Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Gastric cancer in advanced stages lacked effective treatment options. claudin18.2 (CLDN18.2) is a membrane protein that is crucial for close junctions in the differentiated epithelial cells of the gastric mucosa, playing a vital role in barrier function, and can be hardly recognized by immune cells due to its polarity pattern. As the polarity of gastric tumor cells changes, claudin18.2 is exposed on the cell surface, resulting in immune system recognition, and making it an ideal target. In this review, we summarized the expression regulation mechanism of claudin18.2 both in normal cells and malignant tumor cells. Besides, we analyzed the available clinical results and potential areas for future research on claudin18.2-positive gastric cancer and claudin18.2-targeting therapy. In conclusion, claudin18.2 is an ideal target for gastric cancer treatment, and the claudin18.2-targeting therapy has changed the treatment pattern of gastric cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206329892240927081033
2024-10-03
2025-02-28
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. SmythE.C. NilssonM. GrabschH.I. van GriekenN.C.T. LordickF. Gastric cancer.Lancet20203961025163564810.1016/S0140‑6736(20)31288‑532861308
    [Google Scholar]
  3. ChiaN.Y. TanP. Molecular classification of gastric cancer.Ann. Oncol.201627576376910.1093/annonc/mdw04026861606
    [Google Scholar]
  4. ShitaraK. Van CutsemE. BangY.J. FuchsC. WyrwiczL. LeeK.W. KudabaI. GarridoM. ChungH.C. LeeJ. CastroH.R. MansoorW. BraghiroliM.I. KarasevaN. CaglevicC. VillanuevaL. GoekkurtE. SatakeH. EnzingerP. AlsinaM. BensonA. ChaoJ. KoA.H. WainbergZ.A. KherU. ShahS. KangS.P. TaberneroJ. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer.JAMA Oncol.20206101571158010.1001/jamaoncol.2020.337032880601
    [Google Scholar]
  5. KangY.K. ChenL.T. RyuM.H. OhD.Y. OhS.C. ChungH.C. LeeK.W. OmoriT. ShitaraK. SakuramotoS. ChungI.J. YamaguchiK. KatoK. SymS.J. KadowakiS. TsujiK. ChenJ.S. BaiL.Y. OhS.Y. ChodaY. YasuiH. TakeuchiK. HirashimaY. HagiharaS. BokuN. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial.Lancet Oncol.202223223424710.1016/S1470‑2045(21)00692‑635030335
    [Google Scholar]
  6. MishimaS. ShitaraK. Trastuzumab deruxtecan for the treatment of HER2-positive gastric cancer.Expert Opin. Biol. Ther.202121782583010.1080/14712598.2021.191200733798395
    [Google Scholar]
  7. HuangR. LiX. HeY. ZhuW. GaoL. LiuY. GaoL. WenQ. ZhongJ.F. ZhangC. ZhangX. Recent advances in CAR-T cell engineering.J. Hematol. Oncol.20201318610.1186/s13045‑020‑00910‑532616000
    [Google Scholar]
  8. Del BufaloF. BecilliM. RosignoliC. De AngelisB. AlgeriM. HanssensL. GunettiM. IacovelliS. Li PiraG. GirolamiE. LeoneG. LazzaroS. BertainaV. SinibaldiM. Di CeccaS. IaffaldanoL. KünkeleA. BoccieriE. Del BaldoG. PagliaraD. MerliP. CartaR. QuintarelliC. LocatelliF. Allogeneic, donor-derived, second-generation, CD19-directed CAR-T cells for the treatment of pediatric relapsed/refractory BCP-ALL.Blood2023142214615737172203
    [Google Scholar]
  9. TsukitaS. TanakaH. TamuraA. The claudins: From tight junctions to biological systems.Trends Biochem. Sci.201944214115210.1016/j.tibs.2018.09.00830665499
    [Google Scholar]
  10. GünzelD. YuA.S.L. Claudins and the modulation of tight junction permeability.Physiol. Rev.201393252556910.1152/physrev.00019.201223589827
    [Google Scholar]
  11. RöckenC. Predictive biomarkers in gastric cancer.J. Cancer Res. Clin. Oncol.2023149146748110.1007/s00432‑022‑04408‑036260159
    [Google Scholar]
  12. KoziełM.J. ZiajaM. Piastowska-CiesielskaA.W. Intestinal barrier, claudins and mycotoxinsToxins (Basel)2021131175810.3390/toxins13110758
    [Google Scholar]
  13. BaekJ.H. ParkD.J. KimG.Y. CheonJ. KangB.W. ChaH.J. KimJ.G. Clinical implications of claudin18.2 expression in patients with gastric cancer.Anticancer Res.201939126973697910.21873/anticanres.1391931810969
    [Google Scholar]
  14. DaiJ. ZhengH. JinJ. ChengY. XuH. Claudin18.2 expression and clinicopathological features in cytology effusion specimens from gastric adenocarcinoma: A comparative study with tissue specimens.Cancer Cytopathol.2023131636537210.1002/cncy.2268836793190
    [Google Scholar]
  15. RohdeC. YamaguchiR. MukhinaS. SahinU. ItohK. TüreciÖ. Comparison of Claudin 18.2 expression in primary tumors and lymph node metastases in japanese patients with gastric adenocarcinoma.Jpn. J. Clin. Oncol.201949987087610.1093/jjco/hyz06831087075
    [Google Scholar]
  16. StricklandM.R. LanderE.M. GibsonM.K. IlsonD.H. AjaniJ.A. KlempnerS.J. Gastroesophageal adenocarcinomas with defective mismatch repair: current knowledge and clinical management.J. Natl. Compr. Canc. Netw.2024223e23710310.6004/jnccn.2023.710338503041
    [Google Scholar]
  17. UngureanuB.S. LungulescuC.V. PiriciD. Turcu-StiolicaA. GheoneaD.I. SacerdotianuV.M. LiliacI.M. MoraruE. BendeF. SaftoiuA. Clinicopathologic relevance of claudin 18.2 expression in gastric cancer: A meta-analysis.Front. Oncol.20211164387210.3389/fonc.2021.64387233747967
    [Google Scholar]
  18. SahinU. TüreciÖ. ManikhasG. LordickF. RusynA. VynnychenkoI. DudovA. BazinI. BondarenkoI. MelicharB. DhaeneK. WiechenK. HuberC. MaurusD. ArozullahA. ParkJ.W. SchulerM. Al-BatranS.E. FAST: a randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma.Ann. Oncol.202132560961910.1016/j.annonc.2021.02.00533610734
    [Google Scholar]
  19. ZhuG. FolettiD. LiuX. DingS. Melton WittJ. Hasa-MorenoA. RickertM. HolzC. AschenbrennerL. YangA.H. KraynovE. EveringW. ObertL. LeeC. SaiT. MistryT. LindquistK.C. Van BlarcomT. StropP. Chaparro-RiggersJ. LiuS.H. Targeting CLDN18.2 by CD3 bispecific and adc modalities for the treatments of gastric and pancreatic cancer.Sci. Rep.201991842010.1038/s41598‑019‑44874‑031182754
    [Google Scholar]
  20. XuG. QianN. LiuY. LiH. YangC. WangJ. WangF. ChenL. BaiG. XuQ. PanX. GaoX. Preclinical characterization of a Fab-like CD3/CLDN18.2 XFab® bispecific antibody against solid tumors.Immunobiology2022227615228310.1016/j.imbio.2022.15228336198215
    [Google Scholar]
  21. ItoT. KojimaT. YamaguchiH. KyunoD. KimuraY. ImamuraM. TakasawaA. MurataM. TanakaS. HirataK. SawadaN. Transcriptional regulation of claudin‐18 via specific protein kinase C signaling pathways and modification of DNA methylation in human pancreatic cancer cells.J. Cell. Biochem.201111271761177210.1002/jcb.2309521381080
    [Google Scholar]
  22. YanoK. ImaedaT. NiimiT. Transcriptional activation of the human claudin-18 gene promoter through two AP-1 motifs in PMA-stimulated MKN45 gastric cancer cells.Am. J. Physiol. Gastrointest. Liver Physiol.20082941G336G34310.1152/ajpgi.00328.200718032479
    [Google Scholar]
  23. HanX. LiB. BaoJ. WuZ. ChenC. NiJ. ShenJ. SongP. PengQ. WanR. WangX. WuJ. HuG. Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation.Front. Immunol.20221396863910.3389/fimmu.2022.96863936059491
    [Google Scholar]
  24. MitsunoY. YoshidaH. MaedaS. OguraK. HirataY. KawabeT. ShiratoriY. OmataM. Helicobacter pylori induced transactivation of SRE and AP-1 through the ERK signalling pathway in gastric cancer cells.Gut2001491182210.1136/gut.49.1.1811413105
    [Google Scholar]
  25. TanakaM. ShibaharaJ. FukushimaN. ShinozakiA. UmedaM. IshikawaS. KokudoN. FukayamaM. Claudin-18 is an early-stage marker of pancreatic carcinogenesis.J. Histochem. Cytochem.2011591094295210.1369/002215541142056921832145
    [Google Scholar]
  26. SahinU. KoslowskiM. DhaeneK. UsenerD. BrandenburgG. SeitzG. HuberC. TüreciÖ. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development.Clin. Cancer Res.200814237624763410.1158/1078‑0432.CCR‑08‑154719047087
    [Google Scholar]
  27. CoxK.E. LiuS. HoffmanR.M. BatraS.K. DhawanP. BouvetM. The expression of the claudin family of proteins in colorectal cancer.Biomolecules202414327210.3390/biom1403027238540693
    [Google Scholar]
  28. SunR. SunY. WuC. LiuY. ZhouM. DongY. DuG. LuoH. ShiB. JiangH. LiZ. CXCR4-modified CAR-T cells suppresses MDSCs recruitment via STAT3/NF-κB/SDF-1α axis to enhance efficacy against pancreatic cancer.Mol. Ther.202331113193320910.1016/j.ymthe.2023.09.01037735875
    [Google Scholar]
  29. HagenS.J. AngL.H. ZhengY. KarahanS.N. WuJ. WangY.E. CaronT.J. GadA.P. MuthupalaniS. FoxJ.G. Loss of tight junction protein claudin 18 promotes progressive neoplasia development in mouse stomach.Gastroenterology201815561852186710.1053/j.gastro.2018.08.04130195448
    [Google Scholar]
  30. QiC. ChongX. ZhouT. MaM. GongJ. ZhangM. LiJ. XiaoJ. PengX. LiuZ. LiZ. ShenL. ZhangX. Clinicopathological significance and immunotherapeutic outcome of claudin 18.2 expression in advanced gastric cancer: A retrospective study.Chin. J. Cancer Res.2024361788910.21147/j.issn.1000‑9604.2024.01.0838455365
    [Google Scholar]
  31. AdamsG.P. WeinerL.M. Monoclonal antibody therapy of cancer.Nat. Biotechnol.20052391147115710.1038/nbt113716151408
    [Google Scholar]
  32. GriloA.L. MantalarisA. The increasingly human and profitable monoclonal antibody market.Trends Biotechnol.201937191610.1016/j.tibtech.2018.05.01429945725
    [Google Scholar]
  33. ZinnS. Vazquez-LombardiR. ZimmermannC. SapraP. JermutusL. ChristD. Advances in antibody-based therapy in oncology.Nat. Cancer20234216518010.1038/s43018‑023‑00516‑z36806801
    [Google Scholar]
  34. ChungH.C. BangY.J. S FuchsC. QinS.K. SatohT. ShitaraK. TaberneroJ. Van CutsemE. AlsinaM. CaoZ.A. LuJ. BhagiaP. ShihC.S. JanjigianY.Y. First-line pembrolizumab/placebo plus trastuzumab and chemotherapy in HER2-positive advanced gastric cancer: KEYNOTE-811.Future Oncol.202117549150110.2217/fon‑2020‑073733167735
    [Google Scholar]
  35. WilkeH. MuroK. Van CutsemE. OhS.C. BodokyG. ShimadaY. HironakaS. SugimotoN. LipatovO. KimT.Y. CunninghamD. RougierP. KomatsuY. AjaniJ. EmigM. CarlesiR. FerryD. ChandrawansaK. SchwartzJ.D. OhtsuA. RAINBOW Study Group Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial.Lancet Oncol.201415111224123510.1016/S1470‑2045(14)70420‑625240821
    [Google Scholar]
  36. KyunoD. TakasawaA. TakasawaK. OnoY. AoyamaT. MagaraK. NakamoriY. TakemasaI. OsanaiM. Claudin-18.2 as a therapeutic target in cancers: cumulative findings from basic research and clinical trials.Tissue Barriers2022101196708010.1080/21688370.2021.196708034486479
    [Google Scholar]
  37. ShahM.A. ShitaraK. AjaniJ.A. BangY.J. EnzingerP. IlsonD. LordickF. Van CutsemE. GallegoP.J. HuangJ. ShenL. OhS.C. SunpaweravongP. SooH.H.F. TurkH.M. OhM. ParkJ.W. MoranD. BhattacharyaP. ArozullahA. XuR.H. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: The randomized, phase 3 GLOW trial.Nat. Med.20232982133214110.1038/s41591‑023‑02465‑737524953
    [Google Scholar]
  38. ShitaraK. LordickF. BangY.J. EnzingerP. IlsonD. ShahM.A. Van CutsemE. XuR.H. AprileG. XuJ. ChaoJ. Pazo-CidR. KangY.K. YangJ. MoranD. BhattacharyaP. ArozullahA. ParkJ. W. OhM. AjaniJ.A. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial.Lancet20234011038916551668
    [Google Scholar]
  39. LiuJ. JiangD. LeiQ. ZhuQ. ZhuH. Case Report: A rare case of recurrent ascites after anti-Claudin18.2 antibody therapy for metastatic gastric cancer while responding sustainingly.Front. Oncol.202313121166810.3389/fonc.2023.121166837681021
    [Google Scholar]
  40. ChenY. HouX. LiD. DingJ. LiuJ. WangZ. TengF. LiH. ZhangF. GuY. YuS. QianX. YangZ. ZhuH. Development of a CLDN18.2-targeting immuno-PET probe for non-invasive imaging in gastrointestinal tumors.J. Pharm. Anal.202313436737510.1016/j.jpha.2023.02.01137181294
    [Google Scholar]
  41. ShimH. One target, different effects: A comparison of distinct therapeutic antibodies against the same targets.Exp. Mol. Med.2011431053954910.3858/emm.2011.43.10.06321811090
    [Google Scholar]
  42. FriedrichM.J. NeriP. KehlN. MichelJ. SteigerS. KilianM. LeblayN. MaityR. SankowskiR. LeeH. BarakatE. AhnS. WeinholdN. RippeK. BunseL. PlattenM. GoldschmidtH. Müller-TidowC. RaabM.S. BahlisN.J. The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients.Cancer Cell2023414711725.e610.1016/j.ccell.2023.02.00836898378
    [Google Scholar]
  43. ZhouS. LiuM. RenF. MengX. YuJ. The landscape of bispecific T cell engager in cancer treatment.Biomark. Res.2021913810.1186/s40364‑021‑00294‑934039409
    [Google Scholar]
  44. WeiJ. YangY. WangG. LiuM. Current landscape and future directions of bispecific antibodies in cancer immunotherapy.Front. Immunol.202213103527610.3389/fimmu.2022.103527636389699
    [Google Scholar]
  45. van de DonkN.W.C.J. ZweegmanS. T-cell-engaging bispecific antibodies in cancer.Lancet20234021039614215810.1016/S0140‑6736(23)00521‑437271153
    [Google Scholar]
  46. CaoW. XingH. LiY. TianW. SongY. JiangZ. YuJ. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy.Biomark. Res.20221013810.1186/s40364‑022‑00385‑135642043
    [Google Scholar]
  47. LiangJ. ZhangH. HuangY. FanL. LiF. LiM. YanY. ZhangJ. LiZ. YangX. A CLDN18.2-targeting bispecific T cell co-stimulatory activator for cancer immunotherapy.Cancer Manag. Res.2021136977698710.2147/CMAR.S33063734522140
    [Google Scholar]
  48. GaoJ. WangZ. JiangW. ZhangY. MengZ. NiuY. ShengZ. ChenC. LiuX. ChenX. LiuC. JiaK. ZhangC. LiaoH. JungJ. SungE. ChungH. ZhangJ.Z. ZhuA.X. ShenL. CLDN18.2 and 4-1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation.J. Immunother. Cancer2023116e00670410.1136/jitc‑2023‑00670437364935
    [Google Scholar]
  49. MengQ. HaoY. YangM. DuY. WangS. Development and validation of ELISA method for quantification of Q-1802 in serum and its application to pharmacokinetic study in ICR Mouse.J. Pharm. Biomed. Anal.202424511613810.1016/j.jpba.2024.11613838636191
    [Google Scholar]
  50. ChenQ. GuoX. MaW. Opportunities and challenges of CD47-targeted therapy in cancer immunotherapy.Oncol. Res.2024321496010.32604/or.2023.04238338188674
    [Google Scholar]
  51. CatalánR. Orozco-MoralesM. Hernández-PedroN.Y. GuijosaA. Colín-GonzálezA.L. Ávila-MorenoF. ArrietaO. CD47-SIRP α axis as a biomarker and therapeutic target in cancer: Current perspectives and future challenges in nonsmall cell lung cancer.J. Immunol. Res.202020201810.1155/2020/943503033015199
    [Google Scholar]
  52. OvermanM.J. MelhemR. Blum-MurphyM.A. RamosC. PetrosyanL. LiJ. PererJ.K. ZouH. WangM. WrightH.M. A phase I, first-in-human, open-label, dose escalation and expansion study of PT886 in adult patients with advanced gastric, gastroesophageal junction, and pancreatic adenocarcinomas.J. Clin. Oncol.202341Suppl. 4TPS76510.1200/JCO.2023.41.4_suppl.TPS765
    [Google Scholar]
  53. McNamaraB. GreenmanM. PebleyN. MutluL. SantinA.D. Antibody–drug conjugates (ADC) in HER2/neu-positive gynecologic tumors.Molecules20232821738910.3390/molecules2821738937959808
    [Google Scholar]
  54. BardiaA. SunS. ThimmiahN. Antibody drug conjugate sacituzumab govitecan enables a sequential top1/parp inhibitor cancer therapy strategy in breast cancer patients.Clin. Cancer. Res.2024301429172924
    [Google Scholar]
  55. MckertishC.M. KayserV. A novel dual-payload ADC for the treatment of HER2+ breast and colon cancer.Pharmaceutics2023158202010.3390/pharmaceutics1508202037631234
    [Google Scholar]
  56. PouzinC. TeutonicoD. FagniezN. Ziti-LjajicS. Perreard-DumaineA. PardonM. KlieberS. NguyenL. Prediction of cyp down regulation after tusamitamab ravtansine administration (a DM4‐Conjugate), based on an In Vitro–In Vivo Extrapolation Approach.Clin. Pharmacol. Ther.2024115227828710.1002/cpt.310237964462
    [Google Scholar]
  57. BestR.L. LaPointeN.E. AzarenkoO. MillerH. GenualdiC. ChihS. ShenB.Q. JordanM.A. WilsonL. FeinsteinS.C. StaggN.J. Microtubule and tubulin binding and regulation of microtubule dynamics by the antibody drug conjugate (ADC) payload, monomethyl auristatin E (MMAE): Mechanistic insights into MMAE ADC peripheral neuropathy.Toxicol. Appl. Pharmacol.202142111553410.1016/j.taap.2021.11553433852878
    [Google Scholar]
  58. CollinsJ. van NoortM. RathiC. PostT.M. StruemperH. JewellR.C. Ferron-BradyG. Longitudinal efficacy and safety modeling and simulation framework to aid dose selection of belantamab mafodotin for patients with multiple myeloma.CPT Pharmacometrics Syst. Pharmacol.202312101411142410.1002/psp4.1301637465991
    [Google Scholar]
  59. de BeverL. PopalS. van SchaikJ. RubahamyaB. van DelftF.L. ThurberG.M. van BerkelS.S. Generation of DAR1 antibody-drug conjugates for ultrapotent payloads using tailored glycoconnect technology.Bioconjug. Chem.202334353854810.1021/acs.bioconjchem.2c0061136857521
    [Google Scholar]
  60. PetersenM.E. BrantM.G. LasalleM. DasS. DuanR. WongJ. DingT. WuK.J. SiddappaD. FangC. ZhangW. WuA.M.L. Hirkala-SchaeferT. GarnettG.A.E. FungV. YangL. Hernandez RojasA. LawnS.O. BarnscherS.D. RichJ.R. ColomboR. Design and evaluation of zd06519, a novel camptothecin payload for antibody drug conjugates.Mol. Cancer Ther.202423560661810.1158/1535‑7163.MCT‑23‑082238354417
    [Google Scholar]
  61. XuR. WeiX. ZhangD. QiuM. ZhangY. ZhaoH. ChenB. YanJ. A phase 1a dose-escalation, multicenter trial of anti-claudin 18.2 antibody drug conjugate CMG901 in patients with resistant/refractory solid tumors.J. Clin. Oncol.202341Suppl. 435210.1200/JCO.2023.41.4_suppl.352
    [Google Scholar]
  62. WangY. GongJ. LinR. ZhaoS. WangJ. WangQ. ZhangY. SuD. ZhangJ. DongQ. LinL. TianW. ChenY. YangY. ZhangX. WanX. GaoJ. AnN. JansenV.M. ShenL. First-in-human dose escalation and expansion study of SYSA1801, an antibody-drug conjugate targeting claudin 18.2 in patients with resistant/refractory solid tumors.J. Clin. Oncol.202341Suppl. 16301610.1200/JCO.2023.41.16_suppl.3016
    [Google Scholar]
  63. FuZ. LiS. HanS. ShiC. ZhangY. Antibody drug conjugate: The “biological missile” for targeted cancer therapy.Signal Transduct. Target. Ther.2022719310.1038/s41392‑022‑00947‑735318309
    [Google Scholar]
  64. HuangW. LiY. LiuZ. RodonL. CorreiaS. LiY. LiR. Preclinical activity for TPX-4589 (LM-302), an antibody-drug conjugate targeting tight junction protein CLDN18.2 in solid tumors.Eur. J. Cancer2022174S41S4210.1016/S0959‑8049(22)00911‑X
    [Google Scholar]
  65. ZhaoA. ZhaoM. QianW. LiangA. LiP. LiuH. Secondary myeloid neoplasms after CD19 CAR T therapy in patients with refractory/relapsed B-cell lymphoma: Case series and review of literature.Front. Immunol.202313106398610.3389/fimmu.2022.106398636713414
    [Google Scholar]
  66. ShiM. WangJ. HuangH. LiuD. ChengH. WangX. ChenW. YanZ. SangW. QiK. LiD. ZhuF. LiZ. QiaoJ. WuQ. ZengL. FeiX. GuW. MiaoY. XuK. ZhengJ. CaoJ. Bispecific CAR T cell therapy targeting BCMA and CD19 in relapsed/refractory multiple myeloma: a phase I/II trial.Nat. Commun.2024151337110.1038/s41467‑024‑47801‑838643278
    [Google Scholar]
  67. WangQ. WeiR. GuoS. MinC. ZhongX. HuangH. ChengZ. An alternative fully human anti-BCMA CAR-T shows response for relapsed or refractory multiple myeloma with anti-BCMA CAR-T exposures previously.Cancer Gene Ther.202431342042610.1038/s41417‑023‑00712‑038102463
    [Google Scholar]
  68. SmoleA. BentonA. PoussinM.A. EivaM.A. MezzanotteC. CamisaB. GrecoB. SharmaP. MinutoloN.G. GrayF. BearA.S. BarojaM.L. CumminsC. XuC. SanvitoF. GoldgewichtA.L. BlanchardT. Rodriguez-GarciaA. KlichinskyM. BoniniC. JuneC.H. PoseyA.D.Jr LinetteG.P. CarrenoB.M. CasucciM. PowellD.J.Jr Expression of inducible factors reprograms CAR-T cells for enhanced function and safety.Cancer Cell2022401214701487.e710.1016/j.ccell.2022.11.00636513049
    [Google Scholar]
  69. ZhangY. LiY. CaoW. WangF. XieX. LiY. WangX. GuoR. JiangZ. GuoR. Single-cell analysis of target antigens of CAR-T reveals a potential landscape of “on-target, off-tumor toxicity”.Front. Immunol.20211279920610.3389/fimmu.2021.79920634975912
    [Google Scholar]
  70. JiangH. ShiZ. WangP. WangC. YangL. DuG. ZhangH. ShiB. JiaJ. LiQ. WangH. LiZ. Claudin18.2-Specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer.J. Natl. Cancer Inst.2019111440941810.1093/jnci/djy13430203099
    [Google Scholar]
  71. LuoH. SuJ. SunR. SunY. WangY. DongY. ShiB. JiangH. LiZ. Coexpression of IL7 and CCL21 increases efficacy of CAR-T cells in solid tumors without requiring preconditioned lymphodepletion.Clin. Cancer Res.202026205494550510.1158/1078‑0432.CCR‑20‑077732816947
    [Google Scholar]
  72. ShiH. LiA. DaiZ. XueJ. ZhaoQ. TianJ. SongD. WangH. ChenJ. ZhangX. ZhouK. WeiH. QinS. IL-15 armoring enhances the antitumor efficacy of claudin 18.2-targeting CAR-T cells in syngeneic mouse tumor models.Front. Immunol.202314116540410.3389/fimmu.2023.116540437564658
    [Google Scholar]
  73. QiC. XieT. ZhouJ. WangX. GongJ. ZhangX. LiJ. YuanJ. LiuC. ShenL. CT041 CAR T cell therapy for Claudin18.2-positive metastatic pancreatic cancer.J. Hematol. Oncol.202316110210.1186/s13045‑023‑01491‑937689733
    [Google Scholar]
  74. DerksS. van LaarhovenH.W.M. SPOTlight on GLOW.Cell Rep. Med.202341010123310.1016/j.xcrm.2023.10123337852180
    [Google Scholar]
  75. Mathias-MachadoM.C. de JesusV.H.F. JácomeA. DonadioM.D. AruquipaM.P.S. FogacciJ. CunhaR.G. da SilvaL.M. PeixotoR.D.A. Claudin 18.2 as a new biomarker in gastric cancer—what should we know?Cancers (Basel)202416367910.3390/cancers1603067938339430
    [Google Scholar]
  76. NaveO.P. SigronM. A mathematical model for cancer treatment based on combination of anti-angiogenic and immune cell therapies.Res. Appl. Math.20221610033010.1016/j.rinam.2022.100330
    [Google Scholar]
  77. NakayamaI. QiC. ChenY. NakamuraY. ShenL. ShitaraK. Claudin 18.2 as a novel therapeutic target.Nat. Rev. Clin. Oncol.202421535436910.1038/s41571‑024‑00874‑238503878
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206329892240927081033
Loading
/content/journals/acamc/10.2174/0118715206329892240927081033
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ADC; CAR T; Claudin18.2; gastric cancer; gastric mucosa; monoclonal antibody
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test