Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Liver and Breast cancer are ranked as the most prevailing cancers that cause high cancer-related mortality. As cancer is a life-threatening disease that affects the human population globally, there is a need to develop novel therapies. Among the available treatment options include radiotherapy, chemotherapy, surgery, and immunotherapy. The most superlative modern method is the use of plant-derived anticancer drugs that target the cancerous cells and inhibit their proliferation. Plant-derived compounds are generally considered safer than synthetic drugs/traditional therapies and could serve as potential novel targets to treat liver and breast cancer to revolutionize cancer treatment. Alkaloids and Polyphenols have been shown to act as anticancer agents through molecular approaches. They disrupt various cellular mechanisms, inhibit the production of cyclins and CDKs to arrest the cell cycle, and activate the DNA repairing mechanism by upregulating p53, p21, and p38 expression. In severe cases, when no repair is possible, they induce apoptosis in liver and breast cancer cells by activating caspase-3, 8, and 9 and increasing the Bax/Bcl-2 ratio. They also deactivate several signaling pathways, such as PI3K/AKT/mTOR, STAT3, NF-κB, Shh, MAPK/ERK, and Wnt/β-catenin pathways, to control cancer cell progression and metastasis. The highlights of this review are the regulation of specific protein expressions that are crucial in cancer, such as in HER2 over-expressing breast cancer cells; alkaloids and polyphenols have been reported to reduce HER2 as well as MMP expression. This study reviewed more than 40 of the plant-based alkaloids and polyphenols with specific molecular targets against liver and breast cancer. Among them, Oxymatrine, Hirsutine, Piperine, Solamargine, and Brucine are currently under clinical trials by qualifying as potent anticancer agents due to lesser side effects. As a lot of research is there on anticancer compounds, there is a desideratum to compile data to move towards clinical trials phase 4 and control the prevalence of liver and breast cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206302216240628072554
2024-07-03
2025-04-01
Loading full text...

Full text loading...

References

  1. YuX.N. ChenH. LiuT.T. WuJ. ZhuJ.M. ShenX.Z. Targeting the mTOR regulatory network in hepatocellular carcinoma: Are we making headway?Biochim. Biophys. Acta Rev. Cancer20191871237939110.1016/j.bbcan.2019.03.00130951815
    [Google Scholar]
  2. JeongS. ZhengB. WangH. XiaQ. ChenL. Nervous system and primary liver cancer.Biochim. Biophys. Acta Rev. Cancer20181869228629210.1016/j.bbcan.2018.04.00229660379
    [Google Scholar]
  3. LiuW ZhangQ TangQ HuC HuangJ LiuY Lycorine inhibits cell proliferation and migration by inhibiting ROCK1/cofilin-induced actin dynamics in HepG2 hepatoblastoma cells.Oncol Rep.201840422982306
    [Google Scholar]
  4. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  5. DeSantisC.E. MaJ. GaudetM.M. NewmanL.A. MillerK.D. Goding SauerA. JemalA. SiegelR.L. Breast cancer statistics, 2019.CA Cancer J. Clin.201969643845110.3322/caac.2158331577379
    [Google Scholar]
  6. NagalingamA. ArbiserJ.L. BonnerM.Y. SaxenaN.K. SharmaD. Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis.Breast Cancer Res.2012141R3510.1186/bcr312822353783
    [Google Scholar]
  7. BaleR. PutzerD. SchullianP. Local treatment of breast cancer liver metastasis.Cancers2019119134110.3390/cancers1109134131514362
    [Google Scholar]
  8. SemenzaG.L. Cancer–stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis.Oncogene201332354057406310.1038/onc.2012.57823222717
    [Google Scholar]
  9. MaR. FengY. LinS. ChenJ. LinH. LiangX. ZhengH. CaiX. Mechanisms involved in breast cancer liver metastasis.J. Transl. Med.20151316410.1186/s12967‑015‑0425‑025885919
    [Google Scholar]
  10. KeatingG.M. Sorafenib: A review in hepatocellular carcinoma.Target. Oncol.201712224325310.1007/s11523‑017‑0484‑728299600
    [Google Scholar]
  11. TinkleCL Haas-KoganD Hepatocellular carcinoma: Natural history, current management, and emerging tools.J. Biologics: Targets Ther.20126207
    [Google Scholar]
  12. FurrukhM. QureshiA. Treatment of breast cancer; Review and updates.J. Ayub Med. Coll. Abbottabad201830226427429938432
    [Google Scholar]
  13. LambC.A. VanzulliS.I. LanariC. Hormone receptors in breast cancer: More than estrogen receptors.Medicina201979Spec 6/154054531864223
    [Google Scholar]
  14. YouL. AnR. LiangK. WangX. Anti-breast cancer agents from Chinese herbal medicines.Mini Rev. Med. Chem.201313110110510.2174/13895571380448478523020239
    [Google Scholar]
  15. KaberaJ.N. SemanaE. MussaA.R. HeX. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties.J. Pharm. Pharmacol.201427377392
    [Google Scholar]
  16. TiwariR. RanaC. Plant secondary metabolites: A review.Int. J. Eng. Res. Gen. Sci.201535661670
    [Google Scholar]
  17. AnttilaJ.V. ShubinM. CairnsJ. BorseF. GuoQ. MononenT. Vázquez-GarcíaI. PulkkinenO. MustonenV. Contrasting the impact of cytotoxic and cytostatic drug therapies on tumour progression.PLOS Comput. Biol.20191511e100749310.1371/journal.pcbi.100749331738747
    [Google Scholar]
  18. KulchitskyA. PotkinI. ZubenkoS. ChernovN. TalabaevV. DemidchikE. Cytotoxic effects of chemotherapeutic drugs and heterocyclic compounds at application on the cells of primary culture of neuroepithelium tumors.J. Med. Chem.2012812232
    [Google Scholar]
  19. KhalidE.B. AymanE.L.M.E.L.K. RahmanH. AbdelkarimG. NajdaA. EL-Meghawry E Natural products against cancer angiogenesis.Tumour Biol.20163711145131453610.1007/s13277‑016‑5364‑827651162
    [Google Scholar]
  20. WuQ. YangZ. NieY. ShiY. FanD. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches.Cancer Lett.2014347215916610.1016/j.canlet.2014.03.01324657660
    [Google Scholar]
  21. IqbalJ. AbbasiB.A. MahmoodT. KanwalS. AliB. ShahS.A. KhalilA.T. Plant-derived anticancer agents: A green anticancer approach.Asian Pac. J. Trop. Biomed.20177121129115010.1016/j.apjtb.2017.10.016
    [Google Scholar]
  22. FosterD.A. YellenP. XuL. SaqcenaM. Regulation of G1 cell cycle progression: Distinguishing the restriction point from a nutrient-sensing cell growth checkpoint (s).Genes Cancer20101111124113110.1177/194760191039298921779436
    [Google Scholar]
  23. ViscontiR. DellaM.R. GriecoD. Cell cycle checkpoint in cancer: A therapeutically targetable double-edged sword.J. Exp. Clin. Cancer Res.201635115310.1186/s13046‑016‑0433‑927670139
    [Google Scholar]
  24. HabliZ. ToumiehG. FatfatM. RahalO. Gali-MuhtasibH. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms.Molecules201722225010.3390/molecules2202025028208712
    [Google Scholar]
  25. PeiH. XueL. TangM. TangH. KuangS. WangL. MaX. CaiX. LiY. ZhaoM. PengA. YeH. ChenL. Alkaloids from black pepper (Piper nigrum L.) exhibit anti-inflammatory activity in murine macrophages by inhibiting activation of NF-κB pathway.J. Agric. Food Chem.20206882406241710.1021/acs.jafc.9b0775432031370
    [Google Scholar]
  26. GhoshN. ChakiR. MandalV. MandalS.C. COX-2 as a target for cancer chemotherapy.Pharmacol. Rep.201062223324410.1016/S1734‑1140(10)70262‑020508278
    [Google Scholar]
  27. Abdal DayemA. ChoiH. YangG.M. KimK. SahaS. ChoS.G. The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: Molecular mechanisms.Nutrients20168958110.3390/nu809058127657126
    [Google Scholar]
  28. SinglaR. JaitakV. Multitargeted molecular docking study of natural-derived alkaloids on breast cancer pathway components.Curr. Computeraided Drug Des.201713429430228382865
    [Google Scholar]
  29. CaoJ. WeiR. YaoS. Matrine has pro-apoptotic effects on liver cancer by triggering mitochondrial fission and activating Mst1-JNK signalling pathways.J. Physiol. Sci.201969218519810.1007/s12576‑018‑0634‑430155612
    [Google Scholar]
  30. QianL. LiuY. XuY. JiW. WuQ. LiuY. GaoQ. SuC. Matrine derivative WM130 inhibits hepatocellular carcinoma by suppressing EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways.Cancer Lett.2015368112613410.1016/j.canlet.2015.07.03526259512
    [Google Scholar]
  31. LiuC. YangS. WangK. BaoX. LiuY. ZhouS. LiuH. QiuY. WangT. YuH. Alkaloids from traditional chinese medicine against hepatocellular carcinoma.Biomed. Pharmacother.201912010954310.1016/j.biopha.2019.10954331655311
    [Google Scholar]
  32. RoyM. LiangL. XiaoX. FengP. YeM. LiuJ. Lycorine: A prospective natural lead for anticancer drug discovery.Biomed. Pharmacother.201810761562410.1016/j.biopha.2018.07.14730114645
    [Google Scholar]
  33. LiF. DongX. LinP. JiangJ. Regulation of Akt/FoxO3a/Skp2 axis is critically involved in berberine-induced cell cycle arrest in hepatocellular carcinoma cells.Int. J. Mol. Sci.201819232710.3390/ijms1902032729360760
    [Google Scholar]
  34. Jabbarzadeh KaboliP. RahmatA. IsmailP. LingK.H. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer.Eur. J. Pharmacol.201474058459510.1016/j.ejphar.2014.06.02524973693
    [Google Scholar]
  35. SunY. WangW. TongY. Berberine inhibits proliferative ability of breast cancer cells by reducing metadherin.Med. Sci. Monit.2019259058906610.12659/MSM.91448631779025
    [Google Scholar]
  36. GuoY PeiX. Tetrandrine-induced autophagy in MDA-MB-231 triple-negative breast cancer cell through the inhibition of PI3K/AKT/mTOR signaling.Altern. Med. Rev.201920197517431
    [Google Scholar]
  37. KangY.H. ParkM.Y. YoonD.Y. HanS.R. LeeC.I. JiN.Y. MyungP.K. LeeH.G. KimJ.W. YeomY.I. JangY.J. AhnD.K. KimJ.W. SongE.Y. Dysregulation of overexpressed IL-32α in hepatocellular carcinoma suppresses cell growth and induces apoptosis through inactivation of NF-κB and Bcl-2.Cancer Lett.2012318222623310.1016/j.canlet.2011.12.02322198481
    [Google Scholar]
  38. ZhouX. XuZ. LiA. ZhangZ. Double-sides sticking mechanism of vinblastine interacting with α,β-tubulin to get activity against cancer cells.J. Biomol. Struct. Dyn.2019371540804091
    [Google Scholar]
  39. LeeH. BaekS. LeeJ. KimC. KoJ.H. LeeS.G. ChinnathambiA. AlharbiS. YangW. UmJ.Y. SethiG. AhnK. Isorhynchophylline, a potent plant alkaloid, induces apoptotic and anti-metastatic effects in human hepatocellular carcinoma cells through the modulation of diverse cell signaling cascades.Int. J. Mol. Sci.2017185109510.3390/ijms1805109528534824
    [Google Scholar]
  40. ShuG. MiX. CaiJ. ZhangX. YinW. YangX. LiY. ChenL. DengX. Brucine, an alkaloid from seeds of Strychnos nux-vomica Linn., represses hepatocellular carcinoma cell migration and metastasis: The role of hypoxia inducible factor 1 pathway.Toxicol. Lett.201322229110110.1016/j.toxlet.2013.07.02423933019
    [Google Scholar]
  41. SaraswatiS. AlhaiderA.A. AgrawalS.S. Anticarcinogenic effect of brucine in diethylnitrosamine initiated and phenobarbital-promoted hepatocarcinogenesis in rats.Chem. Biol. Interact.2013206221422110.1016/j.cbi.2013.09.01224060683
    [Google Scholar]
  42. DengX. YinF. LuX. CaiB. YinW. The apoptotic effect of brucine from the seed of Strychnos nux-vomica on human hepatoma cells is mediated via Bcl-2 and Ca2+ involved mitochondrial pathway.Toxicol. Sci.2006911596910.1093/toxsci/kfj11416443926
    [Google Scholar]
  43. SaniI.K. MarashiS.H. KalaliniaF. Solamargine inhibits migration and invasion of human hepatocellular carcinoma cells through down-regulation of matrix metalloproteinases 2 and 9 expression and activity.Toxicol. In Vitro 201529589390010.1016/j.tiv.2015.03.01225819016
    [Google Scholar]
  44. KalaliniaF. Karimi-SaniI. Anticancer properties of solamargine: A systematic review.Phytother. Res.201731685887010.1002/ptr.580928383149
    [Google Scholar]
  45. MunariC.C. de OliveiraP.F. CamposJ.C.L. MartinsS.P.L. Da CostaJ.C. BastosJ.K. TavaresD.C. Antiproliferative activity of Solanum lycocarpum alkaloidic extract and their constituents, solamargine and solasonine, in tumor cell lines.J. Nat. Med.201468123624110.1007/s11418‑013‑0757‑023475509
    [Google Scholar]
  46. ZhouL. LiX. ChenX. LiZ. LiuX. ZhouS. ZhongQ. YiT. WeiY. ZhaoX. QianZ. In vivo antitumor and antimetastatic activities of camptothecin encapsulated with N-trimethyl chitosan in a preclinical mouse model of liver cancer.Cancer Lett.20102971566410.1016/j.canlet.2010.04.02420546992
    [Google Scholar]
  47. LinB. LiD. ZhangL. Oxymatrine mediates Bax and Bcl-2 expression in human breast cancer MCF-7 cells.Pharmazie201671315415727183711
    [Google Scholar]
  48. GreenshieldsA.L. DoucetteC.D. SuttonK.M. MaderaL. AnnanH. YaffeP.B. KnickleA.F. DongZ. HoskinD.W. Piperine inhibits the growth and motility of triple-negative breast cancer cells.Cancer Lett.2015357112914010.1016/j.canlet.2014.11.01725444919
    [Google Scholar]
  49. DoM.T. KimH.G. ChoiJ.H. KhanalT. ParkB.H. TranT.P. JeongT.C. JeongH.G. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells.Food Chem.201314132591259910.1016/j.foodchem.2013.04.12523870999
    [Google Scholar]
  50. PatelS. SarwatM. KhanT.H. Mechanism behind the anti-tumour potential of saffron ( Crocus sativus L.): The molecular perspective.Crit. Rev. Oncol. Hematol.2017115273510.1016/j.critrevonc.2017.04.01028602167
    [Google Scholar]
  51. KimBH ParkJ-W Epidemiology of liver cancer in South Korea.J. Clin. Mol. Hepatol.2018241110.3350/cmh.2017.0112
    [Google Scholar]
  52. YangF. ShiL. LiangT. JiL. ZhangG. ShenY. ZhuF. XuL. Anti-tumor effect of evodiamine by inducing Akt-mediated apoptosis in hepatocellular carcinoma.Biochem. Biophys. Res. Commun.20174851546110.1016/j.bbrc.2017.02.01728189683
    [Google Scholar]
  53. LouC. TakahashiK. IrimuraT. SaikiI. HayakawaY. Identification of Hirsutine as an anti-metastatic phytochemical by targeting NF-κB activation.Int. J. Oncol.20144552085209110.3892/ijo.2014.262425175557
    [Google Scholar]
  54. LouC. YokoyamaS. SaikiI. HayakawaY. Selective anticancer activity of hirsutine against HER2-positive breast cancer cells by inducing DNA damage.Oncol. Rep.20153342072207610.3892/or.2015.379625672479
    [Google Scholar]
  55. CheJ. ZhangF.Z. ZhaoC.Q. HuX.D. FanS.J. Cyclopamine is a novel Hedgehog signaling inhibitor with significant anti-proliferative, anti-invasive and anti-estrogenic potency in human breast cancer cells.Oncol. Lett.2013541417142110.3892/ol.2013.119523599805
    [Google Scholar]
  56. IsahT. Anticancer alkaloids from trees: Development into drugs.Pharmacogn. Rev.20161020909910.4103/0973‑7847.19404728082790
    [Google Scholar]
  57. XieS. ZhouJ. Harnessing plant biodiversity for the discovery of novel anticancer drugs targeting microtubules.Front. Plant Sci.2017872010.3389/fpls.2017.0072028523014
    [Google Scholar]
  58. ZhouY. ZhengJ. LiY. XuD.P. LiS. ChenY.M. LiH.B. Natural polyphenols for prevention and treatment of cancer.Nutrients20168851510.3390/nu808051527556486
    [Google Scholar]
  59. SegunP.A. IsmailF.M.D. OgboleO.O. NaharL. EvansA.R. AjaiyeobaE.O. SarkerS.D. Acridone alkaloids from the stem bark of Citrus aurantium display selective cytotoxicity against breast, liver, lung and prostate human carcinoma cells.J. Ethnopharmacol.201822713113810.1016/j.jep.2018.08.03930189240
    [Google Scholar]
  60. HabartovaK. CahlíkováL. ŘezáčováM. HavelekR. The biological activity of alkaloids from the Amaryllidaceae: From cholinesterases inhibition to anticancer activityNat. Prod. Commun.201611101934578X160110103810.1177/1934578X1601101038
    [Google Scholar]
  61. ShiuL.Y. LiangC.H. ChangL.C. SheuH.M. TsaiE.M. KuoK.W. Solamargine induces apoptosis and enhances susceptibility to trastuzumab and epirubicin in breast cancer cells with low or high expression levels of HER2/neu.Biosci. Rep.2009291354510.1042/BSR2008002818699774
    [Google Scholar]
  62. ZhangX. HarringtonN. MoraesR.C. WuM.F. HilsenbeckS.G. LewisM.T. Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo).Breast Cancer Res. Treat.2009115350552110.1007/s10549‑008‑0093‑318563554
    [Google Scholar]
  63. LiY. GuoM. LinZ. ZhaoM. XiaoM. WangC. XuT. ChenT. ZhuB. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis.Int. J. Nanomedicine2016116693670210.2147/IJN.S12266627994465
    [Google Scholar]
  64. AvtanskiD. PoretskyL. Phyto-polyphenols as potential inhibitors of breast cancer metastasis.Mol. Med.20182412910.1186/s10020‑018‑0032‑730134816
    [Google Scholar]
  65. VallianouN.G. EvangelopoulosA. SchizasN. KazazisC. Potential anticancer properties and mechanisms of action of curcumin.Anticancer Res.201535264565125667441
    [Google Scholar]
  66. TangS.M. DengX.T. ZhouJ. LiQ.P. GeX.X. MiaoL. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects.Biomed. Pharmacother.202012110960410.1016/j.biopha.2019.10960431733570
    [Google Scholar]
  67. VaroniE.M. Lo FaroA.F. Sharifi-RadJ. IritiM. Anticancer molecular mechanisms of resveratrol.Front. Nutr.20163810.3389/fnut.2016.0000827148534
    [Google Scholar]
  68. FuY. ChangH. PengX. BaiQ. YiL. ZhouY. ZhuJ. MiM. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway.PLoS One201497e10253510.1371/journal.pone.010253525068516
    [Google Scholar]
  69. SeoH.S. KuJ.M. ChoiH.S. ChoiY.K. WooJ.K. KimM. KimI. NaC.H. HurH. JangB.H. ShinY.C. KoS.G. Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells.Oncol. Rep.2016361314210.3892/or.2016.478627175602
    [Google Scholar]
  70. DasM. MannaK. Chalcone scaffold in anticancer armamentarium: A molecular insight.J. Toxicol.201620167651047
    [Google Scholar]
  71. CascãoR. FonsecaJ.E. MoitaL.F. Celastrol: A spectrum of treatment opportunities in chronic diseases.Front. Med.201746910.3389/fmed.2017.0006928664158
    [Google Scholar]
  72. XiongJ. LiJ. YangQ. WangJ. SuT. ZhouS. Gossypol has anti-cancer effects by dual-targeting MDM2 and VEGF in human breast cancer.Breast Cancer Res.20171912710.1186/s13058‑017‑0818‑528274247
    [Google Scholar]
  73. PonsD.G. Nadal-SerranoM. Torrens-MasM. ValleA. OliverJ. RocaP. UCP2 inhibition sensitizes breast cancer cells to therapeutic agents by increasing oxidative stress.Free Radic. Biol. Med.201586677710.1016/j.freeradbiomed.2015.04.03225960046
    [Google Scholar]
  74. PeiróG. Ortiz-MartínezF. GallardoA. Pérez-BalaguerA. Sánchez-PayáJ. PonceJ.J. TibauA. López-VilaroL. EscuinD. AdroverE. BarnadasA. LermaE. Src, a potential target for overcoming trastuzumab resistance in HER2-positive breast carcinoma.Br. J. Cancer2014111468969510.1038/bjc.2014.32724937674
    [Google Scholar]
  75. BernardM.M. McConneryJ.R. HoskinD.W. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells.Exp. Mol. Pathol.2017102237037610.1016/j.yexmp.2017.03.00628315687
    [Google Scholar]
  76. DeepG. AgarwalR. Antimetastatic efficacy of silibinin: Molecular mechanisms and therapeutic potential against cancer.Cancer Metastasis Rev.201029344746310.1007/s10555‑010‑9237‑020714788
    [Google Scholar]
  77. JiangK. WangW. JinX. WangZ. JiZ. MengG. Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells.Oncol. Rep.20153362711271810.3892/or.2015.391525891311
    [Google Scholar]
  78. HasanzadehM. SamarghandianS. Azimi-NezhadM. BorjiA. JabbariF. FarkhondehT. SaminiM. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis.Pharmacogn. Mag.20161247Suppl. 443610.4103/0973‑1296.19145327761071
    [Google Scholar]
  79. HuangW.W. TsaiS.C. PengS.F. LinM.W. ChiangJ.H. ChiuY.J. FushiyaS. TsengM.T. YangJ.S. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells.Int. J. Oncol.20134262069207710.3892/ijo.2013.190923591552
    [Google Scholar]
  80. LeeG.A. ChoiK.C. HwangK.A. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells.Environ. Toxicol. Pharmacol.201749485710.1016/j.etap.2016.11.01627902959
    [Google Scholar]
  81. LuL. GuoQ. ZhaoL. Overview of oroxylin A: A promising flavonoid compound.Phytother. Res.201630111765177410.1002/ptr.569427539056
    [Google Scholar]
  82. ShenM. GuoM. WangZ. LiY. KongD. ShaoJ. TanS. ChenA. ZhangF. ZhangZ. ZhengS. ROS-dependent inhibition of the PI3K/Akt/mTOR signaling is required for Oroxylin A to exert anti-inflammatory activity in liver fibrosis.Int. Immunopharmacol.20208510663710.1016/j.intimp.2020.10663732512269
    [Google Scholar]
  83. XuH. ZhangS. Scutellarin-induced apoptosis in HepG2 hepatocellular carcinoma cells via a STAT3 pathway.Phytother. Res.201327101524152810.1002/ptr.489223192830
    [Google Scholar]
  84. Trejo-SolísC. Pedraza-ChaverríJ. Torres-RamosM. Jiménez-FarfánD. CruzS.A. Serrano-GarcíaN. Multiple molecular and cellular mechanisms of action of lycopene in cancer inhibition.Evid. Based Complement Alternat. Med.2013201370512110.1155/2013/705121
    [Google Scholar]
  85. BimonteS. AlbinoV. PiccirilloM. NastoA. MolinoC. PalaiaR. CascellaM. Epigallocatechin-3-gallate in the prevention and treatment of hepatocellular carcinoma: Experimental findings and translational perspectives.Drug Des. Devel. Ther.20191361162110.2147/DDDT.S18007930858692
    [Google Scholar]
  86. WangZ. ShenG. XieJ. LiB. GaoQ. Rottlerin upregulates DDX3 expression in hepatocellular carcinoma.Biochem. Biophys. Res. Commun.201849511503150910.1016/j.bbrc.2017.11.19829203243
    [Google Scholar]
  87. ParkH.J. JeonY.K. YouD.H. NamM.J. Daidzein causes cytochrome c-mediated apoptosis via the Bcl-2 family in human hepatic cancer cells.Food Chem. Toxicol.20136054254910.1016/j.fct.2013.08.02223959101
    [Google Scholar]
  88. MageeP.J. AllsoppP. SamaletdinA. RowlandI.R. Daidzein, R-(+)equol and S-(−)equol inhibit the invasion of MDA-MB-231 breast cancer cells potentially via the down-regulation of matrix metalloproteinase-2.Eur. J. Nutr.201453134535010.1007/s00394‑013‑0520‑z23568763
    [Google Scholar]
  89. KooJ. Cabarcas-PetroskiS. PetrieJ.L. DietteN. WhiteR.J. SchrammL. Induction of proto-oncogene BRF2 in breast cancer cells by the dietary soybean isoflavone daidzein.BMC Cancer201515190510.1186/s12885‑015‑1914‑526573593
    [Google Scholar]
  90. HuS. HuangL. MengL. SunH. ZhangW. XuY. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways.Mol. Med. Rep.20151256745675110.3892/mmr.2015.426926502751
    [Google Scholar]
  91. FangD. XiongZ. XuJ. YinJ. LuoR. Chemopreventive mechanisms of galangin against hepatocellular carcinoma: A review.Biomed. Pharmacother.20191092054206110.1016/j.biopha.2018.09.15430551461
    [Google Scholar]
  92. SuL. ChenX. WuJ. LinB. ZhangH. LanL. LuoH. Galangin inhibits proliferation of hepatocellular carcinoma cells by inducing endoplasmic reticulum stress.Food Chem. Toxicol.20136281081610.1016/j.fct.2013.10.01924161691
    [Google Scholar]
  93. LewandowskaU. SzewczykK. OwczarekK. HrabecZ. PodsędekA. SosnowskaD. HrabecE. Procyanidins from evening primrose (Oenothera paradoxa) defatted seeds inhibit invasiveness of breast cancer cells and modulate the expression of selected genes involved in angiogenesis, metastasis, and apoptosis.Nutr. Cancer20136581219123110.1080/01635581.2013.83031424099118
    [Google Scholar]
  94. GarciaA. ZhengY. ZhaoC. ToschiA. FanJ. ShraibmanN. BrownH.A. Bar-SagiD. FosterD.A. ArbiserJ.L. Honokiol suppresses survival signals mediated by Ras-dependent phospholipase D activity in human cancer cells.Clin. Cancer Res.200814134267427410.1158/1078‑0432.CCR‑08‑010218594009
    [Google Scholar]
  95. AvtanskiD.B. NagalingamA. BonnerM.Y. ArbiserJ.L. SaxenaN.K. SharmaD. Honokiol inhibits epithelial—mesenchymal transition in breast cancer cells by targeting signal transducer and activator of transcription 3/Zeb1/E‐cadherin axis.Mol. Oncol.20148356558010.1016/j.molonc.2014.01.00424508063
    [Google Scholar]
  96. WangN. WangZ.Y. MoS.L. LooT.Y. WangD.M. LuoH.B. YangD.P. ChenY.L. ShenJ.G. ChenJ.P. Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer.Breast Cancer Res. Treat.2012134394395510.1007/s10549‑012‑1977‑922350787
    [Google Scholar]
  97. SunG. ZhangS. XieY. ZhangZ. ZhaoW. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells.Oncol. Lett.201611115015810.3892/ol.2015.384526870182
    [Google Scholar]
  98. ChenY.C. YangL.L. LeeT.J.F. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-κB activation.Biochem. Pharmacol.200059111445145710.1016/S0006‑2952(00)00255‑010751555
    [Google Scholar]
  99. NahumA. HirschK. DanilenkoM. WattsC.K.W. PrallO.W.J. LevyJ. SharoniY. Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27Kip1 in the cyclin E–cdk2 complexes.Oncogene200120263428343610.1038/sj.onc.120445211423993
    [Google Scholar]
  100. Garcia-OliveiraP. OteroP. PereiraA.G. ChamorroF. CarpenaM. EchaveJ. Fraga-CorralM. Simal-GandaraJ. PrietoM.A. Status and challenges of plant-anticancer compounds in cancer treatment.Pharmaceuticals202114215710.3390/ph1402015733673021
    [Google Scholar]
  101. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.0161432116665
    [Google Scholar]
  102. JafriA. AmjadS. BanoS. KumarS. SerajuddinM. ArshadM. Efficacy of nano-phytochemicals over pure phytochemicals against various cancers: current trends and future prospects.Nanomaterials and Environmental Biotechnology.Springer2020407424
    [Google Scholar]
  103. TauroS. DhokchawleB. MohiteP. NaharD. NadarS. CoutinhoE. Natural anticancer agents: Their therapeutic potential, challenges and promising outcomes.Curr. Med. Chem.202431784887010.2174/092986733066623050211315037138435
    [Google Scholar]
  104. MelfiF. CarradoriS. MencarelliN. CampestreC. GalloriniM. Di GiacomoS. Di SottoA. Natural products as a source of new anticancer chemotypes.Expert Opin. Ther. Pat.2023331172174410.1080/13543776.2023.226556137775999
    [Google Scholar]
  105. AlharbiK.S. AlmalkiW.H. MakeenH.A. AlbrattyM. MerayaA.M. NagraikR. SharmaA. KumarD. ChellappanD.K. SinghS.K. DuaK. GuptaG. Role of medicinal plant‐derived nutraceuticals as a potential target for the treatment of breast cancer.J. Food Biochem.20224612e1438710.1111/jfbc.1438736121313
    [Google Scholar]
  106. ThilagavathiR. BegumS.S. VaratharajS.D. BalasubramaniamA. GeorgeJ.S. SelvamC. Recent insights into the hepatoprotective potential of medicinal plants and plant-derived compounds.Phytother. Res.20233752102211810.1002/ptr.782137022281
    [Google Scholar]
  107. TwaijB.M. HasanM.N. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses.Int. J. Plant Biol.202213141410.3390/ijpb13010003
    [Google Scholar]
  108. WawroschC. ZotchevS.B. Production of bioactive plant secondary metabolites through in vitro technologies—status and outlook.Appl. Microbiol. Biotechnol.2021105186649666810.1007/s00253‑021‑11539‑w34468803
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206302216240628072554
Loading
/content/journals/acamc/10.2174/0118715206302216240628072554
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test