Skip to content
2000
image of Anti-inflammatory and Anti-proliferative Role of Essential Oil of Leaves of Cleistocalyx operculatus (Roxb.) Merr. & Perry

Abstract

Background

Phytochemicals have long remained an essential component of the traditional medicine system worldwide. Advancement of research in phytochemicals has led to the identification of novel constituents and metabolites from phytochemicals, performing various vital functions ranging from antimicrobial properties to anticarcinogenic roles.This plant is traditionally used by local people to manage inflammation. In this study, we aim to extract and chemically profile the essential oil from the leaves of (Roxb.) Merr. & Perry and study of the anti-inflammatory and anti-proliferative role of essential oil.

Methods

The hydro distillation method was used for the extraction of essential oil, and the GC-MS was applied for the chemical profiling. The percentage of cell viability was calculated using a crystal violet assay, colony formation assay was performed using Semiquantitative PCR, Propodium iodite staining was used for cell death assay, and Western blotting was used to determine antibodies and proteins. Schrodinger 2015 software was used for molecular docking.

Results

Myrcene, a monoterpene, constitutes 56% of the oil and could be attributed to its anti-inflammatory potential. Treatment of LPS-challenged mouse macrophages RAW264.7 cells with essential oil resulted in a decline in the inflammatory markers, such as IL-1β, TNFα, iNOS, COX-2, and NFκB. Further, essential oil inhibited cancer PC-3, A431, A549, and MCF-7 cell lines at concentrations lower than normal PNT2 and HEK-293 cell lines. This decline in proliferative potential can be attributed to a decline in anti-apoptotic proteins, such as procaspase 3 and PARP, an increase in CKIs, such as p21, and a decline in the Akt signaling responsible for survival.

Conclusion

The essential oil of the plant may be a potential lead for anti-inflammatory and anti-proliferative function.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206304193240715043704
2024-11-20
2025-01-18
Loading full text...

Full text loading...

References

  1. De medicina - Aulus Cornelius Celsus - Google Books. https://books.google.co.in/books?hl=en&lr=&id=e2UvAAAAYAAJ&oi=fnd&pg=PR3&ots=l9AiZQ-x5w&sig=PgBCvwAzUritzXIYDnru4uNasm4&redir_esc=y#v=onepage&q&f=false (accessed Jun. 16, 2024).
  2. Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell 2010 140 6 771 776 10.1016/j.cell.2010.03.006 20303867
    [Google Scholar]
  3. Chen L. Deng H. Cui H. Fang J. Zuo Z. Deng J. Li Y. Wang X. Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018 9 6 7204 7218 10.18632/oncotarget.23208 29467962
    [Google Scholar]
  4. Chertov O. Yang D. Howard O.M.Z. Oppenheim J.J. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol. Rev. 2000 177 1 68 78 10.1034/j.1600‑065X.2000.17702.x 11138786
    [Google Scholar]
  5. Ozinsky A. Underhill D.M. Fontenot J.D. Hajjar A.M. Smith K.D. Wilson C.B. Schroeder L. Aderem A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA 2000 97 25 13766 13771 10.1073/pnas.250476497 11095740
    [Google Scholar]
  6. Seong S.Y. Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 2004 46 2004 4 6 469 478 10.1038/nri1372
    [Google Scholar]
  7. Nathan C. Points of control in inflammation. Nature 2002 420 6917 846 852 10.1038/nature01320 12490957
    [Google Scholar]
  8. Serhan C. N. Savill J. Resolution of inflammation: the beginning programs the end Nat. Immunol. 2005 612 2005 6 12 1191 1197 10.1038/ni1276
    [Google Scholar]
  9. Ferrero-Miliani L. Nielsen O. H. Andersen P. S. Girardin S. E. Ferrero-Miliani L. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1b generation Clin Exp Immunol. 2007 147 2 227 35 10.1111/j.1365‑2249.2006.03261.x
    [Google Scholar]
  10. Fleit H.B. Goyal A. Jialal I. Chronic Inflammation. Encycl. Dis. Mech. 2014 Sep 300 314 10.1016/B978‑0‑12‑386456‑7.01808‑6
    [Google Scholar]
  11. Morgan M.J. Liu Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011 21 1 103 115 10.1038/cr.2010.178 21187859
    [Google Scholar]
  12. Libby P. Inflammatory Mechanisms: The Molecular Basis of Inflammation and Disease. 2007 140 146 10.1301/nr.2007.dec.S140
    [Google Scholar]
  13. Saleh H.A. Yousef M.H. Abdelnaser A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front. Immunol. 2021 12 606069 10.3389/fimmu.2021.606069 33868227
    [Google Scholar]
  14. Anwar S. Protective Effects of Ginger Extract against Glycation and Oxidative Stress-Induced Health Complications: An In Vitro Study Processes 2020 8 4 468 10.3390/pr8040468
    [Google Scholar]
  15. Anwar S. Almatroudi A. Alsahli M.A. Khan M.A. Khan A.A. Rahmani A.H. Natural Products: Implication in Cancer Prevention and Treatment through Modulating Various Biological Activities. Anticancer. Agents Med. Chem. 2020 20 17 2025 2040 10.2174/1871520620666200705220307 32628596
    [Google Scholar]
  16. Jalilian E. Abolhasani-Zadeh F. Afgar A. Samoudi A. Zeinalynezhad H. Langroudi L. Neutralizing tumor-related inflammation and reprogramming of cancer-associated fibroblasts by Curcumin in breast cancer therapy Sci Rep. 2023 13 1 20770 10.1038/s41598‑023‑48073‑w
    [Google Scholar]
  17. Ko J.H. Sethi G. Um J.Y. Shanmugam M.K. Arfuso F. Kumar A.P. Bishayee A. Ahn K.S. The Role of Resveratrol in Cancer Therapy. Int. J. Mol. Sci. 2017 18 12 2589 10.3390/ijms18122589 29194365
    [Google Scholar]
  18. Dung N.T. Bajpai V.K. Yoon J.I. Kang S.C. Anti-inflammatory effects of essential oil isolated from the buds of Cleistocalyx operculatus (Roxb.) Merr and Perry. Food Chem. Toxicol. 2009 47 2 449 453 10.1016/j.fct.2008.11.033 19095037
    [Google Scholar]
  19. Dao T.T. Tung B.T. Nguyen P.H. Thuong P.T. Yoo S.S. Kim E.H. Kim S.K. Oh W.K. C-methylated flavonoids from cleistocalyx operculatus and their inhibitory effects on novel influenza a (H1N1) neuraminidase. J. Nat. Prod. 2010 73 10 1636 1642 10.1021/np1002753 20886838
    [Google Scholar]
  20. Tran P.L. Kim O. Tran H.N.K. Tran M.H. Min B.S. Hwangbo C. Lee J.H. Protective effects of extract of Cleistocalyx operculatus flower buds and its isolated major constituent against LPS-induced endotoxic shock by activating the Nrf2/HO-1 pathway. Food Chem. Toxicol. 2019 129 125 137 10.1016/j.fct.2019.04.035 31029725
    [Google Scholar]
  21. Pham G.N. Nguyen T.T.T. Nguyen-Ngoc H. Ethnopharmacology, Phytochemistry, and Pharmacology of Syzygium nervosum. Evid. Based Complement. Alternat. Med. 2020 2020 1 14 10.1155/2020/8263670 33204293
    [Google Scholar]
  22. Cleistocalyx operculatus - ATP - Asia Tree Preservation, Ltd. https://www.atptree.com/en/glossary/cleistocalyx-operculatus/ (accessed Jun. 16, 2024).
  23. Chukiatsiri S. Wongsrangsap N. Ratanabunyong S. Choowongkomon K. In Vitro Evaluation of Antidiabetic Potential of Cleistocalyx nervosum var. paniala Fruit Extract. Plants 2022 12 1 112 10.3390/plants12010112 36616242
    [Google Scholar]
  24. Malla B. Gauchan D. P. Chhetri R. B. Journal of Medicinal Plants Research Medico-ethnobotanical investigations in Parbat district of Western Nepal J Ethnopharmacol. 2015 13 165 103 17 10.5897/JMPR2013.5228
    [Google Scholar]
  25. DeFilipps R.A. Krupnick G.A. The medicinal plants of Myanmar. PhytoKeys 2018 102 102 1 341 10.3897/phytokeys.102.24380 30002597
    [Google Scholar]
  26. Min B.S. Thu C.V. Dat N.T. Dang N.H. Jang H.S. Hung T.M. Antioxidative flavonoids from Cleistocalyx operculatus buds. Chem. Pharm. Bull. (Tokyo) 2008 56 12 1725 1728 10.1248/cpb.56.1725 19043247
    [Google Scholar]
  27. Giang P. M. Phuong V. T. T. Chinh T. T. T. A New Taraxastane-type Triterpenoid from Cleistocalyx operculatus. Nat Prod Commun. 2016 11 1 29 30 10.1177/1934578X1601100110
    [Google Scholar]
  28. Dosoky N.S. Pokharel S.K. Setzer W.N. William Setzer C.N. “Leaf essential oil composition, antimicrobial and cytotoxic activities of Cleistocalyx operculatus from Hetauda, Nepal,” ~ 34 ~ Am. J. Essent. Oils Nat. Prod. 2015 3 1 34 37
    [Google Scholar]
  29. Dung N.T. Kim J.M. Kang S.C. Chemical composition, antimicrobial and antioxidant activities of the essential oil and the ethanol extract of Cleistocalyx operculatus (Roxb.) Merr and Perry buds. Food Chem. Toxicol. 2008 46 12 3632 3639 10.1016/j.fct.2008.09.013 18838098
    [Google Scholar]
  30. Dosoky N. S. Pokharel S. K. Setzer W. Leaf essential oil composition, antimicrobial and cytotoxic activities of Cleistocalyx operculatus from Hetauda, Nepal Am. J. Essent. Oils Nat. Prod. 2015 2 5 34 37
    [Google Scholar]
  31. Surendran S. Qassadi F. Surendran G. Lilley D. Heinrich M. Myrcene—What Are the Potential Health Benefits of This Flavouring and Aroma Agent? Front. Nutr. 2021 8 699666 10.3389/fnut.2021.699666 34350208
    [Google Scholar]
  32. Mustaparta H. Stranden M. Olfaction and Learning in Moths and Weevils Living on Angiosperm and Gymnosperm Hosts. Recent Adv. Phytochem. 2005 39 C 269 292 10.1016/S0079‑9920(05)80011‑5
    [Google Scholar]
  33. Park K.C. McNeill M.R. Suckling D.M. Unelius C.R. Olfactory Receptor Neurons for Plant Volatiles and Pheromone Compounds in the Lucerne Weevil, Sitona discoideus. J. Chem. Ecol. 2020 46 3 250 263 10.1007/s10886‑020‑01160‑y 32048118
    [Google Scholar]
  34. Kang Z.W. Liu F.H. Zhang Z.F. Tian H.G. Liu T.X. Volatile β-ocimene can regulate developmental performance of peach aphid myzus persicae through activation of defense responses in chinese cabbage brassica pekinensis. Front. Plant Sci. 2018 9 708 10.3389/fpls.2018.00708 29892310
    [Google Scholar]
  35. Russo E.B. Marcu J. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. Adv. Pharmacol. 2017 80 67 134 10.1016/bs.apha.2017.03.004 28826544
    [Google Scholar]
  36. Zhuang W.E. Gong Z.B. Zhuang W-E. Gong Z-B. Gel Permeation Chromatography Purification and Gas Chromatography-Mass Spectrometry Detection of Multi-Pesticide Residues in Traditional Chinese Medicine. Am. J. Anal. Chem. 2012 3 1 24 32 10.4236/ajac.2012.31005
    [Google Scholar]
  37. Feoktistova M. Geserick P. Leverkus M. Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harb. Protoc. 2016 2016 4 pdb.prot087379 10.1101/pdb.prot087379 27037069
    [Google Scholar]
  38. Franken N. A. P. Rodermond H. M. Stap J. Haveman J. van Bree C. Clonogenic assay of cells in vitro Nat. Protoc. 2006 1 5 2315 2319 10.1038/nprot.2006.339
    [Google Scholar]
  39. Schindelin J. Fiji: an open-source platform for biological-image analysis Nat. Methods 2012 9 7 676 682 10.1038/nmeth.2019
    [Google Scholar]
  40. Wang F. Semi-Quantitative RT-PCR: An Effective Method to Explore the Regulation of Gene Transcription Level Affected by Environmental Pollutants. Methods Mol. Biol. 2021 2326 95 103 10.1007/978‑1‑0716‑1514‑0_7 34097263
    [Google Scholar]
  41. Kasibhatla S. Amarante-Mendes G.P. Finucane D. Brunner T. Bossy-Wetzel E. Green D.R. “Propidium Iodide (PI) Uptake Assay to Detect Apoptosis,” Cold Spring Harb. Protoc., vol. 2006 2006
    [Google Scholar]
  42. Flow cytometry with PI staining | abcam. https://www.abcam.com/en-in/technical-resources/protocols/flow-cytometry-with-propidium-iodide-staining (accessed Jun. 18, 2024).
  43. Pozarowski P. Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol. Biol. 2004 281 301 312 10.1385/1‑59259‑811‑0:301 15220539
    [Google Scholar]
  44. Yang P-C. Mahmood T. Western blot: Technique, theory, and trouble shooting. N. Am. J. Med. Sci. 2012 4 9 429 434 10.4103/1947‑2714.100998 23050259
    [Google Scholar]
  45. Okeke E. Enechi O. Nkwoemeka N. Membrane Stabilization, Albumin Denaturation, Protease Inhibition and Antioxidant Activity as Possible Mechanisms for the Anti-Inflammatory Effects of Flavonoid-Rich Extract of Peltophorum pterocarpum (FREPP) Stem-Bark Proc. 1st Int. E-Conference Antioxidants Heal. Dis. Feb. 2020, p. 8618. 10.3390/CAHD2020‑08618
    [Google Scholar]
  46. Williams L.A.D. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Med. J. 2008 57 4 327 331
    [Google Scholar]
  47. Hussain S. Guruvayoorappan C. Komal K.P. Ennaganti S. H. S Molecular docking analysis of doronine derivatives with human COX-2. Bioinformation 2020 16 6 483 492 10.6026/97320630016483 32884214
    [Google Scholar]
  48. Forli S. Huey R. Pique M. E. Sanner M. F. Goodsell D. S. Olson A. J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite Nat. Protoc. 2016 11 5 905 919 10.1038/nprot.2016.051
    [Google Scholar]
  49. Uzzaman M. Shawon J. Siddique Z.A. Molecular docking, dynamics simulation and ADMET prediction of Acetaminophen and its modified derivatives based on quantum calculations. SN Applied Sciences 2019 1 11 1437 10.1007/s42452‑019‑1442‑z
    [Google Scholar]
  50. Dũng N.X. Van Luu H. Khôi T.T. Leclercq P.A. GC and GC/MS Analysis of the Leaf Oil of Cleistocalyx operculatus Roxb. Merr. et Perry (Syn. Eugenia operculata Roxb.; Syzygicum mervosum DC.) 2011 6 6 661 662 10.1080/10412905.1994.9699366
    [Google Scholar]
  51. Helming L. Inflammation: cell recruitment versus local proliferation. Curr. Biol. 2011 21 14 R548 R550 10.1016/j.cub.2011.06.005 21783034
    [Google Scholar]
  52. Guha M. Mackman N. LPS induction of gene expression in human monocytes. Cell. Signal. 2001 13 2 85 94 10.1016/S0898‑6568(00)00149‑2 11257452
    [Google Scholar]
  53. Viola A. Munari F. Sánchez-Rodríguez R. Scolaro T. Castegna A. The metabolic signature of macrophage responses. Front. Immunol. 2019 10 JULY 1462 10.3389/fimmu.2019.01462 31333642
    [Google Scholar]
  54. Mosser D.M. Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008 8 12 958 969 10.1038/nri2448 19029990
    [Google Scholar]
  55. Müller J.M. Ziegler-Heitbrock H.W.L. Baeuerle P.A. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiology 1993 187 3-5 233 256 10.1016/S0171‑2985(11)80342‑6 8330898
    [Google Scholar]
  56. Zhao H. Inflammation and tumor progression: signaling pathways and targeted intervention Signal Transduct. Target. Ther. 2021 6 1 1 46 10.1038/s41392‑021‑00658‑5
    [Google Scholar]
  57. O’Callaghan D.S. O’Donnell D. O’Connell F. O’Byrne K.J. The role of inflammation in the pathogenesis of non-small cell lung cancer. J. Thorac. Oncol. 2010 5 12 2024 2036 10.1097/JTO.0b013e3181f387e4 21155185
    [Google Scholar]
  58. Ullah A. Shehzadi S. Ullah N. Nawaz T. Iqbal H. Aziz T. Hypoxia A Typical Target in Human Lung Cancer Therapy. Curr. Protein Pept. Sci. 2024 25 5 376 385 10.2174/0113892037252820231114045234 38031268
    [Google Scholar]
  59. Su Q. Wang J. Wu Q. Ullah A. Ghauri M.A. Sarwar A. Chen L. Liu F. Zhang Y. Sanguinarine combats hypoxia-induced activation of EphB4 and HIF-1α pathways in breast cancer. Phytomedicine 2021 84 153503 10.1016/j.phymed.2021.153503 33636580
    [Google Scholar]
  60. Ullah A. Aziz T. Ullah N. Nawaz T. Molecular Mechanisms of Sanguinarine in Cancer Prevention and Treatment. Anticancer. Agents Med. Chem. 2023 23 7 765 778 10.2174/1871520622666220831124321 36045531
    [Google Scholar]
  61. Nasr F.A. Noman O.M. Al-zharani M. Ahmed M.Z. Qamar W. Rizwan Ahamad S. Al Mishari A.A. Aleissa M.S. Rudayni H.A. Alqahtani A.S. Chemical profile, antiproliferative and pro-apoptotic activities of essential oils of Pulicaria arabica against A549 lung cancer cell line. Saudi Pharm. J. 2023 31 12 101879 10.1016/j.jsps.2023.101879 38192283
    [Google Scholar]
  62. Jia X.B. Zhang Q. Xu L. Yao W.J. Wei L. Lotus leaf flavonoids induce apoptosis of human lung cancer A549 cells through the ROS/p38 MAPK pathway. Biol. Res. 2021 54 1 7 10.1186/s40659‑021‑00330‑w 33653412
    [Google Scholar]
  63. Taylor C.A. Zheng Q. Liu Z. Thompson J.E. Role of p38 and JNK MAPK signaling pathways and tumor suppressor p53 on induction of apoptosis in response to Ad-eIF5A1 in A549 lung cancer cells. Mol. Cancer 2013 12 1 35 10.1186/1476‑4598‑12‑35 23638878
    [Google Scholar]
  64. Chang F. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy Leuk. 2003 17 3 590 603 10.1038/sj.leu.2402824
    [Google Scholar]
  65. Bai X. Tang J. Myrcene Exhibits Antitumor Activity Against Lung Cancer Cells by Inducing Oxidative Stress and Apoptosis Mechanisms. Nat. Prod. Commun. 2020 15 9 1934578X2096118 10.1177/1934578X20961189
    [Google Scholar]
  66. Whitaker R.H. Cook J.G. Stress Relief Techniques: p38 MAPK Determines the Balance of Cell Cycle and Apoptosis Pathways. Biomolecules 2021 11 10 1444 10.3390/biom11101444 34680077
    [Google Scholar]
  67. Niedernhofer L.J. Robbins P.D. Signaling mechanisms involved in the response to genotoxic stress and regulating lifespan. Int. J. Biochem. Cell Biol. 2008 40 2 176 180 10.1016/j.biocel.2007.10.008 18023240
    [Google Scholar]
  68. Song G. Ouyang G. Bao S. The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 2005 9 1 59 71 10.1111/j.1582‑4934.2005.tb00337.x 15784165
    [Google Scholar]
  69. Kagawa S. Fujiwara T. Hizuta A. Yasuda T. Zhang W.W. Roth J.A. Tanaka N. p53 expression overcomes p21WAF1/CIP1-mediated G1 arrest and induces apoptosis in human cancer cells. Oncogene 1997 15 16 1903 1909 10.1038/sj.onc.1201362 9365236
    [Google Scholar]
  70. Sousa V.I. Parente J.F. Marques J.F. Forte M.A. Tavares C.J. Microencapsulation of Essential Oils: A Review. Polymers (Basel) 2022 14 9 1730 10.3390/polym14091730 35566899
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206304193240715043704
Loading
/content/journals/acamc/10.2174/0118715206304193240715043704
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test