Skip to content
2000
Volume 24, Issue 19
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Oncolytic Viruses (OVs) have emerged as a promising treatment option for cancer thanks to their significant research potential and encouraging results. These viruses exert a profound impact on the tumor microenvironment, making them effective against various types of cancer. In contrast, the efficacy of Chimeric antigen receptor (CAR)-T cell therapy in treating solid tumors is relatively low. The combination of OVs and CAR-T cell therapy, however, is a promising area of research. OVs play a crucial role in enhancing the tumor-suppressive microenvironment, which in turn enables CAR-T cells to function efficiently in the context of solid malignancies. This review aims to provide a comprehensive analysis of the benefits and drawbacks of OV therapy and CAR-T cell therapy, with a focus on the potential of combining these two treatment approaches.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206308253240723055019
2024-12-01
2025-06-19
Loading full text...

Full text loading...

References

  1. JafariM. KadkhodazadehM. ShapourabadiM.B. GoradelN.H. ShokrgozarM.A. ArashkiaA. AbdoliS. SharifzadehZ. Immunovirotherapy: The role of antibody based therapeutics combination with oncolytic viruses.Front. Immunol.202213101280610.3389/fimmu.2022.1012806 36311790
    [Google Scholar]
  2. Abd-AzizN. PohC.L. Development of oncolytic viruses for cancer therapy.Transl. Res.20212379812310.1016/j.trsl.2021.04.008 33905949
    [Google Scholar]
  3. JinKT. TaoXH. FanYB. WangSB. Crosstalk between oncolytic viruses and autophagy in cancer therapy.Biomed. Pharm.202113411093210.1016/j.biopha.2020.110932
    [Google Scholar]
  4. HeidbuechelJ.P.W. EngelandC.E. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies.J. Hematol. Oncol.20211416310.1186/s13045‑021‑01075‑5 33863363
    [Google Scholar]
  5. OhC.M. ChonH.J. KimC. Combination immunotherapy using oncolytic virus for the treatment of advanced solid tumors.Int. J. Mol. Sci.20202120774310.3390/ijms21207743 33086754
    [Google Scholar]
  6. BurchettR. WalshS. WanY. BramsonJ.L. A rational relationship: Oncolytic virus vaccines as functional partners for adoptive T cell therapy.Cytokine Growth Factor Rev.20205614915910.1016/j.cytogfr.2020.07.003 32665126
    [Google Scholar]
  7. GhasemiM. AbbasiL. Ghanbari NaeiniL. KokabianP. NamehG.F.N. GivtajN. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy.Front. Immunol.20231395007910.3389/fimmu.2022.950079 36703982
    [Google Scholar]
  8. LeberM.F. NeaultS. JirovecE. BarkleyR. SaidA. BellJ.C. UngerechtsG. Engineering and combining oncolytic measles virus for cancer therapy.Cytokine Growth Factor Rev.202056394810.1016/j.cytogfr.2020.07.005 32718830
    [Google Scholar]
  9. ChenT. DingX. LiaoQ. GaoN. ChenY. ZhaoC. ZhangX. XuJ. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy.J. Immunother. Cancer202191e00164710.1136/jitc‑2020‑001647 33504576
    [Google Scholar]
  10. MartinN.T. BellJ.C. Oncolytic virus combination therapy: Killing one bird with two stones.Mol. Ther.20182661414142210.1016/j.ymthe.2018.04.001
    [Google Scholar]
  11. HuP.Y. FanX.M. ZhangY.N. WangS.B. WanW.J. PanH.Y. MouX.Z. The limiting factors of oncolytic virus immunotherapy and the approaches to overcome them.Appl. Microbiol. Biotechnol.2020104198231824210.1007/s00253‑020‑10802‑w 32816087
    [Google Scholar]
  12. MacedoN. MillerD.M. HaqR. KaufmanH.L. Clinical landscape of oncolytic virus research in 2020.J. Immunother. Cancer202082e00148610.1136/jitc‑2020‑001486 33046622
    [Google Scholar]
  13. ShiT. SongX. WangY. LiuF. WeiJ. Combining oncolytic viruses with cancer immunotherapy: Establishing a new generation of cancer treatment.Front. Immunol.20201168310.3389/fimmu.2020.00683 32411132
    [Google Scholar]
  14. YooS.Y. NarayanasamyB. HeoJ. Viruses as nanomedicine for cancer.Int. J. Nanomed.2016114835484710.2147/IJN.S116447 27703350
    [Google Scholar]
  15. OgawaM. YuW.G. UmeharaK. IwasakiM. WijesuriyaR. TsujimuraT. KuboT. FujiwaraH. HamaokaT. Multiple roles of interferon-gamma in the mediation of interleukin 12-induced tumor regression.Cancer Res.1998581124262432 9622084
    [Google Scholar]
  16. KnappJ.P. KakishJ.E. BridleB.W. SpeicherD.J. Tumor temperature: Friend or foe of virus-based cancer immunotherapy.Biomedicines2022108202410.3390/biomedicines10082024 36009571
    [Google Scholar]
  17. ZhuZ. McGrayA.J.R. JiangW. LuB. KalinskiP. GuoZ.S. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways.Mol. Cancer202221119610.1186/s12943‑022‑01664‑z 36221123
    [Google Scholar]
  18. WatanabeD. GoshimaF. Oncolytic virotherapy by HSV.Adv. Exp. Med. Biol.20181045638410.1007/978‑981‑10‑7230‑7_4 29896663
    [Google Scholar]
  19. ArabA. BehravanN. RazaznA. BaratiN. MosaffaF. NicastroJ. SlavcevR. BehravanJ. The viral approach to breast cancer immunotherapy.J. Cell. Physiol.201923421257126710.1002/jcp.27150 30146692
    [Google Scholar]
  20. BreitbachC.J. LichtyB.D. BellJ.C. Oncolytic viruses: Therapeutics with an identity crisis.EBioMedicine20169313610.1016/j.ebiom.2016.06.046 27407036
    [Google Scholar]
  21. FeolaS. RussoS. YlösmäkiE. CerulloV. Oncolytic ImmunoViroTherapy: A long history of crosstalk between viruses and immune system for cancer treatment.Pharmacol. Ther.202223610810310.1016/j.pharmthera.2021.108103 34954301
    [Google Scholar]
  22. NguyenH.M. Guz-MontgomeryK. SahaD. Oncolytic virus encoding a master pro-inflammatory cytokine interleukin 12 in cancer immunotherapy.Cells20209240010.3390/cells9020400 32050597
    [Google Scholar]
  23. BommareddyP.K. PatelA. HossainS. KaufmanH.L. Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma.Am. J. Clin. Dermatol.201718111510.1007/s40257‑016‑0238‑9 27988837
    [Google Scholar]
  24. ShenZ. LiuX. FanG. NaJ. LiuQ. LinF. ZhangZ. ZhongL. Improving the therapeutic efficacy of oncolytic viruses for cancer: targeting macrophages.J. Transl. Med.202321184210.1186/s12967‑023‑04709‑z 37993941
    [Google Scholar]
  25. HastieE. GrdzelishviliV.Z. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer.J. Gen. Virol.201293122529254510.1099/vir.0.046672‑0 23052398
    [Google Scholar]
  26. LinD. ShenY. LiangT. Oncolytic virotherapy: basic principles, recent advances and future directions.Signal Transduct. Target. Ther.20238115610.1038/s41392‑023‑01407‑6 37041165
    [Google Scholar]
  27. EvginL. KottkeT. TonneJ. ThompsonJ. HuffA.L. van VlotenJ. MooreM. MichaelJ. DriscollC. PulidoJ. SwansonE. KennedyR. CoffeyM. LoghmaniH. Sanchez-PerezL. OlivierG. HarringtonK. PandhaH. MelcherA. DiazR.M. VileR.G. Oncolytic virus–mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice.Sci. Transl. Med.202214640eabn223110.1126/scitranslmed.abn2231 35417192
    [Google Scholar]
  28. van der WoudeL.L. GorrisM.A.J. HalilovicA. FigdorC.G. de VriesI.J.M. Migrating into the Tumor: a Roadmap for T Cells.Trends Cancer201731179780810.1016/j.trecan.2017.09.006 29120755
    [Google Scholar]
  29. SpragueL. LeeJ. HutzenB. WangP.Y. ChenC.Y. ConnerJ. BraidwoodL. CassadyK. CripeT. High mobility group box 1 influences HSV1716 spread and acts as an adjuvant to chemotherapy.Viruses201810313210.3390/v10030132 29543735
    [Google Scholar]
  30. KryskoD.V. GargA.D. KaczmarekA. KryskoO. AgostinisP. VandenabeeleP. Immunogenic cell death and DAMPs in cancer therapy.Nat. Rev. Cancer2012121286087510.1038/nrc3380 23151605
    [Google Scholar]
  31. EvginL. VileR.G. Parking CAR T cells in tumours: Oncolytic viruses as valets or vandals?Cancers (Basel)2021135110610.3390/cancers13051106 33807553
    [Google Scholar]
  32. KimY. ClementsD. StereaA. JangH. GujarS. LeeP. Dendritic cells in oncolytic virus-based anti-cancer therapy.Viruses20157126506652510.3390/v7122953 26690204
    [Google Scholar]
  33. TianY. XieD. YangL. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy.Signal Transduct. Target. Ther.20227111710.1038/s41392‑022‑00951‑x 35387984
    [Google Scholar]
  34. BurkeS. ShergoldA. ElderM.J. WhitworthJ. ChengX. JinH. WilkinsonR.W. HarperJ. CarrollD.K. Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro.Cancer Immunol. Immunother.20206961015102710.1007/s00262‑020‑02495‑x 32088771
    [Google Scholar]
  35. ReddyR. YanS.C. HasanpourS.Z. Hosseini-SiyanakiM.R. PoeJ. Perez-VegaC. ChioccaE.A. Lucke-WoldB. Oncolytic viral therapy: A review and promising future directions.J. Neurosurg.2024140231932710.3171/2023.6.JNS23243 37877961
    [Google Scholar]
  36. EnowJ.A. SheikhH.I. RahmanM.M. Tumor tropism of DNA viruses for oncolytic virotherapy.Viruses20231511226210.3390/v15112262 38005938
    [Google Scholar]
  37. BommareddyP.K. ShettigarM. KaufmanH.L. Integrating oncolytic viruses in combination cancer immunotherapy.Nat. Rev. Immunol.201818849851310.1038/s41577‑018‑0014‑6 29743717
    [Google Scholar]
  38. CookM. ChauhanA. Clinical application of oncolytic viruses: A systematic review.Int. J. Mol. Sci.20202120750510.3390/ijms21207505 33053757
    [Google Scholar]
  39. AjinaA. MaherJ. Prospects for combined use of oncolytic viruses and CAR T-cells.J. Immunother. Cancer2017519010.1186/s40425‑017‑0294‑6 29157300
    [Google Scholar]
  40. SuW. QiuW. LiS.J. WangS. XieJ. YangQ.C. XuJ. ZhangJ. XuZ. SunZ.J. A dual‐responsive STAT3 inhibitor nanoprodrug combined with oncolytic virus elicits synergistic antitumor immune responses by igniting pyroptosis.Adv. Mater.20233511220937910.1002/adma.202209379 36545949
    [Google Scholar]
  41. YlösmäkiE. CerulloV. Design and application of oncolytic viruses for cancer immunotherapy.Curr. Opin. Biotechnol.202065253610.1016/j.copbio.2019.11.016 31874424
    [Google Scholar]
  42. ChenL. ZuoM. ZhouQ. WangY. Oncolytic virotherapy in cancer treatment: Challenges and optimization prospects.Front. Immunol.202314130889010.3389/fimmu.2023.1308890 38169820
    [Google Scholar]
  43. GroeneveldtC. van den EndeJ. van MontfoortN. Preexisting immunity: Barrier or bridge to effective oncolytic virus therapy?Cytokine Growth Factor Rev.20237011210.1016/j.cytogfr.2023.01.002 36732155
    [Google Scholar]
  44. RoulstoneV. MansfieldD. HarrisR.J. TwiggerK. WhiteC. de BonoJ. SpicerJ. KaragiannisS.N. VileR. PandhaH. MelcherA. HarringtonK. Antiviral antibody responses to systemic administration of an oncolytic RNA virus: the impact of standard concomitant anticancer chemotherapies.J. Immunother. Cancer202197e00267310.1136/jitc‑2021‑002673 34301814
    [Google Scholar]
  45. RivadeneiraD.B. DePeauxK. WangY. KulkarniA. TabibT. MenkA.V. SampathP. LafyatisR. FerrisR.L. SarkarS.N. ThorneS.H. DelgoffeG.M. Oncolytic viruses engineered to enforce leptin expression reprogram tumor-infiltrating T cell metabolism and promote tumor clearance.Immunity2019513548560.e410.1016/j.immuni.2019.07.003 31471106
    [Google Scholar]
  46. Martinez-QuintanillaJ. HeD. WakimotoH. AlemanyR. ShahK. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy.Mol. Ther.201523110811810.1038/mt.2014.204
    [Google Scholar]
  47. AndtbackaR.H.I. KaufmanH.L. CollichioF. AmatrudaT. SenzerN. ChesneyJ. DelmanK.A. SpitlerL.E. PuzanovI. AgarwalaS.S. MilhemM. CranmerL. CurtiB. LewisK. RossM. GuthrieT. LinetteG.P. DanielsG.A. HarringtonK. MiddletonM.R. MillerW.H.Jr ZagerJ.S. YeY. YaoB. LiA. DolemanS. VanderWaldeA. GansertJ. CoffinR.S. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma.J. Clin. Oncol.201533252780278810.1200/JCO.2014.58.3377 26014293
    [Google Scholar]
  48. TodoT. ItoH. InoY. OhtsuH. OtaY. ShibaharaJ. TanakaM. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: A phase 2 trial.Nat. Med.20222881630163910.1038/s41591‑022‑01897‑x 35864254
    [Google Scholar]
  49. RezaeiR. EsmaeiliG.G.H. FarzanehpourM. DorostkarR. RanjbarR. BolandianM. MirzaeiN.M. GhorbaniA.A. Combination therapy with CAR T cells and oncolytic viruses: A new era in cancer immunotherapy.Cancer Gene Ther.202229664766010.1038/s41417‑021‑00359‑9 34158626
    [Google Scholar]
  50. GagelmannN. RieckenK. WolschkeC. BergerC. AyukF.A. FehseB. KrögerN. Development of CAR-T cell therapies for multiple myeloma.Leukemia20203492317233210.1038/s41375‑020‑0930‑x 32572190
    [Google Scholar]
  51. TudorT. BinderZ.A. O’RourkeD.M. CAR T Cells.Neurosurg. Clin. N. Am.202132224926310.1016/j.nec.2020.12.005 33781506
    [Google Scholar]
  52. MartinezM. MoonE.K. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment.Front. Immunol.20191012810.3389/fimmu.2019.00128 30804938
    [Google Scholar]
  53. WatanabeN. McKennaM.K. Rosewell ShawA. SuzukiM. Clinical CAR-T cell and oncolytic virotherapy for cancer treatment.Mol. Ther.202129250552010.1016/j.ymthe.2020.10.023
    [Google Scholar]
  54. HonikelM.M. OlejniczakS.H. Co-stimulatory receptor signaling in CAR-T cells.Biomolecules2022129130310.3390/biom12091303 36139142
    [Google Scholar]
  55. AdachiK. KanoY. NagaiT. OkuyamaN. SakodaY. TamadaK. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor.Nat. Biotechnol.201836434635110.1038/nbt.4086 29505028
    [Google Scholar]
  56. DagherO. KingT.R. WellhausenN. PoseyA.D. Combination therapy for solid tumors: Taking a classic CAR on new adventures.Cancer Cell202038562162310.1016/j.ccell.2020.10.003 33064993
    [Google Scholar]
  57. AbramsonJ.S. Anti-CD19 CAR T-cell therapy for B-cell non-hodgkin lymphoma.Transfus. Med. Rev.2020341293310.1016/j.tmrv.2019.08.003 31677848
    [Google Scholar]
  58. McKennaM.K. EnglischA. BrennerB. SmithT. HoyosV. SuzukiM. BrennerM.K. Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity.Mol. Ther.202129518081820
    [Google Scholar]
  59. YangC. HuaN. XieS. WuY. ZhuL. WangS. TongX. Oncolytic viruses as a promising therapeutic strategy for hematological malignancies.Biomed. Pharm.202113911157310.1016/j.biopha.2021.111573
    [Google Scholar]
  60. MaS. LiX. WangX. ChengL. LiZ. ZhangC. YeZ. QianQ. Current progress in CAR-T cell therapy for solid tumors.Int. J. Biol. Sci.201915122548256010.7150/ijbs.34213 31754328
    [Google Scholar]
  61. WangL. YaoR. ZhangL. FanC. MaL. LiuJ. Chimeric antigen receptor T cell therapy and other therapeutics for malignancies: Combination and opportunity.Int. Immunopharmacol.20197049850310.1016/j.intimp.2019.01.010 30875561
    [Google Scholar]
  62. UkrainskayaV.M. MusatovaO.E. VolkovD.V. OsipovaD.S. PershinD.S. MoysenovichA.M. EvtushenkoE.G. KulakovskayaE.A. MaksimovE.G. ZhangH. RubtsovY.P. MaschanM.A. StepanovA.V. GabibovA.G. CAR-tropic extracellular vesicles carry tumor-associated antigens and modulate CAR T cell functionality.Sci. Rep.202313146310.1038/s41598‑023‑27604‑5 36627334
    [Google Scholar]
  63. HeC. Mansilla-SotoJ. KhanraN. HamiehM. BustosV. PaquetteA.J. GarciaA.A. ShoreD.M. RiceW.J. KhelashviliG. SadelainM. MeyersonJ.R. CD19 CAR antigen engagement mechanisms and affinity tuning.Sci. Immunol.2023881eadf142610.1126/sciimmunol.adf1426 36867678
    [Google Scholar]
  64. CalderonH. MamonkinM. GuedanS. Analysis of CAR-mediated tonic signaling.Methods Mol. Biol.2020208622323610.1007/978‑1‑0716‑0146‑4_17 31707680
    [Google Scholar]
  65. ZhaoZ. ChenY. FranciscoN.M. ZhangY. WuM. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges.Acta Pharm. Sin. B20188453955110.1016/j.apsb.2018.03.001 30109179
    [Google Scholar]
  66. CastellettiL. YeoD. van ZandwijkN. RaskoJ.E.J. Anti-Mesothelin CAR T cell therapy for malignant mesothelioma.Biomark. Res.2021911110.1186/s40364‑021‑00264‑1 33588928
    [Google Scholar]
  67. ZhangC. LiuJ. ZhongJ.F. ZhangX. Engineering CAR-T cells.Biomark. Res.2017512210.1186/s40364‑017‑0102‑y 28652918
    [Google Scholar]
  68. TangX.Y. DingY.S. ZhouT. WangX. YangY. Tumor-tagging by oncolytic viruses: A novel strategy for CAR-T therapy against solid tumors.Cancer Lett.2021503697410.1016/j.canlet.2021.01.014 33476650
    [Google Scholar]
  69. PorterC.E. RosewellS.A. JungY. YipT. CastroP.D. SandulacheV.C. SikoraA. GottschalkS. IttmanM.M. BrennerM.K. Oncolytic adenovirus armed with BiTE, cytokine, and checkpoint inhibitor enables CAR T cells to control the growth of heterogeneous tumors.Mol. Ther. J. American Soci. Gene Ther.20202851251126210.1016/j.ymthe.2020.02.016
    [Google Scholar]
  70. RosewellS.A. PorterC.E. WatanabeN. TanoueK. SikoraA. GottschalkS. BrennerM.K. SuzukiM. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer.Mol. Ther.201725112440245110.1016/j.ymthe.2017.09.010
    [Google Scholar]
  71. HongM. ClubbJ.D. ChenY.Y. Engineering CAR-T cells for next-generation cancer therapy.Cancer Cell202038447348810.1016/j.ccell.2020.07.005 32735779
    [Google Scholar]
  72. LiuM. López de Juan AbadB. ChengK. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies.Adv. Drug Deliv. Rev.202117350451910.1016/j.addr.2021.03.021 33831476
    [Google Scholar]
  73. DongX. RenJ. AmoozgarZ. LeeS. DattaM. RobergeS. DuquetteM. FukumuraD. JainR.K. Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice.J. Immunother. Cancer2023113e00558310.1136/jitc‑2022‑005583 36898734
    [Google Scholar]
  74. NorbergS.M. HinrichsC.S. Engineered T cell therapy for viral and non-viral epithelial cancers.Cancer Cell2023411586910.1016/j.ccell.2022.10.016 36400016
    [Google Scholar]
  75. MajznerR.G. MackallC.L. Tumor antigen escape from CAR T-cell therapy.Cancer Discov.20188101219122610.1158/2159‑8290.CD‑18‑0442 30135176
    [Google Scholar]
  76. DepilS. DuchateauP. GruppS.A. MuftiG. PoirotL. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges.Nat. Rev. Drug Discov.202019318519910.1038/s41573‑019‑0051‑2 31900462
    [Google Scholar]
  77. ChasovV. ZmievskayaE. GaneevaI. GilyazovaE. DavletshinD. KhaliulinM. KabweE. DavidyukY.N. ValiullinaA. BulatovE. Immunotherapy strategy for systemic autoimmune diseases: Betting on CAR-T cells and antibodies.Antibodies (Basel, Switzerland)20241311010.3390/antib13010010 38390871
    [Google Scholar]
  78. KhanA.N. ChowdhuryA. KarulkarA. JaiswalA.K. BanikA. AsijaS. PurwarR. Immunogenicity of CAR-T cell therapeutics: Evidence, mechanism and mitigation.Front. Immunol.20221388654610.3389/fimmu.2022.886546 35677038
    [Google Scholar]
  79. ChenY.J. AbilaB. Mostafa KamelY. CAR-T: What Is Next?Cancers (Basel)202315366310.3390/cancers15030663 36765623
    [Google Scholar]
  80. ArjomandnejadM. KopecA.L. KeelerA.M. CAR-T regulatory (CAR-Treg) cells: Engineering and applications.Biomedicines202210228710.3390/biomedicines10020287 35203496
    [Google Scholar]
  81. DelgoffeG.M. XuC. MackallC.L. GreenM.R. GottschalkS. SpeiserD.E. ZehnD. BeavisP.A. The role of exhaustion in CAR T cell therapy.Cancer Cell202139788588810.1016/j.ccell.2021.06.012 34256903
    [Google Scholar]
  82. BaoC. GaoQ. LiL.L. HanL. ZhangB. DingY. SongZ. ZhangR. ZhangJ. WuX.H. The Application of Nanobody in CAR-T Therapy.Biomolecules202111223810.3390/biom11020238 33567640
    [Google Scholar]
  83. ShethV.S. GauthierJ. Taming the beast: CRS and ICANS after CAR T-cell therapy for ALL.Bone Marrow Transplant.202156355256610.1038/s41409‑020‑01134‑4 33230186
    [Google Scholar]
  84. HaydenP.J. RoddieC. BaderP. BasakG.W. BonigH. BoniniC. ChabannonC. CiceriF. CorbaciogluS. EllardR. Sanchez-GuijoF. JägerU. HildebrandtM. HudecekM. KerstenM.J. KöhlU. KuballJ. MielkeS. MohtyM. MurrayJ. NaglerA. ReesJ. RioufolC. SaccardiR. SnowdenJ.A. StyczynskiJ. SubkleweM. ThieblemontC. ToppM. IspizuaÁ.U. ChenD. VrhovacR. GribbenJ.G. KrögerN. EinseleH. Yakoub-AghaI. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA).Ann. Oncol.202233325927510.1016/j.annonc.2021.12.003 34923107
    [Google Scholar]
  85. SchubertM.L. SchmittM. WangL. RamosC.A. JordanK. Müller-TidowC. DregerP. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy.Ann. Oncol.2021321344810.1016/j.annonc.2020.10.478 33098993
    [Google Scholar]
  86. AhmadA. CAR-T Cell Therapy.Int. J. Mol. Sci.20202112430310.3390/ijms21124303 32560285
    [Google Scholar]
  87. CoppolaC. HopkinsB. HuhnS. DuZ. HuangZ. KellyW.J. Investigation of the Impact from IL-2, IL-7, and IL-15 on the Growth and Signaling of Activated CD4+ T Cells.Int. J. Mol. Sci.20202121781410.3390/ijms21217814 33105566
    [Google Scholar]
  88. XuJ. WangY. ShiJ. LiuJ. LiQ. ChenL. Combination therapy: A feasibility strategy for CAR T cell therapy in the treatment of solid tumors. (Review)Oncol. Lett.20181622063207010.3892/ol.2018.8946 30008901
    [Google Scholar]
  89. BerkeyS.E. ThorneS.H. BartlettD.L. Oncolytic virotherapy and the tumor microenvironment.Adv. Exp. Med. Biol.2017103615717210.1007/978‑3‑319‑67577‑0_11 29275471
    [Google Scholar]
  90. WentheJ. NaseriS. Labani-MotlaghA. EnbladG. WikströmK.I. ErikssonE. LoskogA. LövgrenT. BoostingCAR. T-cell responses in lymphoma by simultaneous targeting of CD40/4-1BB using oncolytic viral gene therapy.Cancer Immunol. Immunother.202170102851286510.1007/s00262‑021‑02895‑7 33666760
    [Google Scholar]
  91. NishioN. DottiG. Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors.OncoImmunology201542e98809810.4161/21505594.2014.988098 25949885
    [Google Scholar]
  92. ZhangZ. WangT. WangX. ZhangY. SongS. MaC. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies.Pharmacol. Res.202217510603610.1016/j.phrs.2021.106036 34920118
    [Google Scholar]
  93. McGrathK. DottiG. Combining oncolytic viruses with chimeric antigen receptor T cell therapy.Hum. Gene Ther.2021323-415015710.1089/hum.2020.278 33349123
    [Google Scholar]
  94. WeiJ. GuoY. WangY. WuZ. BoJ. ZhangB. ZhuJ. HanW. Clinical development of CAR T cell therapy in China: 2020 update.Cell. Mol. Immunol.202118479280410.1038/s41423‑020‑00555‑x 32999455
    [Google Scholar]
  95. EvginL. HuffA.L. WongthidaP. ThompsonJ. KottkeT. TonneJ. SchuelkeM. AyasoufiK. DriscollC.B. ShimK.G. ReynoldsP. MonieD.D. JohnsonA.J. CoffeyM. YoungS.L. ArcherG. SampsonJ. PulidoJ. PerezL.S. VileR. Oncolytic virus-derived type I interferon restricts CAR T cell therapy.Nat. Commun.2020111318710.1038/s41467‑020‑17011‑z 32581235
    [Google Scholar]
  96. ChaliseL. KatoA. OhnoM. MaedaS. YamamichiA. KuramitsuS. ShiinaS. TakahashiH. OzoneS. YamaguchiJ. KatoY. RockenbachY. NatsumeA. TodoT. Efficacy of cancer-specific anti-podoplanin CAR-T cells and oncolytic herpes virus G47Δ combination therapy against glioblastoma.Mol. Ther. Oncolytics20222626527410.1016/j.omto.2022.07.006 35991754
    [Google Scholar]
  97. BuijsP.R.A. VerhagenJ.H.E. van EijckC.H.J. van den HoogenB.G. Oncolytic viruses: From bench to bedside with a focus on safety.Hum. Vaccin. Immunother.20151171573158410.1080/21645515.2015.1037058 25996182
    [Google Scholar]
  98. KellyE. RussellS.J. History of oncolytic viruses: Genesis to genetic engineering.Mol. Ther.200715465165910.1038/sj.mt.6300108
    [Google Scholar]
  99. GalanisE. Therapeutic potential of oncolytic measles virus: promises and challenges.Clin. Pharmacol. Ther.201088562062510.1038/clpt.2010.211 20881957
    [Google Scholar]
  100. FangL. TianW. ZhangC. WangX. LiW. ZhangQ. ZhangY. ZhengJ. Oncolytic adenovirus-mediated expression of CCL5 and IL12 facilitates CA9-targeting CAR-T therapy against renal cell carcinoma.Pharmacol. Res.202318910670110.1016/j.phrs.2023.106701 36796464
    [Google Scholar]
  101. LiuW. WangX. FengX. YuJ. LiuX. JiaX. ZhangH. WuH. WangC. WuJ. YuB. YuX. Oncolytic adenovirus-mediated intratumoral expression of TRAIL and CD40L enhances immunotherapy by modulating the tumor microenvironment in immunocompetent mouse models.Cancer Lett.202253521566110.1016/j.canlet.2022.215661 35325845
    [Google Scholar]
  102. SamsonA. WestE.J. CarmichaelJ. ScottK.J. TurnbullS. KuszlewiczB. DaveR.V. Peckham-CooperA. TidswellE. KingstonJ. JohnpulleM. da SilvaB. JenningsV.A. BendjamaK. StojkowitzN. LuskyM. PrasadK.R. ToogoodG.J. AuerR. BellJ. TwelvesC.J. HarringtonK.J. VileR.G. PandhaH. Errington-MaisF. RalphC. NewtonD.J. AnthoneyA. MelcherA.A. CollinsonF. Neoadjuvant intravenous oncolytic vaccinia virus therapy promotes anticancer immunity in patients.Cancer Immunol. Res.202210674575610.1158/2326‑6066.CIR‑21‑0171 35439304
    [Google Scholar]
  103. AdvaniS.J. BuckelL. ChenN.G. ScanderbegD.J. GeissingerU. ZhangQ. YuY.A. AguilarR.J. MundtA.J. SzalayA.A. Preferential replication of systemically delivered oncolytic vaccinia virus in focally irradiated glioma xenografts.Clin. Cancer Res.20121892579259010.1158/1078‑0432.CCR‑11‑2394 22379115
    [Google Scholar]
  104. ChengX. WangW. XuQ. HarperJ. CarrollD. GalinskiM.S. SuzichJ. JinH. Genetic modification of oncolytic newcastle disease virus for cancer therapy.J. Virol.201690115343535210.1128/JVI.00136‑16 27009956
    [Google Scholar]
  105. XuQ. RangaswamyU.S. WangW. RobbinsS.H. HarperJ. JinH. ChengX. Evaluation of Newcastle disease virus mediated dendritic cell activation and cross‐priming tumor‐specific immune responses ex vivo.Int. J. Cancer2020146253154110.1002/ijc.32694 31584185
    [Google Scholar]
  106. TanoueK. Rosewell ShawA. WatanabeN. PorterC. RanaB. GottschalkS. BrennerM. SuzukiM. Armed oncolytic adenovirus–expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors.Cancer Res.20177782040205110.1158/0008‑5472.CAN‑16‑1577 28235763
    [Google Scholar]
  107. YangY. XuW. PengD. WangH. ZhangX. WangH. XiaoF. ZhuY. JiY. GulukotaK. HelsethD.L.Jr MangoldK.A. SullivanM. KaulK. WangE. PrabhakarB.S. LiJ. WuX. WangL. SethP. An oncolytic adenovirus targeting transforming growth factor β inhibits protumorigenic signals and produces immune activation: A novel approach to enhance anti-PD-1 and anti-CTLA-4 therapy.Hum. Gene Ther.20193091117113210.1089/hum.2019.059 31126191
    [Google Scholar]
  108. NishioN. DiaconuI. LiuH. CerulloV. CaruanaI. HoyosV. Bouchier-HayesL. SavoldoB. DottiG. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors.Cancer Res.201474185195520510.1158/0008‑5472.CAN‑14‑0697 25060519
    [Google Scholar]
  109. WatanabeK. LuoY. DaT. GuedanS. RuellaM. SchollerJ. KeithB. YoungR.M. EngelsB. SorsaS. SiuralaM. HavunenR. TähtinenS. HemminkiA. JuneC.H. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses.JCI Insight201837e9957310.1172/jci.insight.99573 29618658
    [Google Scholar]
  110. WingA. FajardoC.A. PoseyA.D.Jr ShawC. DaT. YoungR.M. AlemanyR. JuneC.H. GuedanS. Improving CART-cell therapy of solid tumors with oncolytic virus–driven production of a bispecific T-cell engager.Cancer Immunol. Res.20186560561610.1158/2326‑6066.CIR‑17‑0314 29588319
    [Google Scholar]
  111. ParkA.K. FongY. KimS.I. YangJ. MuradJ.P. LuJ. JeangB. ChangW.C. ChenN.G. ThomasS.H. FormanS.J. PricemanS.J. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci. Transl. Med.202012559eaaz186310.1126/scitranslmed.aaz186332878978
    [Google Scholar]
  112. ZhangA.Q. HostetlerA. ChenL.E. MukkamalaV. AbrahamW. PadillaL.T. WolffA.N. MaiorinoL. BacklundC.M. AungA. MeloM. LiN. WuS. IrvineD.J. Universal redirection of CAR T cells against solid tumours via membrane-inserted ligands for the CAR.Nat. Biomed. Eng.2023791113112810.1038/s41551‑023‑01048‑8 37291434
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206308253240723055019
Loading
/content/journals/acamc/10.2174/0118715206308253240723055019
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test