 was orally administered BCc1 10 mg/kg, and Group 3 was orally administered BCc1 40 mg/kg daily, respectively. In addition, a group of mice was administered Cyclophosphamide, 20 mg/kg daily. The weight and tumor volume of mice were evaluated bi-weekly. After 24 days of treatment, cytokines and CTL assay in the spleen cell and the tumor were assessed. Furthermore, the spleen, liver, kidney, lung, gut, and uterine tissue were stained with hematoxylin and eosin. Finally, the tumor samples were stained and analyzed for FOXP3. The survival rate of mice was recorded.

Results

The results confirmed the histological safety of BCc1. This nanomedicine, especially BCc1 10 mg/kg, led to a strong IFN-γ response and suppressed TGF-β cytokine. The frequency of Treg in the tumor tissue of BCc1 nanomedicine groups was decreased. In addition, nanomedicine repressed tumor volume and tumor weight significantly, which was comparable to Cyclophosphamide. These immunologic events increased the survival rate of BCc1-treated groups. The results indicate that BCc1 nanomedicine can suppress tumor growth and thereby increase the survival rate of experimental mice.

Conclusion

It seems a modulation in the tumor microenvironment and polarization toward a Th1 response may be involved. So, BCc1 nanomedicine is efficient for human cancer therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206302153240723053521
2024-12-01
2025-06-17
Loading full text...

Full text loading...

References

  1. CancerI.A.R.o. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020.2020Available from: https://www.iarc.who.int/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/
    [Google Scholar]
  2. HarbeckN. GnantM. Breast cancer.Lancet2017389100741134115010.1016/S0140‑6736(16)31891‑8 27865536
    [Google Scholar]
  3. GreenwaltI. ZazaN. DasS. LiB.D. Precision medicine and targeted therapies in breast cancer.Surg. Oncol. Clin. N. Am.2020291516210.1016/j.soc.2019.08.004 31757313
    [Google Scholar]
  4. MagnusonA. SedrakM.S. GrossC.P. TewW.P. KlepinH.D. WildesT.M. MussH.B. DotanE. FreedmanR.A. O’ConnorT. DaleW. CohenH.J. KatheriaV. ArsenyanA. LeviA. KimH. MohileS. HurriaA. SunC.L. Development and validation of a risk tool for predicting severe toxicity in older adults receiving chemotherapy for early-stage breast cancer.J. Clin. Oncol.202139660861810.1200/JCO.20.02063 33444080
    [Google Scholar]
  5. JingJ. FengR. ZhangX. LiM. GaoJ. Financial toxicity and its associated patient and cancer factors among women with breast cancer: a single-center analysis of low-middle income region in China.Breast Cancer Res. Treat.2020181243544310.1007/s10549‑020‑05632‑3 32306169
    [Google Scholar]
  6. AmjadM.T. ChidharlaA. KasiA. Cancer chemotherapy.In: StatPearls. Treasure Island (FL): StatPearls Publishing2024 33232037
    [Google Scholar]
  7. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotechnol.20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  8. MignaniS. El KazzouliS. BousminaM. MajoralJ.P. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview.Adv. Drug Deliv. Rev.201365101316133010.1016/j.addr.2013.01.001 23415951
    [Google Scholar]
  9. ChenY. LiuR. LiC. SongY. LiuG. HuangQ. YuL. ZhuD. LuC. LuA. LiL. LiuY. Nab-paclitaxel promotes the cancer-immunity cycle as a potential immunomodulator.Am. J. Cancer Res.202111734453460 34354854
    [Google Scholar]
  10. FooteM. Using nanotechnology to improve the characteristics of antineoplastic drugs: Improved characteristics of nab-paclitaxel compared with solvent-based paclitaxel.Biotechnol. Annu. Rev. (Amst)20071334535710.1016/S1387‑2656(07)13012‑X 17875482
    [Google Scholar]
  11. HafiziM. SoleimaniM. NoorianS. Effects of BCc1 nanoparticle and its mixture with doxorubicin on survival of murine 4T1 tumor model.OncoTargets Ther.201918124691470110.2147/OTT.S20044631354301PMC6590627
    [Google Scholar]
  12. KalanakyS. HafiziM. FakharzadehS. BCc1, the novel antineoplastic nanocomplex, showed potent anticancer effects in vitro and in vivo.Drug Des. Devel. Ther.20153010597010.2147/DDDT.S89694267669014699513
    [Google Scholar]
  13. FakharzadehS. ArganiH. DadashzadehS. KalanakyS. Mohammadi TorbatiP. NazaranM.H. BasiriA. BCc1 nanomedicine therapeutic effects in streptozotocin and high-fat diet induced diabetic kidney disease.Diabetes Metab. Syndr. Obes.2020131179118810.2147/DMSO.S24075732368111
    [Google Scholar]
  14. HafiziM. KalanakyS. MoaieryH. A randomized, double-blind, placebo-controlled investigation of BCc1 nanomedicine effect on survival and quality of life in metastatic and non-metastatic gastric cancer patients.J. Nanobiotechnol.20191715210.1186/s12951‑019‑0484‑0309712786458717
    [Google Scholar]
  15. HafiziM. KalanakyS. MoaieryH. An investigation on the effect of BCc1 nanomedicine on gastric cancer patients using EORTC QLQ-STO30 questionnaire.Int. J. Cancer Management.20191211e9419010.5812/ijcm.94190
    [Google Scholar]
  16. FakharzadehS. KalanakyS. HafiziM. GoyaM.M. MasoumiZ. NamakiS. ShakeriN. AbbasiM. MahdaviM. NazaranM.H. The new nano-complex, Hep-c, improves the immunogenicity of the hepatitis B vaccine.Vaccine201331222591259710.1016/j.vaccine.2013.03.03023583463
    [Google Scholar]
  17. KalanakyS. FakharzadehS. KarimiP. HafiziM. JamaatiH. HassanzadehS.M. KhorasaniA. MahdaviM. NazaranM.H. Nanoadjuvants produced by advanced nanochelating technology in the inactivated-severe acute respiratory syndrome coronavirus-2 vaccine formulation: Preliminary results on cytokines and IgG responses.Viral Immunol.202336640942310.1089/vim.2023.000137506342
    [Google Scholar]
  18. AshrafiS. ShapouriR. MahdaviM. Immunological consequences of immunization with tumor lysate vaccine and propranolol as an adjuvant: A study on cytokine profiles in breast tumor microenvironment.Immunol. Lett.2017181637010.1016/j.imlet.2016.11.014 27899275
    [Google Scholar]
  19. AshrafiS. ShapouriR. ShirkhaniA. MahdaviM. Anti-tumor effects of propranolol: Adjuvant activity on a transplanted murine breast cancer model.Biomed. Pharmacother.2018104455110.1016/j.biopha.2018.05.002 29758415
    [Google Scholar]
  20. AhmadiN. JahantighH.R. NoorbazarganH. YazdiM.H. MahdaviM. Glucomannan as a dietary supplement for treatment of breast cancer in a mouse model.Vaccines (Basel)20221010174610.3390/vaccines10101746 36298611
    [Google Scholar]
  21. Available from: http://ethics.research.ac.ir/docs/Ethics-Lab-Animal-Codes.pdf
  22. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  23. RezaeiM. HosseiniS.N. Khavari-NejadR.A. NajafiF. MahdaviM. HBs antigen and mannose loading on the surface of iron oxide nanoparticles in order to immuno-targeting: Fabrication, characterization, cellular and humoral immunoassay.Artif. Cells Nanomed. Biotechnol.20194711543155810.1080/21691401.2019.1577888 31007088
    [Google Scholar]
  24. HafiziM. KalanakyS. FakharzadehS. Safety and efficacy of the combination of BCc1 and Hep-S nanochelating-based medicines in hospitalized COVID-19 adult patients: A randomized, double-blind, placebo-controlled clinical trial.20211910.21203/rs.3.rs‑962691/v1
    [Google Scholar]
  25. JiangT. ZhouC. RenS. Role of IL-2 in cancer immunotherapy.OncoImmunology201656e116346210.1080/2162402X.2016.1163462 27471638
    [Google Scholar]
  26. SunZ. RenZ. YangK. LiuZ. CaoS. DengS. XuL. LiangY. GuoJ. BianY. XuH. ShiJ. WangF. FuY.X. PengH. A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8+ T-cell response and effective tumor control.Nat. Commun.2019101387410.1038/s41467‑019‑11782‑w 31462678
    [Google Scholar]
  27. LiX. LuP. LiB. ZhangW. YangR. ChuY. LuoK. Interleukin 2 and interleukin 10 function synergistically to promote CD8 + T cell cytotoxicity, which is suppressed by regulatory T cells in breast cancer.Int. J. Biochem. Cell Biol.2017871710.1016/j.biocel.2017.03.003 28274688
    [Google Scholar]
  28. PaluskieviczC.M. CaoX. AbdiR. ZhengP. LiuY. BrombergJ.S. T regulatory cells and priming the suppressive tumor microenvironment.Front. Immunol.201910245310.3389/fimmu.2019.02453 31681327
    [Google Scholar]
  29. KoyamaS. NishikawaH. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies.J. Immunother. Cancer202197e00259110.1136/jitc‑2021‑002591
    [Google Scholar]
  30. KwaśniakK. Czarnik-KwaśniakJ. MaziarzA. AebisherD. ZielińskaK. Karczmarek-BorowskaB. TabarkiewiczJ. Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells.Cent. Eur. J. Immunol.201944219020010.5114/ceji.2018.76273 31530989
    [Google Scholar]
  31. HsuH-J. JiangS-J. ChangC-M. LamH.Y.P. Interleukin-10: A double-edged sword in breast cancer.Tzu-Chi Med. J.202133320321110.4103/tcmj.tcmj_162_20 34386356
    [Google Scholar]
  32. Pinzon-CharryA. MaxwellT. LópezJ.A. Dendritic cell dysfunction in cancer: A mechanism for immunosuppression.Immunol. Cell Biol.200583545146110.1111/j.1440‑1711.2005.01371.x 16174093
    [Google Scholar]
  33. LvZ. LiuM. ShenJ. XiangD. MaY. JiY. Association of serum interleukin 10, interleukin 17A and transforming growth factor α levels with human benign and malignant breast diseases.Exp. Ther. Med.20181565475548010.3892/etm.2018.6109 29904427
    [Google Scholar]
  34. MocellinS. MarincolaF.M. YoungH.A. Interleukin-10 and the immune response against cancer: A counterpoint.J. Leukoc. Biol.20057851043105110.1189/jlb.0705358 16204623
    [Google Scholar]
  35. AhmadN. AmmarA. StorrS.J. GreenA.R. RakhaE. EllisI.O. MartinS.G. IL-6 and IL-10 are associated with good prognosis in early stage invasive breast cancer patients.Cancer Immunol. Immunother.201867453754910.1007/s00262‑017‑2106‑8 29256156
    [Google Scholar]
  36. MattiuzR. BrousseC. AmbrosiniM. CancelJ.C. BessouG. MussardJ. SanlavilleA. CauxC. Bendriss-VermareN. Valladeau-GuilemondJ. DalodM. CrozatK. Type 1 conventional dendritic cells and interferons are required for spontaneous CD4 + and CD8 + T‐cell protective responses to breast cancer.Clin. Transl. Immunology2021107e130510.1002/cti2.1305 34277006
    [Google Scholar]
  37. KiyomiA. MakitaM. OzekiT. LiN. SatomuraA. TanakaS. OndaK. SugiyamaK. IwaseT. HiranoT. Characterization and clinical implication of Th1/Th2/Th17 cytokines produced from three-dimensionally cultured tumor tissues resected from breast cancer patients.Transl. Oncol.20158431832610.1016/j.tranon.2015.06.004 26310378
    [Google Scholar]
  38. PuntS. FleurenG.J. KritikouE. LubbertsE. TrimbosJ.B. JordanovaE.S. GorterA. Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer.OncoImmunology201541e98453910.4161/2162402X.2014.984539 25949866
    [Google Scholar]
  39. WelteT. ZhangX.H.F. Interleukin-17 could promote breast cancer progression at several stages of the disease.Mediators Inflamm.201520151610.1155/2015/804347 26783383
    [Google Scholar]
  40. LaprevotteE. CochaudS. du ManoirS. LapierreM. DejouC. PhilippeM. GiustinianiJ. FrewerK.A. SandersA.J. JiangW.G. MichaudH.A. ColomboP.E. BensussanA. AlbericiG. BastidJ. EliaouJ.F. BonnefoyN. The IL-17B-IL-17 receptor B pathway promotes resistance to paclitaxel in breast tumors through activation of the ERK1/2 pathway.Oncotarget201786911336011337210.18632/oncotarget.23008 29371916
    [Google Scholar]
  41. MaM. HuangW. KongD. IL-17 inhibits the accumulation of myeloid-derived suppressor cells in breast cancer via activating STAT3.Int. Immunopharmacol.20185914815610.1016/j.intimp.2018.04.013 29655056
    [Google Scholar]
  42. SongX. WeiC. LiX. The potential role and status of IL-17 family cytokines in breast cancer.Int. Immunopharmacol.20219510754410.1016/j.intimp.2021.107544 33740640
    [Google Scholar]
  43. OshiM. AsaokaM. TokumaruY. YanL. MatsuyamaR. IshikawaT. EndoI. TakabeK. CD8 T cell score as a prognostic biomarker for triple negative breast cancer.Int. J. Mol. Sci.20202118696810.3390/ijms21186968 32971948
    [Google Scholar]
  44. Garcia-HernandezM.L. HamadaH. ReomeJ.B. MisraS.K. TigheM.P. DuttonR.W. Adoptive transfer of tumor-specific Tc17 effector T cells controls the growth of B16 melanoma in mice.J. Immunol.201018484215422710.4049/jimmunol.0902995 20237297
    [Google Scholar]
  45. KuenD.S. KimB.S. ChungY. IL-17-producing cells in tumor immunity: friends or foes?Immune Netw.2020201e610.4110/in.2020.20.e6 32158594
    [Google Scholar]
  46. TerhuneJ. BerkE. CzernieckiB. Dendritic cell-induced Th1 and Th17 cell differentiation for cancer therapy.Vaccines (Basel)20131452754910.3390/vaccines1040527 26344346
    [Google Scholar]
  47. XuX. WangR. SuQ. HuangH. ZhouP. LuanJ. LiuJ. WangJ. ChenX. Expression of Th1- Th2- and Th17-associated cytokines in laryngeal carcinoma.Oncol. Lett.20161231941194810.3892/ol.2016.4854 27588143
    [Google Scholar]
  48. TzaiT.S. ShiauA.L. WuC.L. TsaiY.S. Postoperative administration of interleukin-12 significantly enhances the anti-tumor immune response of MBT-2 bladder cancer bearing mice.Proc. Natl. Sci. Counc. Repub. China B20002425662 10809081
    [Google Scholar]
  49. ImamuraT. HikitaA. InoueY. The roles of TGF-β signaling in carcinogenesis and breast cancer metastasis.Breast Cancer201219211812410.1007/s12282‑011‑0321‑2 22139728
    [Google Scholar]
  50. FengX.H. DerynckR. Specificity and versatility in TGF-β signaling through SMADS.Annu. Rev. Cell Dev. Biol.200521165969310.1146/annurev.cellbio.21.022404.142018 16212511
    [Google Scholar]
  51. KangY. SiegelP.M. ShuW. DrobnjakM. KakonenS.M. Cordón-CardoC. GuiseT.A. MassaguéJ. A multigenic program mediating breast cancer metastasis to bone.Cancer Cell20033653754910.1016/S1535‑6108(03)00132‑6 12842083
    [Google Scholar]
  52. KatsunoY. HanyuA. KandaH. IshikawaY. AkiyamaF. IwaseT. OgataE. EhataS. MiyazonoK. ImamuraT. Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway.Oncogene200827496322633310.1038/onc.2008.232 18663362
    [Google Scholar]
  53. ChenB. YuanY. SunL. ChenJ. YangM. YinY. XuY. MKL1 mediates TGF-β induced RhoJ transcription to promote breast cancer cell migration and invasion.Front. Cell Dev. Biol.2020883210.3389/fcell.2020.00832 32984327
    [Google Scholar]
  54. KrnetaT. GillgrassA. PoznanskiS. ChewM. LeeA.J. KolbM. AshkarA.A. M2-polarized and tumor-associated macrophages alter NK cell phenotype and function in a contact-dependent manner.J. Leukoc. Biol.2017101128529510.1189/jlb.3A1215‑552R 27493241
    [Google Scholar]
  55. XuL. XuW. WenZ. XiongS. In situ prior proliferation of CD4+ CCR6+ regulatory T cells facilitated by TGF-β secreting DCs is crucial for their enrichment and suppression in tumor immunity.PLoS One201165e2028210.1371/journal.pone.0020282 21655250
    [Google Scholar]
  56. SalomonB.L. LeclercM. ToselloJ. RoninE. PiaggioE. CohenJ.L. Tumor necrosis factor α and regulatory T cells in oncoimmunology.Front. Immunol.2018944410.3389/fimmu.2018.00444 29593717
    [Google Scholar]
  57. EgelstonC.A. AvalosC. TuT.Y. RosarioA. WangR. SolomonS. SrinivasanG. NelsonM.S. HuangY. LimM.H. SimonsD.L. HeT.F. YimJ.H. KruperL. MortimerJ. YostS. GuoW. RuelC. FrankelP.H. YuanY. LeeP.P. Resident memory CD8+ T cells within cancer islands mediate survival in breast cancer patients.JCI Insight2019419e13000010.1172/jci.insight.130000 31465302
    [Google Scholar]
  58. SelnøA.T.H. SchlichtnerS. YasinskaI.M. SakhnevychS.S. FiedlerW. WellbrockJ. KlenovaE. PavlovaL. GibbsB.F. DegenM. SchnyderI. AliuN. BergerS.M. Fasler-KanE. SumbayevV.V. Transforming growth factor beta type 1 (TGF-β) and hypoxia-inducible factor 1 (HIF-1) transcription complex as master regulators of the immunosuppressive protein galectin-9 expression in human cancer and embryonic cells.Aging (Albany NY)20201223234782349610.18632/aging.202343 33295886
    [Google Scholar]
  59. ChatterjeeS. ChatterjeeA. JanaS. DeyS. RoyH. DasM.K. AlamJ. AdhikaryA. ChowdhuryA. BiswasA. MannaD. BhattacharyyaA. Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8 T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer.Carcinogenesis2021421384710.1093/carcin/bgaa092 32832992
    [Google Scholar]
  60. StüberT. MonjeziR. WallstabeL. KühnemundtJ. NietzerS.L. DandekarG. WöckelA. EinseleH. WischhusenJ. HudecekM. Inhibition of TGF-β-receptor signaling augments the antitumor function of ROR1-specific CAR T-cells against triple-negative breast cancer.J. Immunother. Cancer202081e00067610.1136/jitc‑2020‑000676 32303620
    [Google Scholar]
  61. YaoY. GuoQ. CaoY. QiuY. TanR. YuZ. ZhouY. LuN. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer.J. Exp. Clin. Cancer Res.201837128210.1186/s13046‑018‑0960‑7 30477536
    [Google Scholar]
  62. HanksB.A. LeeJ.D. MorseM. ClayT.M. LyerlyH.K. BlobeG.C. Role of the type III TGF-b receptor in mediating immunosuppression during breast cancer progression.J. Clin. Oncol.20102815_suppl105771057710.1200/jco.2010.28.15_suppl.10577
    [Google Scholar]
  63. BianchiniG. GianniL. The immune system and response to HER2-targeted treatment in breast cancer.Lancet Oncol.2014152e58e6810.1016/S1470‑2045(13)70477‑7 24480556
    [Google Scholar]
  64. EdechiC. IkeoguN. UzonnaJ. MyalY. Regulation of immunity in breast cancer.Cancers (Basel)2019118108010.3390/cancers11081080 31366131
    [Google Scholar]
  65. LaryionavaK. SklenarovaH. HeußnerP. HaunM.W. StiggelboutA.M. HartmannM. WinklerE.C. Cancer patients’ preferences for quantity or quality of life: German translation and validation of the quality and quantity questionnaire.Oncol. Res. Treat.201437947247810.1159/000366250 25231687
    [Google Scholar]
  66. StiggelboutA.M. De HaesJ.C.J.M. KiebertG.M. KievitJ. LeerJ.W.H. Tradeoffs between quality and quantity of life: Development of the QQ Questionnaire for Cancer Patient Attitudes.Med. Decis. Making199616218419210.1177/0272989X9601600211 8778537
    [Google Scholar]
  67. ShresthaA. MartinC. BurtonM. WaltersS. CollinsK. WyldL. Quality of life versus length of life considerations in cancer patients: A systematic literature review.Psychooncology20192871367138010.1002/pon.5054 30838697
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206302153240723053521
Loading
/content/journals/acamc/10.2174/0118715206302153240723053521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test