Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3279
  • E-ISSN: 2210-3287

Abstract

Background

The paper focuses on enhancing the performance of 5G wireless mobile communication systems. Furthermore, it addresses the increasing demand for high data rates, improved channel capacity, and spectrum efficiency outlined by the 3rd Generation Partnership Project (3GPP) protocol.

Objectives

To develop an innovative Non-orthogonal Multiple Access (NOMA)-based channel estimation (CE) model aimed at improving the performance of 5G wireless mobile communication systems.

Methods

A proportionate recursive least squares (PRLS) algorithm is utilized for estimating the characteristics of practical Rayleigh fading channels. The applicability of the PRLS algorithm is investigated in Lambertian channels for indoor broadband communication systems such as power line communication (PLC) and visual light communication (VLC) systems.

Results

The assessment of evaluation metrics, including mean square error (MSE), bit error rate (BER), spectral efficiency (SE), energy efficiency (EE), capacity, and data rate, have been analysed. Faster convergence and higher accuracy compared to existing state-of-the-art approaches have been demonstrated.

Conclusion

The NOMA-based channel estimation model presents significant promise in enhancing the performance of 5G wireless communication systems. The demands for higher data rates and improved spectral efficiency as per 3GPP standards have been addressed.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279310677240606101233
2024-07-19
2025-06-24
Loading full text...

Full text loading...

References

  1. JiangS. YuanX. WangX. XuC. YuW. Joint user identification, channel estimation, and signal detection for grant-free NOMA.IEEE Trans. Wirel. Commun.202019106960697610.1109/TWC.2020.3007545
    [Google Scholar]
  2. ZhangY. GuoQ. WangZ. XiJ. WuN. Block sparse Bayesian learning based joint user activity detection and channel estimation for grant-free NOMA systems.IEEE Trans. Vehicular Technol.201867109631964010.1109/TVT.2018.2859806
    [Google Scholar]
  3. SalimG.H. WesolowskiK. Uplink NOMA scheme for Wi-Fi applications.Int J. Electron Telecommun.2018644481485
    [Google Scholar]
  4. ChenD. WangY. JinJ. LuH. WangJ. An experimental study of NOMA in underwater visible light communication system.Opt. Commun.202047512619910.1016/j.optcom.2020.126199
    [Google Scholar]
  5. LinB. GhassemlooyZ. TangX. LiY. ZhangM. Experimental demonstration of optical MIMO NOMA-VLC with single carrier transmission.Opt. Commun.2017402525510.1016/j.optcom.2017.05.069
    [Google Scholar]
  6. AkhtarM.W. HassanS.A. SaleemS. JungH. STBC-aided cooperative NOMA with timing offsets, imperfect successive interference cancellation, and imperfect channel state information.IEEE Trans. Vehicular Technol.20206910117121172710.1109/TVT.2020.3017249
    [Google Scholar]
  7. DoorbashZ. JamshidiA. Performance analysis of the cooperative uplink-downlink NOMA and OMA scheme in cognitive radio network with max-min relay selection strategy.AEU Int. J. Electron. Commun.202114215401410.1016/j.aeue.2021.154014
    [Google Scholar]
  8. DoorbashZ. JamshidiA. JavidiG. SheybaniE. Cooperative NOMA in cognitive radio networks: A study on imperfect CSI, SIC and hardware impairments over Nakagami-m fading channel.Phys. Commun.20246410234310.1016/j.phycom.2024.102343
    [Google Scholar]
  9. AbdelMoniemM. GasserS.M. El-MahallawyM.S. FakhrM.W. SolimanA. Enhanced NOMA system using adaptive coding and modulation based on LSTM neural network channel estimation.Appl. Sci. (Basel)2019915302210.3390/app9153022
    [Google Scholar]
  10. KizilirmakRefik Caglar BizakiHossein Khaleghi Non-Orthogonal Multiple Access (NOMA) for 5G networks.Towards 5G Wireless Networks - A Physical Layer PerspectiveLondonIntechOpen2016
    [Google Scholar]
  11. IddAlli Channel estimation in mobile wireless systems.Saarbrucken, Germany.LAP LAMBERT Academic Publishing201268
    [Google Scholar]
  12. KarthickmanojR. PadmapriyaJ. SasilathaT. AagashG. 2021 evaluation of filtering techniques in channel estimation for MIMO-OFDM systems.J. Phys.197911225
    [Google Scholar]
  13. SekokotoanaLehlohonolo Edwin TakawiraFambirai OyerindeOlutayo Oyeyemi Least Mean Squares Channel Estimation for Downlink Non-Orthogonal Multiple Access.2019 IEEE AFRICON25-27 September 2019Accra, Ghana201910.1109/AFRICON46755.2019.9133868
    [Google Scholar]
  14. ShuaiH. LiuR. ZhuS. LiC. FangY. Ergodic capacity of NOMA-based multi antenna lms systems with imperfect limitations.Sensors (Basel)202222133010.3390/s2201033035009872
    [Google Scholar]
  15. SarkarM. SahooS. BarapatreY.K. NandaS. Proportionate-type Algorithm for MIMO-OFDM Channel Estimation and its FPGA implementation.2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON)24-26 September 2021Kuala Lumpur, Malaysia202115
    [Google Scholar]
  16. SahooS. BarapatreY.K. SahooH.K. NandaS. FPGA implementation of fuzzy sparse adaptive equalizer for indoor wireless communication systems.Appl. Soft Comput.202111110761610.1016/j.asoc.2021.107616
    [Google Scholar]
  17. NayakA. SarkarM. SahooS. NandaS. Channel estimation of MIMO-NOMA system based on a variable forgetting factor recursive least square algorithm.2021 IEEE 2nd International Conference on Applied Electromagnetics, Signal Processing, & Communication (AESPC)26-28 November 2021Bhubaneswar, India202110.1109/AESPC52704.2021.9708457
    [Google Scholar]
  18. JingL. ZhangN. HeC. ShangJ. LiuX. YinH. OTFS underwater acoustic communications based on passive time reversal.Appl. Acoust.202218510838610.1016/j.apacoust.2021.108386
    [Google Scholar]
  19. SarkarM. SahooS. NandaS. A sparse based adaptive channel estimator for wireless channel.2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE)26-27 December 2020Bhubaneswar, India2020472475
    [Google Scholar]
  20. MoriyamaM. TakizawaK. TezukaH. KojimaF. A fading prediction method using DL-OFDM signals for Precise TPC in TDD-UL-NOMA systems.2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring)25-28 May 2020Antwerp, Belgium202010.1109/VTC2020‑Spring48590.2020.9129544
    [Google Scholar]
  21. RanaM.M. HosainM.K. Adaptive channel estimation techniques for MIMO OFDM systems.Int. J. Adv. Comput. Sci. Appl.201616134138
    [Google Scholar]
  22. QinZ. TaoJ. XiaY. A proportionate recursive least squares algorithm and its performance analysis.IEEE Trans. Circuits Syst. II Express Briefs202168150651010.1109/TCSII.2020.3004466
    [Google Scholar]
  23. NazA. BaigS. AsifH.M. Non Orthogonal Multiple Access (NOMA) for broadband communication in smart grids using VLC and PLC.Optik (Stuttg.)201918816217110.1016/j.ijleo.2019.03.034
    [Google Scholar]
  24. JainM. SoniS. SharmaN. RawalD. Performance analysis at far and near user in NOMA based system in presence of SIC error.AEU Int. J. Electron. Commun.202011415299310.1016/j.aeue.2019.152993
    [Google Scholar]
  25. DingZ. LvL. FangF. DobreO.A. KaragiannidisG.K. Al-DhahirN. SchoberR. PoorH.V. A state-of-the-art survey on reconfigurable intelligent surface-assisted non-orthogonal multiple access networks.Proc. IEEE202211091358137910.1109/JPROC.2022.3174140
    [Google Scholar]
  26. DingZ. LeiX. KaragiannidisG.K. SchoberR. YuanJ. BhargavaV.K. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends.IEEE J. Sel. Areas Comm.201735102181219510.1109/JSAC.2017.2725519
    [Google Scholar]
  27. MaW. ZhengD. ZhangZ. DuanJ. ChenB. Robust proportionate adaptive filter based on maximum correntropy criterion for sparse system identification in impulsive noise environments.Signal Image Video Process.201812111712410.1007/s11760‑017‑1137‑0
    [Google Scholar]
  28. MarkusV.S. Do proportionate algorithms exploit sparsity?arXiv:2108.068462021
    [Google Scholar]
  29. ParidaP. DasS.S. Power allocation in OFDM based NOMA systems: A DC programming approach.IEEE Globecom Workshops201420141026103110.1109/GLOCOMW.2014.7063568
    [Google Scholar]
  30. YuanY. YuanZ. TianL. 5G non-orthogonal multiple access study in 3GPP.IEEE Commun. Mag.2020587909610.1109/MCOM.001.1900450
    [Google Scholar]
  31. YuanY. YanC. NOMA Study in 3GPP for 5G.2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing (ISTC)03-07 December 2018Hong Kong, China2018
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279310677240606101233
Loading
/content/journals/swcc/10.2174/0122103279310677240606101233
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test