Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3279
  • E-ISSN: 2210-3287

Abstract

Background

Intelligent reflecting surface (IRS) have evolved as one of the key technology by enabling reconfigurable, intelligent, and low-power solutions for sixth-generation (6G) wireless communication.

Objectives

The objective of this paper is to improve outage performance by deploying the IRS Module.

Methods

In this research, an IRS-assisted NOMA network is explored over fading channel, where the IRS is placed on top of the base station (BS). IRS aids in fine-tuning the phase of incoming signals fromBS in a meticulous way, which improves the performance of the system. The statistical channel modelling of the downlink IRS-NOMA system is proposed and validated with Monte Carlo (MC) simulation. Also, analytical expressions of OP are derived for user in the IRS-NOMA system over fading channel.

Results

The influence of performance factors, such as the number of reflecting elements (M) on OP, is examined.

Conclusion

Simulation results reveal that the IRS-NOMA system experiences less outage compared to IRS-OMA and conventional relaying techniques.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279312349240710060042
2024-07-26
2025-07-11
Loading full text...

Full text loading...

References

  1. LiuY. QinZ. ElkashlanM. DingZ. NallanathanA. HanzoL. Nonorthogonal multiple access for 5G and beyond.Proceedings of the IEEE2017105122347238110.1109/JPROC.2017.2768666
    [Google Scholar]
  2. SaadW. BennisM. ChenM. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems.IEEE Netw.202034313414210.1109/MNET.001.1900287
    [Google Scholar]
  3. ZhangL. LiangY.C. NiyatoD. 6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence.China Commun.201916811410.23919/JCC.2019.08.001
    [Google Scholar]
  4. StephenV. What will 5G be?IEEE J. Sel. Areas Comm.201432610651082
    [Google Scholar]
  5. FuentesM. CarcelJ.L. DietrichC. YuL. GarroE. PauliV. LazarakisF.I. GrondalenO. BulakciO. YuJ. MohrW. Gomez-BarqueroD. 5G new radio evaluation against IMT-2020 key performance indicators.IEEE Access2020811088011089610.1109/ACCESS.2020.3001641
    [Google Scholar]
  6. VincentW.S. Key technologies for 5G wireless systems.Cambridge, EnglandCambridge University Press2017
    [Google Scholar]
  7. DaiL. WangB. DingZ. WangZ. ChenS. HanzoL. A survey of non-orthogonal multiple access for 5G.IEEE Commun. Surv. Tutor.20182032294232310.1109/COMST.2018.2835558
    [Google Scholar]
  8. IslamS.M.R. AvazovN. DobreO.A. KwakK. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges.IEEE Commun. Surv. Tutor.201719272174210.1109/COMST.2016.2621116
    [Google Scholar]
  9. ZengM. HaoW. DobreO.A. DingZ. Cooperative NOMA: State of the art, key techniques, and open challenges.IEEE Netw.202034520521110.1109/MNET.011.1900601
    [Google Scholar]
  10. LiaqatM. NoordinK.A. Abdul LatefT. DimyatiK. Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks: An overview.Wirel. Netw.202026118120310.1007/s11276‑018‑1807‑z
    [Google Scholar]
  11. SrinivasaraoK. SurendarM. Minimum variance maximum mean relay selection scheme for cooperative NOMA networks.Arab. J. Sci. Eng.20224733481348810.1007/s13369‑021‑06333‑9
    [Google Scholar]
  12. DingZ. PengM. PoorH.V. Cooperative non-orthogonal multiple access in 5G systems.IEEE Commun. Lett.20151981462146510.1109/LCOMM.2015.2441064
    [Google Scholar]
  13. ZhongC. ZhangZ. Non-orthogonal multiple access with cooperative full-duplex relaying.IEEE Commun. Lett.201620122478248110.1109/LCOMM.2016.2611500
    [Google Scholar]
  14. ChuT.M.C. ZepernickH.J. Performance of a non-orthogonal multiple access system with full-duplex relaying.IEEE Commun. Lett.201822102084208710.1109/LCOMM.2018.2852308
    [Google Scholar]
  15. YueX. LiuY. KangS. NallanathanA. Performance analysis of NOMA with fixed gain relaying over Nakagami-$ m $ fading channels.IEEE Access201755445545410.1109/ACCESS.2017.2677504
    [Google Scholar]
  16. MenJ. GeJ. ZhangC. Performance analysis of nonorthogonal multiple access for relaying networks over Nakagami-$ m $ fading channels.IEEE Trans. Vehicular Technol.20176621200120810.1109/TVT.2016.2555399
    [Google Scholar]
  17. PayamiM. FalahatiA. Accurate variable-order approximations to the sum of α–μ variates with application to MIMO systems.IEEE Trans. Wirel. Commun.20212031612162310.1109/TWC.2020.3034877
    [Google Scholar]
  18. RiziF.S. FalahatiA. The Generalized-Fisher composite fading model for the next generation of mobile communication systems.Dig Commun Netw2023202300710.1016/j.dcan.2023.02.007
    [Google Scholar]
  19. ZhaoJ. A survey of intelligent reflecting surfaces (IRSs): Towards 6G wireless communication networks. arXiv:1907.047892019
    [Google Scholar]
  20. ZhangZ. XiaoY. MaZ. XiaoM. DingZ. LeiX. KaragiannidisG.K. FanP. 6G wireless networks: Vision, requirements, architecture, and key technologies.IEEE Veh. Technol. Mag.2019143284110.1109/MVT.2019.2921208
    [Google Scholar]
  21. NagarajanD. BalakrishnanR. Error probability and throughput analysis of IRS-Assisted wireless system over generalized (κ–μ) fading channels.Wirel. Pers. Commun.202112031929194410.1007/s11277‑021‑08740‑5
    [Google Scholar]
  22. TangW. LiX. DaiJ.Y. JinS. ZengY. ChengQ. CuiT.J. Wireless communications with programmable metasurface: Transceiver design and experimental results.China Commun.2019165466110.23919/j.cc.2019.05.004
    [Google Scholar]
  23. WuQ. ZhangR. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network.IEEE Commun. Mag.202058110611210.1109/MCOM.001.1900107
    [Google Scholar]
  24. LiuY. LiuX. MuX. HouT. XuJ. Di RenzoM. Al-DhahirN. Reconfigurable intelligent surfaces: Principles and opportunities.IEEE Commun. Surv. Tutor.20212331546157710.1109/COMST.2021.3077737
    [Google Scholar]
  25. HouT. LiuY. SongZ. SunX. ChenY. HanzoL. Reconfigurable intelligent surface aided NOMA networks.IEEE J. Sel. Areas Comm.202038112575258810.1109/JSAC.2020.3007039
    [Google Scholar]
  26. DingZ. Vincent PoorH. A simple design of IRS-NOMA transmission.IEEE Commun. Lett.20202451119112310.1109/LCOMM.2020.2974196
    [Google Scholar]
  27. YueX. LiuY. Performance analysis of intelligent reflecting surface assisted NOMA networks.IEEE Trans. Wirel. Commun.20222142623263610.1109/TWC.2021.3114221
    [Google Scholar]
  28. UmakogluI. NamdarM. BasgumusA. UAV-Assisted Cooperative NOMA System with the nth Best Relay Selection.Adv. Electr. Comput. Eng.2023233394610.4316/AECE.2023.03005
    [Google Scholar]
  29. BazziA. ChafiiM. Secure full duplex integrated sensing and communications.IEEE Trans. Inf. Forensics Security2023
    [Google Scholar]
  30. NaoumiS. BazziA. BomfinR. ChafiiM. Complex neural network based joint AoA and AoD estimation for bistatic ISAC.IEEE J. Sel. Top. Signal Process.202411510.1109/JSTSP.2024.3387299
    [Google Scholar]
  31. ChowdaryA. BazziA. ChafiiM. On hybrid radar fusion for integrated sensing and communication.IEEE Trans. Wirel. Commun.2024110.1109/TWC.2024.3357573
    [Google Scholar]
  32. SharmaP. KumarA. BansalM. Performance analysis of downlink NOMA system with diversity combining schemes over η–μ fading channel.Phys. Commun.20214710138310.1016/j.phycom.2021.101383
    [Google Scholar]
  33. WangD. BazziA. ChafiiM. RIS-enabled integrated sensing and communication for 6G systems.arXiv:2401.004442023
    [Google Scholar]
  34. BazziA. ChafiiM. On outage-based beamforming design for dual-functional radar communication 6G systems.IEEE Trans. Wirel. Commun.20232285598561210.1109/TWC.2023.3235617
    [Google Scholar]
  35. DavidH.A. NagarajaH.N. Order statistics.Hoboken, New JerseyJohn Wiley & Sons2004
    [Google Scholar]
  36. YacoubM.D. The κ-μ distribution and the η-μ distribution.IEEE Antennas Propag. Mag.2007491688110.1109/MAP.2007.370983
    [Google Scholar]
  37. BowmanA.W. AzzaliniA. Applied smoothing techniques for data analysis: The kernel approach with S-Plus illustrations.Oxford, EnglandOUP Oxford19971810.1093/oso/9780198523963.001.0001
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279312349240710060042
Loading
/content/journals/swcc/10.2174/0122103279312349240710060042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test