Skip to content
2000
Volume 24, Issue 17
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Osteosarcoma is considered as the most prevalent form of primary malignant bone cancer, prompting a pressing need for novel therapeutic options. Arnicolide D, a sesquiterpene lactone derived from the traditional Chinese herbal medicine (known as E Bu Shi Cao in Chinese), showed anticancer efficacy against several kinds of cancers. However, its effect on osteosarcoma remains unclear.

Objective

This study aimed to investigate the anticancer activity of arnicolide D and the underlying molecular mechanism of its action in osteosarcoma cells, MG63 and U2OS.

Methods

Cell viability and proliferation were evaluated through MTT assay and colony formation assay following 24 h and 48 h treatment with different concentrations of arnicolide D. Flow cytometry was employed to examine cell cycle progression and apoptosis after 24 h treatment of arnicolide D. Western blotting was performed to determine the expression of the PI3k, Akt and m-TOR and their phosphorylated forms.

Results

Our findings revealed that arnicolide D treatment resulted in a significant reduction in cell viability, the inhibition of proliferation, and the induction of apoptosis and cell cycle arrest in the G2/M phase. Furthermore, arnicolide D could inhibit the activation of PI3K/Akt/mTOR pathway in osteosarcoma cells.

Conclusion

Based on our results, arnicolide D demonstrated significant anti-osteosarcoma activity and held the potential to be considered as a therapeutic candidate for osteosarcoma in the future.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206289595240105082138
2024-10-01
2025-05-12
Loading full text...

Full text loading...

References

  1. TaranS.J. TaranR. MalipatilN.B. Pediatric osteosarcoma: An updated review.Indian J. Med. Paediatr. Oncol.20173813343
    [Google Scholar]
  2. SimY.C. HwangJ.H. AhnK.M. Overall and disease-specific survival outcomes following primary surgery for oral squamous cell carcinoma: analysis of consecutive 67 patients.J. Korean Assoc. Oral Maxillofac. Surg.2019452839010.5125/jkaoms.2019.45.2.83 31106136
    [Google Scholar]
  3. ZhaoX. WuQ. GongX. LiuJ. MaY. Osteosarcoma: a review of current and future therapeutic approaches.Biomed. Eng. Online20212012410.1186/s12938‑021‑00860‑0 33653371
    [Google Scholar]
  4. XueW. ZhangZ. YuH. LiC. SunY. AnJ. QiL. ZhangJ. LiuQ. Development of nomogram and discussion of radiotherapy effect for osteosarcoma survival.Sci. Rep.202313122310.1038/s41598‑023‑27476‑9
    [Google Scholar]
  5. CarrleD. BielackS.S. Current strategies of chemotherapy in osteosarcoma.Int. Orthop.200630644545110.1007/s00264‑006‑0192‑x 16896870
    [Google Scholar]
  6. ZhangY. YangJ. ZhaoN. WangC. KamarS. ZhouY. HeZ. YangJ. SunB. ShiX. HanL. YangZ. Progress in the chemotherapeutic treatment of osteosarcoma (Review).Oncol. Lett.20181656228623710.3892/ol.2018.9434 30405759
    [Google Scholar]
  7. TobeihaM. RajabiA. RaisiA. MohajeriM. YazdiS.M. DavoodvandiA. AslanbeigiF. VaziriM. HamblinM.R. MirzaeiH. Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms.Biomed. Pharmacother.202114411225710.1016/j.biopha.2021.112257 34688081
    [Google Scholar]
  8. XuC. WangM. GuoW. SunW. LiuY. Curcumin in osteosarcoma therapy: Combining with immunotherapy, chemotherapeutics, bone tissue engineering materials and potential synergism with photodynamic therapy.Front. Oncol.20211167249010.3389/fonc.2021.672490 34094974
    [Google Scholar]
  9. TanJ. QiaoZ. MengM. ZhangF. KwanH.Y. ZhongK. YangC. WangY. ZhangM. LiuZ. SuT. Centipeda minima: An update on its phytochemistry, pharmacology and safety.J. Ethnopharmacol.202229211502710.1016/j.jep.2022.115027 35091011
    [Google Scholar]
  10. LeeM.M.L. ChanB.D. WongW.Y. QuZ. ChanM.S. LeungT.W. LinY. MokD.K.W. ChenS. TaiW.C.S. Anti-cancer activity of Centipeda minima extract in triple negative breast cancer via inhibition of AKT, NF-κB, and STAT3 signaling pathways.Front. Oncol.20201049110.3389/fonc.2020.00491 32328465
    [Google Scholar]
  11. ChanB.D. WongW.Y. LeeM.M.L. LeungT.W. ShumT.Y. ChoW.C.S. ChenS. TaiW.C.S. Centipeda minima extract attenuates dextran sodium sulfate-induced acute colitis in mice by inhibiting macrophage activation and monocyte chemotaxis.Front. Pharmacol.20211273813910.3389/fphar.2021.738139 34616300
    [Google Scholar]
  12. PuS. GuoY. GaoW. Chemical constituents from Centipeda minima.Zhongguo Zhong Yao Za Zhi2009341215201522
    [Google Scholar]
  13. QuZ. LinY. MokD.K.W. BianQ. TaiW.C.S. ChenS. ArnicolideD. Arnicolide D inhibits triple negative breast cancer cell proliferation by suppression of Akt/mTOR and STAT3 signaling pathways.Int. J. Med. Sci.202017111482149010.7150/ijms.46925 32669950
    [Google Scholar]
  14. LiuR. Dow ChanB. MokD.K.W. LeeC.S. TaiW.C.S. ChenS. Arnicolide D, from the herb Centipeda minima, is a therapeutic candidate against nasopharyngeal carcinoma.Molecules20192410190810.3390/molecules24101908 31108969
    [Google Scholar]
  15. ZhuP. ZhengZ. FuX. LiJ. YinC. ChouJ. WangY. LiuY. ChenY. BaiJ. WuJ. ChenS. YuZ.L. Arnicolide D exerts anti-melanoma effects and inhibits the NF-κB pathway.Phytomedicine20196415306510.1016/j.phymed.2019.153065 31408803
    [Google Scholar]
  16. HuangX. AwanoY. MaedaE. AsadaY. TakemotoH. WatanabeT. Kojima-YuasaA. KobayashiY. Cytotoxic activity of two natural sesquiterpene lactones, isobutyroylplenolin and arnicolide D, on human colon cancer cell line HT-29.Nat. Prod. Res.2014281291491610.1080/14786419.2014.889133 24588282
    [Google Scholar]
  17. Nik NabilW.N. XiZ. LiuM. LiY. YaoM. LiuT. DongQ. XuH. Advances in therapeutic agents targeting quiescent cancer cells.Acta Materia Medica.202211567110.15212/AMM‑2021‑0005
    [Google Scholar]
  18. MatsonJ.P. CookJ.G. Cell cycle proliferation decisions: the impact of single cell analyses.FEBS J.2017284336237510.1111/febs.13898 27634578
    [Google Scholar]
  19. TonamiY. MurakamiH. ShirahigeK. NakanishiM. A checkpoint control linking meiotic S phase and recombination initiation in fission yeast.Proc. Natl. Acad. Sci. USA2005102165797580110.1073/pnas.0407236102 15805194
    [Google Scholar]
  20. VassilevL.T. Cell cycle synchronization at the G2/M phase border by reversible inhibition of CDK1.Cell Cycle20065222555255610.4161/cc.5.22.3463 17172841
    [Google Scholar]
  21. ElmoreS. Apoptosis: a review of programmed cell death.Toxicol. Pathol.200735449551610.1080/01926230701320337 17562483
    [Google Scholar]
  22. LoweS.W. LinA.W. Apoptosis in cancer.Carcinogenesis200021348549510.1093/carcin/21.3.485 10688869
    [Google Scholar]
  23. ZhangJ. YuX.H. YanY.G. WangC. WangW.J. PI3K/Akt signaling in osteosarcoma.Clin. Chim. Acta2015444182192
    [Google Scholar]
  24. CzarneckaA.M. SynoradzkiK. FirlejW. BartnikE. SobczukP. FiedorowiczM. GriebP. RutkowskiP. Molecular biology of osteosarcoma.Cancers (Basel)2020128213010.3390/cancers12082130 32751922
    [Google Scholar]
  25. HuK. DaiH.B. QiuZ.L. mTOR signaling in osteosarcoma: Oncogenesis and therapeutic aspects (Review).Oncol. Rep.20163631219122510.3892/or.2016.4922 27430283
    [Google Scholar]
  26. TewariD. PatniP. BishayeeA. SahA.N. BishayeeA. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy.Semin. Cancer Biol.20228011710.1016/j.semcancer.2019.12.008 31866476
    [Google Scholar]
  27. MeyerW.H. MalawerM.M. Osteosarcoma. Clinical features and evolving surgical and chemotherapeutic strategies.Pediatr. Clin. North Am.199138231734810.1016/S0031‑3955(16)38080‑4 2006080
    [Google Scholar]
  28. BenjaminR.S. Adjuvant and neoadjuvant chemotherapy for osteosarcoma: A historical perspective.Adv. Exp. Med. Biol.2020125711010.1007/978‑3‑030‑43032‑0_1 32483726
    [Google Scholar]
  29. LilienthalI. HeroldN. Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: A review of current and future strategies.Int. J. Mol. Sci.20202118688510.3390/ijms21186885 32961800
    [Google Scholar]
  30. DongZ. LiaoZ. HeY. WuC. MengZ. QinB. XuG. LiZ. SunT. WenY. LiG. Advances in the biological functions and mechanisms of miRNAs in the development of osteosarcoma.Technol. Cancer Res. Treat.20222110.1177/15330338221117386 35950243
    [Google Scholar]
  31. YangZ. LiX. YangY. HeZ. QuX. ZhangY. Long noncoding RNAs in the progression, metastasis, and prognosis of osteosarcoma.Cell Death Dis.201679e238910.1038/cddis.2016.272 27685633
    [Google Scholar]
  32. PistrittoG. TrisciuoglioD. CeciC. GarufiA. D’OraziG. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies.Aging (Albany NY)20168460361910.18632/aging.100934 27019364
    [Google Scholar]
  33. PangH. WuT. PengZ. TanQ. PengX. ZhanZ. SongL. WeiB. Baicalin induces apoptosis and autophagy in human osteosarcoma cells by increasing ROS to inhibit PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways.J. Bone Oncol.20223310041510.1016/j.jbo.2022.100415 35573641
    [Google Scholar]
  34. OkaguI.U. EzeorbaT.P.C. AguchemR.N. OhanenyeI.C. AhamE.C. OkaforS.N. BollatiC. LammiC. A Review on the molecular mechanisms of action of natural products in preventing bone diseases.Int. J. Mol. Sci.20222315846810.3390/ijms23158468 35955603
    [Google Scholar]
  35. ZhengC. TangF. MinL. HornicekF. DuanZ. TuC. PTEN in osteosarcoma: Recent advances and the therapeutic potential.Biochim. Biophys. Acta Rev. Cancer20201874218840510.1016/j.bbcan.2020.188405 32827577
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206289595240105082138
Loading
/content/journals/acamc/10.2174/0118715206289595240105082138
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): apoptosis; arnicolide D; cell cycle; cell proliferation; Osteosarcoma; PI3K/Akt/mTOR pathway
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test