Skip to content
2000
Volume 24, Issue 17
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Non-small-cell lung cancer is a prevalent malignancy associated with significant morbidity and mortality rates. Tryptanthrin and its derivatives have exhibited potent antitumor activity.

Objective

This study aims to investigate the inhibitory effect of a novel synthesized tryptanthrin derivative on proliferation and the possible mechanism of human non-small cell lung cancer cell lines (A549) .

Methods

In this study, MTT assay, cell migration, colony formation assay, cell cycle analysis, cell apoptosis, JC-1 staining assay, reactive oxygen species analysis, proteomics, western blotting, high content screening and absorption titrations analysis were performed.

Results

We found that inhibited both the proliferation and migration, induced cell cycle arrest in the G2/M phase, increased levels of ROS, decreased mitochondrial membrane potential, and promoted apoptosis in A549 cells. Further mechanistic studies found that reduced EGFR expression in A549 cells and inhibited the EGFR pathway by decreasing phosphorylation levels of EGFR, Stat3, AKT and Erk1/2. Moreover, DNA damage induced by involved an increase in p53/MDM2 ratio and concentration-dependent accumulation of micronuclei.

Conclusion

demonstrated significant antitumor activity against A549 cells by inhibiting the EGFR signaling pathway, inducing DNA damage, and subsequently leading to oxidative stress, apoptosis, and cell cycle arrest. Our findings suggest that exhibits potential as an NSCLC drug, owing to its attributes such as antiproliferative activity and ability to induce apoptosis by attenuating the EGFR-mediated signaling pathway.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206303721240715042526
2024-10-01
2025-04-22
Loading full text...

Full text loading...

References

  1. MaoJ.J. PillaiG.G. AndradeC.J. LigibelJ.A. BasuP. CohenL. KhanI.A. MustianK.M. PuthiyedathR. DhimanK.S. LaoL. GhelmanR. Cáceres GuidoP. LopezG. Gallego-PerezD.F. SalicrupL.A. Integrative oncology: Addressing the global challenges of cancer prevention and treatment.CA Cancer J. Clin.202272214416410.3322/caac.21706 34751943
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  3. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  4. OserM.G. NiederstM.J. SequistL.V. EngelmanJ.A. Transformation from non-small-cell lung cancer to small-cell lung cancer: Molecular drivers and cells of origin.Lancet Oncol.2015164e165e17210.1016/S1470‑2045(14)71180‑5 25846096
    [Google Scholar]
  5. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature25183 29364287
    [Google Scholar]
  6. ArbourK.C. RielyG.J. Systemic therapy for locally advanced and metastatic non–small cell lung cancer: A review.JAMA2019322876477410.1001/jama.2019.11058 31454018
    [Google Scholar]
  7. XiangY.C. ShenJ. SiY. LiuX.W. ZhangL. WenJ. ZhangT. YuQ.Q. LuJ.F. XiangK. LiuY. Paris saponin VII, a direct activator of AMPK, induces autophagy and exhibits therapeutic potential in non-small-cell lung cancer.Chin. J. Nat. Med.202119319520410.1016/S1875‑5364(21)60021‑3 33781453
    [Google Scholar]
  8. ZhongL. LiY. XiongL. WangW. WuM. YuanT. YangW. TianC. MiaoZ. WangT. YangS. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives.Signal Transduct. Target. Ther.20216120124910.1038/s41392‑021‑00572‑w 34054126
    [Google Scholar]
  9. MazumderA. CerellaC. DiederichM. Natural scaffolds in anticancer therapy and precision medicine.Biotechnol. Adv.20183661563158510.1016/j.biotechadv.2018.04.009 29729870
    [Google Scholar]
  10. BishayeeA. SethiG. Bioactive natural products in cancer prevention and therapy: Progress and promise.Semin. Cancer Biol.201640-411310.1016/j.semcancer.2016.08.006 27565447
    [Google Scholar]
  11. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. BanachM. RollingerJ.M. BarrecaD. WeckwerthW. BauerR. BayerE.A. MajeedM. BishayeeA. BochkovV. BonnG.K. BraidyN. BucarF. CifuentesA. D’OnofrioG. BodkinM. DiederichM. Dinkova-KostovaA.T. EfferthT. El BairiK. ArkellsN. FanT-P. FiebichB.L. FreissmuthM. GeorgievM.I. GibbonsS. GodfreyK.M. GruberC.W. HeerJ. HuberL.A. IbanezE. KijjoaA. KissA.K. LuA. MaciasF.A. MillerM.J.S. MocanA. MüllerR. NicolettiF. PerryG. PittalàV. RastrelliL. RistowM. RussoG.L. SilvaA.S. SchusterD. SheridanH. Skalicka-WoźniakK. SkaltsounisL. Sobarzo-SánchezE. BredtD.S. StuppnerH. SuredaA. TzvetkovN.T. VaccaR.A. AggarwalB.B. BattinoM. GiampieriF. WinkM. WolfenderJ-L. XiaoJ. YeungA.W.K. LizardG. PoppM.A. HeinrichM. Berindan-NeagoeI. StadlerM. DagliaM. VerpoorteR. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  12. DuJ. LiuP. ZhuY. WangG. XingS. LiuT. XiaJ. DongS. LvN. LiZ. Novel tryptanthrin derivatives with benzenesulfonamide substituents: Design, synthesis, and anti-inflammatory evaluation.Eur. J. Med. Chem.202324611495610.1016/j.ejmech.2022.114956 36450214
    [Google Scholar]
  13. ShankarG.M. AlexV.V. NisthulA.A. BavaS.V. SundaramS. RetnakumariA.P. ChittalakkottuS. AntoR.J. Pre‐clinical evidences for the efficacy of tryptanthrin as a potent suppressor of skin cancer.Cell Prolif.2020531e1271010.1111/cpr.12710 31663659
    [Google Scholar]
  14. YuS. ChernJ. ChenT. ChiuY. ChenH. ChenY. Cytotoxicity and reversal of multidrug resistance by tryptanthrin-derived indoloquinazolines.Acta Pharmacol. Sin.201031225926410.1038/aps.2009.198 20139909
    [Google Scholar]
  15. ZouY. ZhangG. LiC. LongH. ChenD. LiZ. OuyangG. ZhangW. ZhangY. WangZ. Discovery of tryptanthrin and its derivatives and its activities against nsclc in vitro via both apoptosis and autophagy pathways.Int. J. Mol. Sci.20232421450146510.3390/ijms24021450 36674964
    [Google Scholar]
  16. ZhangG. LiC. LiY. ChenD. LiZ. WangZ. OuyangG. Design, synthesis, and mechanism of novel 9-aliphatic amine tryptanthrin derivatives against phytopathogenic bacteria.J. Agric. Food Chem.20237139142321424210.1021/acs.jafc.3c03738 37749804
    [Google Scholar]
  17. FrankenN.A.P. RodermondH.M. StapJ. HavemanJ. van BreeC. Clonogenic assay of cells in vitro.Nat. Protoc.2006152315231910.1038/nprot.2006.339 17406473
    [Google Scholar]
  18. GradaA. Otero-VinasM. Prieto-CastrilloF. ObagiZ. FalangaV. Research techniques made simple: Analysis of collective cell migration using the wound healing assay.J. Invest. Dermatol.20171372e11e1610.1016/j.jid.2016.11.020 28110712
    [Google Scholar]
  19. FuM. YanY. SuH. WangJ. ShiX. ZhouH. ZhangQ. XuX. Spleen proteome profiling of dairy goats infected with C. pseudotuberculosis by TMT-based quantitative proteomics approach.J. Proteomics202124810435210.1016/j.jprot.2021.104352 34411763
    [Google Scholar]
  20. StojicL. LunA.T.L. MascalchiP. ErnstC. RedmondA.M. MangeiJ. BarrA.R. BousgouniV. BakalC. MarioniJ.C. OdomD.T. GergelyF. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division.Nat. Commun.20201111851187310.1038/s41467‑020‑14978‑7 32296040
    [Google Scholar]
  21. KanjanasiriratP. SuksatuA. ManopwisedjaroenS. MunyooB. TuchindaP. JearawuttanakulK. SeemakhanS. CharoensutthivarakulS. WongtrakoongateP. RangkaseneeN. PitipornS. WaranuchN. ChabangN. KhemawootP. Sa-ngiamsuntornK. PewkliangY. ThongsriP. ChutipongtanateS. HongengS. BorwornpinyoS. ThitithanyanontA. High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents.Sci. Rep.20201011996310.1038/s41598‑020‑77003‑3 33203926
    [Google Scholar]
  22. SubastriA. RamamurthyC.H. SuyavaranA. MareeswaranR. Lokeswara RaoP. HarikrishnaM. Suresh KumarM. SujathaV. ThirunavukkarasuC. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA.Int. J. Biol. Macromol.20157812212910.1016/j.ijbiomac.2015.03.036 25858879
    [Google Scholar]
  23. MatthewsH.K. BertoliC. de BruinR.A.M. Cell cycle control in cancer.Nat. Rev. Mol. Cell Biol.2022231748810.1038/s41580‑021‑00404‑3 34508254
    [Google Scholar]
  24. ChaudhryG.S. Md AkimA. SungY.Y. SifzizulT.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics.Front. Pharmacol.20221384237610.3389/fphar.2022.842376 36034846
    [Google Scholar]
  25. WillemsP.H.G.M. RossignolR. DieterenC.E.J. MurphyM.P. KoopmanW.J.H. Redox homeostasis and mitochondrial dynamics.Cell Metab.201522220721810.1016/j.cmet.2015.06.006 26166745
    [Google Scholar]
  26. ZhaoM. WangY. LiL. LiuS. WangC. YuanY. YangG. ChenY. ChengJ. LuY. LiuJ. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance.Theranostics20211141845186310.7150/thno.50905 33408785
    [Google Scholar]
  27. DieboldL. ChandelN.S. Mitochondrial ROS regulation of proliferating cells.Free Radic. Biol. Med.2016100869310.1016/j.freeradbiomed.2016.04.198 27154978
    [Google Scholar]
  28. TangD. KangR. BergheT.V. VandenabeeleP. KroemerG. The molecular machinery of regulated cell death.Cell Res.201929534736410.1038/s41422‑019‑0164‑5 30948788
    [Google Scholar]
  29. ZhongY. ZhangY. GuY. WuS. ShenW. TanM. Novel Fe(II) and Co(II) complexes of natural product tryptanthrin: Synthesis and binding with G-quadruplex DNA.Bioinorg. Chem. Appl.201620161710.1155/2016/5075847 27698647
    [Google Scholar]
  30. Cuella-MartinR. OliveiraC. LockstoneH.E. SnellenbergS. GrolmusovaN. ChapmanJ.R. 53BP1 integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms.Mol. Cell2016641516410.1016/j.molcel.2016.08.002 27546791
    [Google Scholar]
  31. BlayV. TolaniB. HoS.P. ArkinM.R. High-throughput screening: Today’s biochemical and cell-based approaches.Drug Discov. Today202025101807182110.1016/j.drudis.2020.07.024 32801051
    [Google Scholar]
  32. OuH.L. SchumacherB. DNA damage responses and p53 in the aging process.Blood2018131548849510.1182/blood‑2017‑07‑746396 29141944
    [Google Scholar]
  33. ScottE.C. BainesA.C. GongY. MooreR.Jr PamukG.E. SaberH. SubedeeA. ThompsonM.D. XiaoW. PazdurR. RaoV.A. SchneiderJ. BeaverJ.A. Trends in the approval of cancer therapies by the FDA in the twenty-first century.Nat. Rev. Drug Discov.202322862564010.1038/s41573‑023‑00723‑4 37344568
    [Google Scholar]
  34. ZhangS. QiF. FangX. YangD. HuH. HuangQ. KuangC. YangQ. Tryptophan 2,3-dioxygenase inhibitory activities of tryptanthrin derivatives.Eur. J. Med. Chem.201816013314510.1016/j.ejmech.2018.10.017 30321802
    [Google Scholar]
  35. ChangH.N. YehY.C. ChuehH.Y. PangJ.H.S. The anti-angiogenic effect of tryptanthrin is mediated by the inhibition of apelin promoter activity and shortened mRNA half-life in human vascular endothelial cells.Phytomedicine20195815287910.1016/j.phymed.2019.152879 31005035
    [Google Scholar]
  36. ShabnaA. AntonyJ. VijayakurupV. SaikiaM. LijuV.B. RetnakumariA.P. AmruthaN.A. AlexV.V. SwethaM. AiswaryaS.U. JannetS. UnniU.S. SundaramS. SherinD.R. AntoN.P. BavaS.V. ChittalakkottuS. RanS. AntoR.J. Pharmacological attenuation of melanoma by tryptanthrin pertains to the suppression of MITF-M through MEK/ERK signaling axis.Cell. Mol. Life Sci.202279947848310.1007/s00018‑022‑04476‑y 35948813
    [Google Scholar]
  37. GaoJ.Y. ChangC.S. LienJ.C. ChenT.W. HuJ.L. WengJ.R. Synthetic tryptanthrin derivatives induce cell cycle arrest and apoptosis via Akt and MAPKs in human hepatocellular carcinoma cells.Biomedicines2021911152710.3390/biomedicines9111527 34829756
    [Google Scholar]
  38. LiF.N. ZhangQ.Y. LiO. LiuS.L. YangZ.Y. PanL.J. ZhaoC. GongW. ShuY.J. DongP. ESRRA promotes gastric cancer development by regulating the CDC25C/CDK1/CyclinB1 pathway via DSN1.Int. J. Biol. Sci.20211781909192410.7150/ijbs.57623 34131395
    [Google Scholar]
  39. HuangF.Y. WongD.K.H. SetoW.K. MakL.Y. CheungT.T. YuenM.F. Tumor suppressive role of mitochondrial sirtuin 4 in induction of G2/M cell cycle arrest and apoptosis in hepatitis B virus-related hepatocellular carcinoma.Cell Death Discov.2021718810.1038/s41420‑021‑00470‑8 33931611
    [Google Scholar]
  40. PatilS.M. KundaN.K. Nisin ZP, an antimicrobial peptide, induces cell death and inhibits non-small cell lung cancer (NSCLC) progression in vitro in 2D and 3D cell culture.Pharm. Res.202239112859287010.1007/s11095‑022‑03220‑2 35246758
    [Google Scholar]
  41. NewmanS.A. ShortJ.L. NicolazzoJ.A. Reduction in ABCG2 mRNA expression in human immortalised brain microvascular endothelial cells by ferric ammonium citrate is mediated by reactive oxygen species and activation of ERK1/2 signalling.Pharm. Res.202340365166010.1007/s11095‑022‑03458‑w 36539667
    [Google Scholar]
  42. WangW. ChenY. YinY. WangX. YeX. JiangK. ZhangY. ZhangJ. ZhangW. ZhugeY. ChenL. PengC. XiongA. YangL. WangZ. A TMT-based shotgun proteomics uncovers overexpression of thrombospondin 1 as a contributor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome.Arch. Toxicol.20229672003201910.1007/s00204‑022‑03281‑7 35357534
    [Google Scholar]
  43. HarjesU. EGFR is going circular.Nat. Rev. Cancer202121528029310.1038/s41568‑021‑00350‑4 33758414
    [Google Scholar]
  44. LevantiniE. MaroniG. Del ReM. TenenD.G. EGFR signaling pathway as therapeutic target in human cancers.Semin. Cancer Biol.20228525327510.1016/j.semcancer.2022.04.002 35427766
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206303721240715042526
Loading
/content/journals/acamc/10.2174/0118715206303721240715042526
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test