Skip to content
2000
Volume 24, Issue 17
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Histone methyltransferase absent, small, or homeotic discs1-like () is composed of su(var)3-9, enhancer of zeste, trithorax (SET) domain, pleckstrin homology domain (PHD) domain, middle (MID) domain, and bromo adjacent homology (BAH) domain. The SET domain of is known to mediate mediate H3K36 dimethylation (H3K36me2) modification. However, the specific functions of the PHD-BAH domain remain largely unexplored. This study aimed to explore the biological function of the PHD-BAH domain in .

Methods

We employed a range of techniques, including a prokaryotic fusion protein expression purification system, pull-down assay, Isothermal Titration Calorimetry (ITC), polymerase chain reaction (PCR), and site-directed mutagenesis, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas9) gene editing, cell culture experiment, western blot, cell proliferation assay, and cell apoptosis test.

Results

The PHD-BAH domain in preferentially binds to the H3K4me2 peptide over H3K4 monomethylation (H3K4me1) and H3K4 trimethylation (H3K4me3) peptide. Notably, the W2603A mutation within the PHD-BAH domain could disrupt the interaction with H3K4me2 Compared with wild-type Cholangiocarcinoma (CHOL) cells, deletion of the PHD-BAH domain in led to increased CHOL cell apoptosis and reduced cell proliferation ( < 0.001). Additionally, the W2603A mutation affected the regulation of the proteasome 20S subunit beta (PSMB) family gene set.

Conclusion

W2603A mutation was crucial for the interaction between the PHD-BAH domain and the H3K4me2 peptide. regulated CHOL cell survival and proliferation through its PHD-BAH domain by modulating the expression of the family gene set.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206312004240712072532
2024-10-01
2025-04-22
Loading full text...

Full text loading...

References

  1. DaiX. RenT. ZhangY. NanN. Methylation multiplicity and its clinical values in cancer.Expert Rev. Mol. Med.202123e210.1017/erm.2021.4 33787478
    [Google Scholar]
  2. YangB. WangJ.Q. TanY. YuanR. ChenZ.S. ZouC. RNA methylation and cancer treatment.Pharmacol. Res.202117410593710.1016/j.phrs.2021.105937 34648969
    [Google Scholar]
  3. WagnerE.J. CarpenterP.B. Understanding the language of Lys36 methylation at histone H3.Nat. Rev. Mol. Cell Biol.201213211512610.1038/nrm3274 22266761
    [Google Scholar]
  4. ZhangC. XuL. ZhengX. LiuS. CheF. Role of Ash1l in Tourette syndrome and other neurodevelopmental disorders.Dev. Neurobiol.2021812799110.1002/dneu.22795 33258273
    [Google Scholar]
  5. MaQ. SongC. YinB. ShiY. YeL. The role of Trithorax family regulating osteogenic and Chondrogenic differentiation in mesenchymal stem cells.Cell Prolif.2022555e1323310.1111/cpr.13233 35481717
    [Google Scholar]
  6. YancoskieM.N. MaritzC. van EijkP. ReedS.H. NaegeliH. To incise or not and where: SET-domain methyltransferases know.Trends Biochem. Sci.202348432133010.1016/j.tibs.2022.10.003 36357311
    [Google Scholar]
  7. Vettese-DadeyM. GrantP.A. HebbesT.R. Crane- Robinson, C.; Allis, C.D.; Workman, J.L. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro.EMBO J.199615102508251810.1002/j.1460‑2075.1996.tb00608.x 8665858
    [Google Scholar]
  8. TachibanaM. SugimotoK. FukushimaT. ShinkaiY. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3.J. Biol. Chem.200127627253092531710.1074/jbc.M101914200 11316813
    [Google Scholar]
  9. LamU.T.F. TanB.K.Y. PohJ.J.X. ChenE.S. Structural and functional specificity of H3K36 methylation.Epigenetics Chromatin20221511710.1186/s13072‑022‑00446‑7 35581654
    [Google Scholar]
  10. CollinsB.E. GreerC.B. ColemanB.C. SweattJ.D. Histone H3 lysine K4 methylation and its role in learning and memory.Epigenetics Chromatin2019121710.1186/s13072‑018‑0251‑8 30616667
    [Google Scholar]
  11. XiaoC. FanT. ZhengY. TianH. DengZ. LiuJ. LiC. HeJ. H3K4 trimethylation regulates cancer immunity: A promising therapeutic target in combination with immunotherapy.J. Immunother. Cancer2023118e00569310.1136/jitc‑2022‑005693 37553181
    [Google Scholar]
  12. HouP. HuangC. LiuC.P. YangN. YuT. YinY. ZhuB. XuR.M. Structural insights into stimulation of Ash1L’s H3K36 methyltransferase activity through Mrg15 binding.Structure2019275837845.e310.1016/j.str.2019.01.015 30827843
    [Google Scholar]
  13. YuM. JiaY. MaZ. JiD. WangC. LiangY. ZhangQ. YiH. ZengL. Structural insight into ASH1L PHD finger recognizing methylated histone H3K4 and promoting cell growth in prostate cancer.Front. Oncol.20221290680710.3389/fonc.2022.906807 36033518
    [Google Scholar]
  14. LeeY. YoonE. ChoS. SchmählingS. MüllerJ. SongJ.J. Structural basis of MRG15-mediated activation of the ASH1L histone methyltransferase by releasing an autoinhibitory loop.Structure2019275846852.e310.1016/j.str.2019.01.016 30827841
    [Google Scholar]
  15. QianS. LvX. ScheidR.N. LuL. YangZ. ChenW. LiuR. BoersmaM.D. DenuJ.M. ZhongX. DuJ. Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL.Nat. Commun.201891242510.1038/s41467‑018‑04836‑y 29930355
    [Google Scholar]
  16. YangN. XuR.M. Structure and function of the BAH domain in chromatin biology.Crit. Rev. Biochem. Mol. Biol.201348321122110.3109/10409238.2012.742035 23181513
    [Google Scholar]
  17. XuB. QinT. YuJ. GiordanoT.J. SartorM.A. KoenigR.J. Novel role of ASH1L histone methyltransferase in anaplastic thyroid carcinoma.J. Biol. Chem.2020295268834884510.1074/jbc.RA120.013530 32398261
    [Google Scholar]
  18. RogawskiD.S. DengJ. LiH. MiaoH. BorkinD. PurohitT. SongJ. ChaseJ. LiS. NdojJ. KlossowskiS. KimE. MaoF. ZhouB. RopaJ. KrotoskaM.Z. JinZ. ErnstP. FengX. HuangG. NishiokaK. KellyS. HeM. WenB. SunD. MunteanA. DouY. MaillardI. CierpickiT. GrembeckaJ. Discovery of first-in-class inhibitors of ASH1L histone methyltransferase with anti-leukemic activity.Nat. Commun.2021121279210.1038/s41467‑021‑23152‑6 33990599
    [Google Scholar]
  19. ShalemO. SanjanaN.E. HartenianE. ShiX. ScottD.A. MikkelsenT.S. HecklD. EbertB.L. RootD.E. DoenchJ.G. ZhangF. Genome-scale CRISPR-Cas9 knockout screening in human cells.Science20143436166848710.1126/science.1247005 24336571
    [Google Scholar]
  20. SanjanaN.E. ShalemO. ZhangF. Improved vectors and genome-wide libraries for CRISPR screening.Nat. Methods201411878378410.1038/nmeth.3047 25075903
    [Google Scholar]
  21. LiC. TangZ. ZhangW. YeZ. LiuF. GEPIA2021: integrating multiple deconvolution-based analysis into GEPIA.Nucleic Acids Res.202149W1W242W24610.1093/nar/gkab418 34050758
    [Google Scholar]
  22. VasaikarS.V. StraubP. WangJ. ZhangB. LinkedOmics: analyzing multi-omics data within and across 32 cancer types.Nucleic Acids Res.201846D1D956D96310.1093/nar/gkx1090 29136207
    [Google Scholar]
  23. ZhangY. SunZ. JiaJ. DuT. ZhangN. TangY. FangY. FangD. Overview of histone modification.Adv. Exp. Med. Biol.2021128311610.1007/978‑981‑15‑8104‑5_1 33155134
    [Google Scholar]
  24. XiaoC. FanT. TianH. ZhengY. ZhouZ. LiS. LiC. HeJ. H3K36 trimethylation-mediated biological functions in cancer.Clin. Epigenetics202113119910.1186/s13148‑021‑01187‑2 34715919
    [Google Scholar]
  25. HughesA.L. KelleyJ.R. KloseR.J. Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation.Biochim. Biophys. Acta. Gene Regul. Mech.20201863819456710.1016/j.bbagrm.2020.194567 32360393
    [Google Scholar]
  26. Serrano-QuílezJ. Roig-SoucaseS. Rodríguez-NavarroS. Sharing marks: H3K4 methylation and H2B ubiquitination as features of meiotic recombination and transcription.Int. J. Mol. Sci.20202112451010.3390/ijms21124510 32630409
    [Google Scholar]
  27. Al-HarthiS. LiH. WinklerA. SzczepskiK. DengJ. GrembeckaJ. CierpickiT. JaremkoŁ. MRG15 activates histone methyltransferase activity of ASH1L by recruiting it to the nucleosomes.Structure2023311012001207.e510.1016/j.str.2023.07.001 37527654
    [Google Scholar]
  28. SchmählingS. MeilerA. LeeY. MohammedA. FinklK. TauscherK. IsraelL. WirthM. Philippou-MassierJ. BlumH. HabermannB. ImhofA. SongJ.J. MüllerJ. Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC.Development20181457dev16380810.1242/dev.163808 29540501
    [Google Scholar]
  29. DorafshanE. KahnT.G. GlotovA. SavitskyM. SchwartzY.B. Genetic dissection reveals the role of ash1 domains in counteracting polycomb repression.G3 (Bethesda)20199113801381210.1534/g3.119.400579 31540973
    [Google Scholar]
  30. DorafshanE. KahnT.G. GlotovA. SavitskyM. WaltherM. ReuterG. SchwartzY.B. Ash1 counteracts Polycomb repression independent of histone H3 lysine 36 methylation.EMBO Rep.2019204e4676210.15252/embr.201846762 30833342
    [Google Scholar]
  31. LeeF.S. Substrates of PHD.Cell Metab.201930462662710.1016/j.cmet.2019.08.008 31577931
    [Google Scholar]
  32. ChambersA.L. PearlL.H. OliverA.W. DownsJ.A. The BAH domain of Rsc2 is a histone H3 binding domain.Nucleic Acids Res.201341199168918210.1093/nar/gkt662 23907388
    [Google Scholar]
  33. MiaoF. NatarajanR. Mapping global histone methylation patterns in the coding regions of human genes.Mol. Cell. Biol.200525114650466110.1128/MCB.25.11.4650‑4661.2005 15899867
    [Google Scholar]
  34. RichartL. MargueronR. Drugging histone methyltransferases in cancer.Curr. Opin. Chem. Biol.202056516210.1016/j.cbpa.2019.11.009 31981999
    [Google Scholar]
  35. FuziwaraC.S. de MelloD.C. KimuraE.T. Gene editing with CRISPR/Cas methodology and thyroid cancer: Where are we?Cancers (Basel)202214384410.3390/cancers14030844 35159110
    [Google Scholar]
  36. Taylor-PapadimitriouJ. BurchellJ.M. Histone methylases and demethylases regulating antagonistic methyl marks: Changes occurring in cancer.Cells2022117111310.3390/cells11071113 35406676
    [Google Scholar]
  37. DemelashA. RudrabhatlaP. PantH.C. WangX. AminN.D. McWhiteC.D. NaizhenX. LinnoilaR.I. Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells through Cdk5/p35 pathway.Mol. Biol. Cell201223152856286610.1091/mbc.e10‑12‑1010 22696682
    [Google Scholar]
  38. XieM. ZhangL. HanL. HuangL. HuangY. YangM. ZhangN. The ASH1L-AS1-ASH1L axis controls NME1-mediated activation of the RAS signaling in gastric cancer.Oncogene202342463435344510.1038/s41388‑023‑02855‑8 37805663
    [Google Scholar]
  39. NakaokaT. SaitoY. SaitoH. Aberrant DNA methylation as a biomarker and a therapeutic target of cholangiocarcinoma.Int. J. Mol. Sci.2017186111110.3390/ijms18061111 28545228
    [Google Scholar]
  40. LvY. HuQ. ShiM. WangW. ZhengY. YangZ. PengL. BiD. ZhangA. HuY. The role of PSMB5 in sodium arsenite–induced oxidative stress in L-02 cells.Cell Stress Chaperones202025353354010.1007/s12192‑020‑01104‑1 32301004
    [Google Scholar]
  41. KwonC.H. ParkH.J. ChoiY.R. KimA. KimH.W. ChoiJ.H. HwangC.S. LeeS.J. ChoiC.I. JeonT.Y. KimD.H. KimG.H. ParkD.Y. PSMB8 and PBK as potential gastric cancer subtype-specific biomarkers associated with prognosis.Oncotarget2016716214542146810.18632/oncotarget.7411 26894977
    [Google Scholar]
  42. Bruzzoni-GiovanelliH. GonzálezJ.R. SigauxF. VilloutreixB.O. CayuelaJ.M. GuilhotJ. PreudhommeC. GuilhotF. PoyetJ.L. RousselotP. Genetic polymorphisms associated with increased risk of developing chronic myelogenous leukemia.Oncotarget2015634362693627710.18632/oncotarget.5915 26474455
    [Google Scholar]
  43. LiuJ. MiJ. LiuS. ChenH. JiangL. PSMB5 overexpression is correlated with tumor proliferation and poor prognosis in hepatocellular carcinoma.FEBS Open Bio202212112025204110.1002/2211‑5463.13479 36062301
    [Google Scholar]
  44. GuoJ.Y. JingZ. LiX. LiuL. Bioinformatic Analysis Identifying PSMB 1/2/3/4/6/8/9/10 as Prognostic Indicators in Clear Cell Renal Cell Carcinoma.Int. J. Med. Sci.202219579681210.7150/ijms.71152 35693739
    [Google Scholar]
  45. LiewP.L. HuangR.L. WengY.C. FangC.L. Hui-Ming HuangT. LaiH.C. Distinct methylation profile of mucinous ovarian carcinoma reveals susceptibility to proteasome inhibitors.Int. J. Cancer2018143235536710.1002/ijc.31324 29451304
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206312004240712072532
Loading
/content/journals/acamc/10.2174/0118715206312004240712072532
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): ASH1L; CHOL cancer; H3K4me2 peptide; PHD-BAH domain; PSMB family genes; W2603A mutation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test