Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3279
  • E-ISSN: 2210-3287

Abstract

Aims

In the realm of Big Data Analytics, ensuring the fairness of data-driven decision making processes is imperative. This abstract introduces the Learning Embedded Fairness Interpretation (LEFI) Model, a novel approach designed to uncover and address data fairness functional requirements with an exceptional accuracy rate of 97%. The model harnesses advanced data mapping and classification analysis techniques, employing Explainable-AI (xAI) for transparent insights into fairness within large datasets.

Methods

The LEFI Model excels in navigating diverse datasets by mapping data elements to discern patterns contributing to biases. Through systematic classification analysis, LEFI identifies potential sources of unfairness, achieving an accuracy rate of 97% in discerning and addressing these issues. This high accuracy empowers data analysts and stakeholders with confidence in the model's assessments, facilitating informed and reliable decision-making. Crucially, the LEFI Model's implementation in Python leverages the power of this versatile programming language. The Python implementation seamlessly integrates advanced mapping, classification analysis, and xAI to provide a robust and efficient solution for achieving data fairness in Big Data Analytics.

Results

This implementation ensures accessibility and ease of adoption for organizations aiming to embed fairness into their data-driven processes. The LEFI Model, with its 97% accuracy, exemplifies a comprehensive solution for data fairness in Big Data Analytics. Moreover, by combining advanced technologies and implementing them in Python, LEFI stands as a reliable framework for organizations committed to ethical data usage.

Conclusion

The model not only contributes to the ongoing dialogue on fairness but also sets a new standard for accuracy and transparency in the analytics pipeline, advocating for a more equitable future in the realm of Big Data Analytics.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279312138240625052021
2024-07-19
2025-06-20
Loading full text...

Full text loading...

References

  1. AldoseriA. Al-KhalifaK.N. HamoudaA.M. Re-thinking data strategy and integration for artificial intelligence: Concepts, opportunities, and challenges.Appl. Sci. (Basel)20231312708210.3390/app13127082
    [Google Scholar]
  2. HabibullahK.M. Non-functional requirements for machine learning: Understanding current use and challenges among practitioners.Requirements EngineeringBerlin, HeidelbergSpringerLink2023
    [Google Scholar]
  3. AhmedA. XiR. HouM. ShahS.A. HameedS. Harnessing big data analytics for healthcare: A comprehensive review of frameworks, implications, applications, and impacts.IEEE Access20231111289111292810.1109/ACCESS.2023.3323574
    [Google Scholar]
  4. DaganD.T. WilkinsE.J. What is “big data” and how should we use it? The role of large datasets, secondary data, and associated analysis techniques in outdoor recreation research.J. Outdoor Recreat. Tour.20234410066810.1016/j.jort.2023.100668
    [Google Scholar]
  5. UrsS.R. MinhajM. Evolution of data science and its education in iSchools: An impressionistic study using curriculum analysis.J. Assoc. Inf. Sci. Technol.202374660662210.1002/asi.24649
    [Google Scholar]
  6. WitteH. BlatterT.U. NagabhushanaP. SchärD. AckermannJ. CadamuroJ. LeichtleA.B. Statistical learning and big data applications.J Lab Med2023474003710.1515/labmed‑2023‑0037
    [Google Scholar]
  7. SestinoA. KahlawiA. De MauroA. Decoding the data economy: A literature review of its impact on business, society and digital transformation.Eur. J. Innov. Manage.202310.1108/EJIM‑01‑2023‑0078
    [Google Scholar]
  8. MühlhoffR. Predictive privacy: Collective data protection in the context of artificial intelligence and big data.Big Data Soc.202310110.1177/20539517231166886
    [Google Scholar]
  9. LiuY. LuoY. NaidechA.M. Big data in stroke: How to use big data to make the next management decision.Neurotherapeutics202320374475710.1007/s13311‑023‑01358‑436899137
    [Google Scholar]
  10. YaoL. BianY. JiX. GuoM. Research and regression analysis of enterprise attendance data based on big data technology.Proceedings of the 2nd International Conference on Information, Control and Automation, ICICA 2022December 2-4, 2022Chongqing, China202310.4108/eai.2‑12‑2022.2328007
    [Google Scholar]
  11. El HajjM. HammoudJ. Unveiling the influence of artificial intelligence and machine learning on financial markets: A comprehensive analysis of AI applications in trading, risk management, and financial operations.J Risk Finan Manag2023161043410.3390/jrfm16100434
    [Google Scholar]
  12. ZhangW. WeissJ.C. Fairness with censorship and group constraints.Knowl. Inf. Syst.20236562571259410.1007/s10115‑023‑01842‑5
    [Google Scholar]
  13. JumaM. AlattarF. TouqanB. Securing big data integrity for industrial IoT in smart manufacturing based on the Trusted Consortium Blockchain (TCB).IoT202341275510.3390/iot4010002
    [Google Scholar]
  14. YadalaS. PundruC.S.R. SolankiV.K. A Novel Private Encryption Model in IoT Under Cloud Computing Domain.Intelligent Systems & NetworksBerlin, HeidelbergSpringerLink202326327010.1007/978‑981‑99‑4725‑6_33
    [Google Scholar]
  15. AlthabatahA. YaqotM. MenezesB. KerbacheL. Transformative procurement trends: Integrating industry 4.0 technologies for enhanced procurement processes.Logistics2023736310.3390/logistics7030063
    [Google Scholar]
  16. AlghamdiA. A hybrid method for big data analysis using fuzzy clustering, feature selection and adaptive neuro-fuzzy inferences system techniques: Case of Mecca and Medina hotels in Saudi Arabia.Arab. J. Sci. Eng.20234821693171410.1007/s13369‑022‑06978‑035910042
    [Google Scholar]
  17. RaoK.R. PrasadM.L. KumarG.R. NatchadalingamR. HussainM.M. ReddyP.C.S. Time-series cryptocurrency forecasting using ensemble deep learning.2023 International Conference on Circuit Power and Computing Technologies (ICCPCT)10-11 August 2023Kollam, India20231446145110.1109/ICCPCT58313.2023.10245083
    [Google Scholar]
  18. KumarG.R. ReddyR.V. JayarathnaM. PughazendiN. VidyullathaS. ReddyP.C.S. Web application based Diabetes prediction using Machine Learning.2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)25-26 May 2023Chennai, India20231710.1109/ACCAI58221.2023.10200323
    [Google Scholar]
  19. PatilS.B. RaoH.R. ChatrapathyK. KiranA. KumarA.S. ReddyP.C.S. Ensemble deep learning framework for classification of skin lesions.2023 International Conference on Circuit Power and Computing Technologies (ICCPCT)10-11 August 2023Kollam, India20231550155510.1109/ICCPCT58313.2023.10244850
    [Google Scholar]
  20. Le QuyT. FriegeG. NtoutsiE. A review of clustering models in educational data science toward fairness-aware learning.Educational Data Science: Essentials, Approaches, and TendenciesBerlin, HeidelbergSpringerLink202310.1007/978‑981‑99‑0026‑8_2
    [Google Scholar]
  21. ShaikT. TaoX. LiL. XieH. VelásquezJ.D. A survey of multimodal information fusion for smart healthcare: Mapping the journey from data to wisdom.arXiv:2306.119632023
    [Google Scholar]
  22. RenjithP.N. BharatiR. ThiyaguT.M. VallabhuniR.R. MouleswararaoB. NarayananL. Smart filtering for user discovery and availing balance storage space continuity with faster big data service.Measurement Sensors (Basel)202326100707
    [Google Scholar]
  23. LiyanagamageN. FernandoM. Descriptive analytics methods in big data: A systematic literature review.Handbook of Big Data Research MethodsCheltenham, GloucestershireEdward elgar publishing 2023
    [Google Scholar]
  24. AnderssonC.H. RegisterJ.T. An examination of pre-service mathematics teachers’ ethical reasoning in big data with considerations of access to data.J. Math. Behav.20237010102910.1016/j.jmathb.2022.101029
    [Google Scholar]
  25. AlbahriA.S. DuhaimA.M. FadhelM.A. AlnoorA. BaqerN.S. AlzubaidiL. AlbahriO.S. AlamoodiA.H. BaiJ. SalhiA. SantamaríaJ. OuyangC. GuptaA. GuY. DeveciM. A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion.Inf. Fusion20239615619110.1016/j.inffus.2023.03.008
    [Google Scholar]
  26. CarnevaleA. TangariE.A. IannoneA. SartiniE. Will Big Data and personalized medicine do the gender dimension justice?AI Soc.202338282984110.1007/s00146‑021‑01234‑934092931
    [Google Scholar]
  27. ChillakuruP. MadiajaganM. PrashanthK.V. AmbalaS. Shaker ReddyP.C. PavanJ. Enhancing wind power monitoring through motion deblurring with modified GoogleNet algorithm.Soft Comput.2023202311110.1007/s00500‑023‑08358‑8
    [Google Scholar]
  28. LañaI. Sanchez-MedinaJ.J. VlahogianniE.I. Del SerJ. From data to actions in intelligent transportation systems: A prescription of functional requirements for model actionability.Sensors (Basel)2021214112110.3390/s2104112133562722
    [Google Scholar]
  29. BoydK.L. AndalibiN. Automated Emotion recognition in the workplace: How proposed technologies reveal potential futures of work.Proc ACM Human-Comp Interact20237CSCW1137
    [Google Scholar]
  30. RaineyL. LutomskiJ.E. BroedersM.J.M. FAIR data sharing: An international perspective on why medical researchers are lagging behind.Big Data Soc.202310110.1177/20539517231171052
    [Google Scholar]
  31. HolzingerA. KeiblingerK. HolubP. ZatloukalK. MüllerH. AI for life: Trends in artificial intelligence for biotechnology.N. Biotechnol.202374162410.1016/j.nbt.2023.02.00136754147
    [Google Scholar]
  32. AlsoibiI. AgarwalR. BharathyG. SamarawickramaM. UnhelkarB. PrasadM. A systematic review and taxonomy of data analytics in non-profit organizations.Asia Pacific J Inform Syst20233313368
    [Google Scholar]
  33. SonT.H. WeedonZ. YigitcanlarT. SanchezT. CorchadoJ.M. MehmoodR. Algorithmic urban planning for smart and sustainable development: Systematic review of the literature.Sustain Cities Soc.20239410456210.1016/j.scs.2023.104562
    [Google Scholar]
  34. GhofraniF. Keshavarz-HaddadA. JamshidiA. A new probabilistic classifier based on decomposable models with application to internet traffic.Pattern Recognit.20187711110.1016/j.patcog.2017.12.009
    [Google Scholar]
  35. ChenL. Research on the sustainable development of new media physical teaching: Big data analysis of the relevance of language expression ability.Interact. Learn. Environ.2023202311910.1080/10494820.2023.2205947
    [Google Scholar]
  36. AkramiN.E. HanineM. FloresE.S. ArayD.G. AshrafI. Unleashing the potential of blockchain and machine learning: Insights and emerging trends from bibliometric analysis.IEEE Access202311788797890310.1109/ACCESS.2023.3298371
    [Google Scholar]
  37. Te’eniD. YahavI. ZagalskyA. SchwartzD. SilvermanG. CohenD. MannY. LewinskyD. Reciprocal human-machine learning: A theory and an instantiation for the case of message classification.Manage. Sci.20230351810.1287/mnsc.2022.03518
    [Google Scholar]
  38. FastV. SchnurrD. WohlfarthM. Regulation of data-driven market power in the digital economy: Business value creation and competitive advantages from big data.J. Inf. Technol.202338220222910.1177/02683962221114394
    [Google Scholar]
  39. FahdK. MiahS.J. Designing and evaluating a big data analytics approach for predicting students’ success factors.J. Big Data202310115910.1186/s40537‑023‑00835‑z
    [Google Scholar]
  40. RagazouK. PassasI. GarefalakisA. GalariotisE. ZopounidisC. Big data analytics applications in information management driving operational efficiencies and decision-making: Mapping the field of knowledge with bibliometric analysis using R.Big Data Cogn Comput2023711310.3390/bdcc7010013
    [Google Scholar]
  41. AhmedR. ShaheenS. PhilbinS.P. The role of big data analytics and decision-making in achieving project success.J. Eng. Technol. Manage.20226510169710.1016/j.jengtecman.2022.101697
    [Google Scholar]
  42. LiL. LinJ. OuyangY. LuoX.R. Evaluating the impact of big data analytics usage on the decision-making quality of organizations.Technol. Forecast. Soc. Change202217512135510.1016/j.techfore.2021.121355
    [Google Scholar]
  43. MikalefP. KrogstieJ. PappasI.O. PavlouP. Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities.Inf. Manage.202057210316910.1016/j.im.2019.05.004
    [Google Scholar]
  44. ShamimS. ZengJ. KhanZ. ZiaN.U. Big data analytics capability and decision making performance in emerging market firms: The role of contractual and relational governance mechanisms.Technol. Forecast. Soc. Change202016112031510.1016/j.techfore.2020.120315
    [Google Scholar]
  45. GhofraniF. JamshidiA. Keshavarz-HaddadA. Internet traffic classification using Hidden Naive Bayes model.2015 23rd Iranian Conference on Electrical Engineering10-14 May 2015Tehran, Iran201510.1109/IranianCEE.2015.7146216
    [Google Scholar]
  46. JayasriN.P. Big data analytics in health care by data mining and classification techniques.ICT Express20228225025710.1016/j.icte.2021.07.001
    [Google Scholar]
  47. AnithaG. RamkumarG. PrabuR.T. RameshS. MohanavelV. KarthickA. Efficient internet of things enabled smart healthcare monitoring system using RFID security scheme.Intelligent Technologies for SensorsNew JerseyApple Academic Press202312514310.1201/9781003314851‑12
    [Google Scholar]
  48. NazirS. KhanS. KhanH.U. AliS. Garcia-MagarinoI. AtanR.B. NawazM. A comprehensive analysis of healthcare big data management, analytics and scientific programming.IEEE Access20208957149573310.1109/ACCESS.2020.2995572
    [Google Scholar]
  49. AwanU. ShamimS. KhanZ. ZiaN.U. ShariqS.M. KhanM.N. Big data analytics capability and decision making: The role of data-driven insight on circular economy performance.Technol. Forecast. Soc. Change202116812076610.1016/j.techfore.2021.120766
    [Google Scholar]
  50. BagS. WoodL.C. XuL. DhamijaP. KayikciY. Big data analytics as an operational excellence approach to enhance sustainable supply chain performance.Resour. Conserv. Recycling202015310455910.1016/j.resconrec.2019.104559
    [Google Scholar]
  51. RawatD.B. DokuR. GarubaM. Cybersecurity in big data era: From securing big data to data-driven security.IEEE Trans. Serv. Comput.20211462055207210.1109/TSC.2019.2907247
    [Google Scholar]
  52. SandhuA.K. Big data with cloud computing: Discussions and challenges.Big Data Mining Anal202251324010.26599/BDMA.2021.9020016
    [Google Scholar]
  53. RamkumarG. SeethaJ. PriyadarshiniR. GopilaM. SaranyaG. IoT-based patient monitoring system for predicting heart disease using deep learning.Measurement202321811323510.1016/j.measurement.2023.113235
    [Google Scholar]
  54. NorouziS. JamshidiA. ZolghadrasliA.R. Adaptive modulation recognition based on the evolutionary algorithms.Appl. Soft Comput.20164331231910.1016/j.asoc.2016.02.028
    [Google Scholar]
  55. GaoY. ChenX. DuX. A big data provenance model for data security supervision based on PROV-DM model.IEEE Access20208387423875210.1109/ACCESS.2020.2975820
    [Google Scholar]
  56. CM.S. SundaramD.S.M. RD.L.M. Performance analysis of feature selection and classification in Big Data Information extraction.Saudi J Eng Technol202383627010.36348/sjet.2023.v08i03.002
    [Google Scholar]
  57. MaS. DingW. LiuY. RenS. YangH. Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries.Appl. Energy202232611998610.1016/j.apenergy.2022.119986
    [Google Scholar]
  58. MohammedO.Y. AbedH.I. SultanN.A. Design and implementation of machine learning and big data analytics models for cloud computing platforms.Int J Intell Syst Appl Eng2023116s185192
    [Google Scholar]
  59. Mohammed AlqahtaniT. Big Data analytics with optimal deep learning model for medical image classification.Comput. Syst. Sci. Eng.20234421433144910.32604/csse.2023.025594
    [Google Scholar]
  60. LathaS.B. DastagiraiahC. KiranA. AsifS. ElangovanD. ReddyP.C.S. An adaptive machine learning model for walmart sales prediction.2023 International Conference on Circuit Power and Computing Technologies (ICCPCT)10-11 August 2023Kollam, India202310.1109/ICCPCT58313.2023.10245029
    [Google Scholar]
  61. ParhizgarN. JamshidiA. SetoodehP. Defense against spectrum sensing data falsification attack in cognitive radio networks using machine learning.2022 30th International Conference on Electrical Engineering (ICEE)17-19 May 2022Tehran, Iran202210.1109/ICEE55646.2022.9827418
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279312138240625052021
Loading
/content/journals/swcc/10.2174/0122103279312138240625052021
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test