Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3279
  • E-ISSN: 2210-3287

Abstract

Background

The low power wide area networks (LPWANs) technologies significantly impact numerous IoT deployment use cases, especially in the smart cities' scenario. LPWAN is used to support low data rate use cases. Unfortunately, medium data rate (up to 50 Mbps and more) IoT applications are not operational by LPWAN. Hence, a 5G reduced capability (RedCap) new radio (NR) device was provided to address this limitation. However, the 5G RedCap suffers a coverage loss due to the reduction of the physical layer complexity of the 5G legacy user equipment (UE). Therefore, 5G RedCap enhancements require coverage loss compensation.

Objective

This paper aims to improve the performance of 5G RedCap in terms of coverage, energy efficiency, and throughput for Smart Cities and Industrial IoT (IIoT) using a genetic algorithm based neural network (GA-NN) model.

Methods

The method involves using a GA-NN model for a two-fold enhancement of the 5G RedCap. This enhancement includes a specialized-enhancement RedCap (se-RedCap) for low data rates and an enhanced RedCap (eRedCap) for high data rates (up to 300 Mbps) support. The GA-NN model has been implemented and assessed in MATLAB Global Optimization and 5G Toolbox. Furthermore, an introduced and modified parametric rectified linear unit (ePReLU) activation function fA evaluates the final summation data parameters trained with a specific threshold for the best performance.

Results

The numerical results confirm that the specialized-enhancement RedCap (se-RedCap) and enhanced RedCap (eRedCap) outperform legacy cellular LPWANs and conventional RedCap when considering coverage, energy efficiency, and throughput.

Conclusion

This paper successfully covers two types of usage scenarios: the very low data rate typically seen in LPWAN and the high data rate of up to 300 Mbps, which is not yet compatible with the existing RedCap system. As a result, the GA-NN model creates se-RedCap and eRedCap, providing support for these two scenarios, respectively.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279312219240520053431
2024-06-25
2025-07-03
Loading full text...

Full text loading...

References

  1. 10 Use Cases of LPWAN in Industrial IoT (IIoT).Available from: https://www.tesswave.com/use-cases-of-lpwan-in-iiot/ (accessed on 5 April 2024).
  2. LPWAN explained: Here’s what you should know.Available from: https://www.badgermeter.com/en-gb/blog/lpwan-explained-here-is-what-you-should-know/ (accessed on 5 April 2024).
  3. RatasukR. “Enhancements of narrowband IoT in 3GPP Rel-14 and Rel-15.” 2017 IEEE conference on standards for communications and networking (CSCN).IEEE2017
    [Google Scholar]
  4. JieDING. IoT connectivity technologies and applications: A survey.IEEE Access202086764667673
    [Google Scholar]
  5. Available from: https://www.qualcomm.com/news/onq/2022/03/just-3gpp-completes-5g-nr-release-17 (accessed on 25 May 2022)
  6. MoloudiS. MozaffariM. VeeduS.N.K. KittichokechaiK. WangY.P.E. BergmanJ. HöglundA. Coverage evaluation for 5G reduced capability new radio (NR-RedCap).IEEE Access20219450554506710.1109/ACCESS.2021.3066036
    [Google Scholar]
  7. OgbodoE.U. Abu-MahfouzA.M. KurienA.M. Enabling LPWANs for coexistence and diverse IoT applications in smart cities using lightweight heterogenous multihomed network model.JSAN20221148710.3390/jsan11040087
    [Google Scholar]
  8. LayaA. KalalasC. Vazquez-GallegoF. AlonsoL. Alonso-ZarateJ. Goodbye, ALOHA!IEEE Access201642029204410.1109/ACCESS.2016.2557758
    [Google Scholar]
  9. BoulogeorgosA.A. DiamantoulakisP.D. KaragiannidisG.K. Low power wide area networks (lpwans) for internet of things (iot) applications: Research challenges and future trends.arXiv preprint 1611.074492016
    [Google Scholar]
  10. ZhangZ. XiaoY. MaZ. XiaoM. DingZ. LeiX. KaragiannidisG.K. FanP. 6G wireless networks: Vision, requirements, architecture, and key technologies.IEEE Veh. Technol. Mag.2019143284110.1109/MVT.2019.2921208
    [Google Scholar]
  11. BoulogeorgosA.A.A. ChatzidiamantisN.D. KaragiannidisG.K. Energy detection spectrum sensing under RF imperfections.IEEE Trans. Commun.20166472754276610.1109/TCOMM.2016.2561294
    [Google Scholar]
  12. SyedA.S. Sierra-SosaD. KumarA. ElmaghrabyA. IoT in smart cities: A survey of technologies, practices and challenges.Smart Cities20214242947510.3390/smartcities4020024
    [Google Scholar]
  13. ChenY. SamboY.A. OniretiO. ImranM.A. A survey on LPWAN-5G integration: Main challenges and potential solutions.IEEE Access202210321323214910.1109/ACCESS.2022.3160193
    [Google Scholar]
  14. FujdiakR MikhaylovK StusekM MasekP AhmadI MalinaL PorambageP VoznakM PouttuA MlynekP Security in low-power wide-area networks: State-of-the-art and development toward the 5G.In: LPWAN Technologies for IoT and M2M ApplicationsAcademic Press.2020273296
    [Google Scholar]
  15. ChackoS JobMD Security mechanisms and Vulnerabilities in LPWAN.IOP Conf. Ser.: Mater. Sci. Eng.201839601202710.1088/1757‑899X/396/1/012027
    [Google Scholar]
  16. KhanR. KumarP. JayakodyD.N.K. LiyanageM. A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions.IEEE Commun. Surv. Tutor.202022119624810.1109/COMST.2019.2933899
    [Google Scholar]
  17. LeleA Disruptive technologies for the militaries and securitySpringerSingapore2019
    [Google Scholar]
  18. AyoubW. SamhatA.E. NouvelF. MroueM. PrévotetJ.C. Internet of mobile things: Overview of lorawan, dash7, and nb-iot in lpwans standards and supported mobility.IEEE Commun. Surv. Tutor.20192121561158110.1109/COMST.2018.2877382
    [Google Scholar]
  19. AdelantadoF. VilajosanaX. Tuset-PeiroP. MartinezB. Melia-SeguiJ. WatteyneT. Understanding the limits of LoRaWAN.IEEE Commun. Mag.2017559344010.1109/MCOM.2017.1600613
    [Google Scholar]
  20. Torroglosa-GarciaE.M. CaleroJ.M.A. BernabeJ.B. SkarmetaA. Enabling roaming across heterogeneous IoT wireless networks: LoRaWAN MEETS 5G.IEEE Access2020810316410318010.1109/ACCESS.2020.2998416
    [Google Scholar]
  21. PetajajarviJ. MikhaylovK. RoivainenA. HanninenT. PettissaloM. On the coverage of LPWANs: Range evaluation and channel attenuation model for LoRa technology.2015 14th International Conference on ITS Telecommunications (ITST), Copenhagen, Denmark, 02-04 December 2015, pp. 55-59.
    [Google Scholar]
  22. VatcharatiansakulN. TuwanutP. PornavalaiC. Experimental performance evaluation of LoRaWAN: A case study in Bangkok.2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE), NakhonSiThammarat, Thailand, 12-14 July 2017, pp. 1-4.10.1109/JCSSE.2017.8025948
    [Google Scholar]
  23. AzariA. CavdarC. Performance evaluation and optimization of LPWA IoT networks: A stochastic geometry approach.2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 09-13 December 2018, pp. 206-212.10.1109/GLOCOM.2018.8647881
    [Google Scholar]
  24. HaxhibeqiriJ. KaraagacA. Van den AbeeleF. JosephW. MoermanI. HoebekeJ. LoRa indoor coverage and performance in an industrial environment: Case study.2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12-15 September 2017, pp. 1-8.201710.1109/ETFA.2017.8247601
    [Google Scholar]
  25. SinghR.K. PuluckulP.P. BerkvensR. WeynM. Energy consumption analysis of LPWAN technologies and lifetime estimation for IoT application.Sensors20202017479410.3390/s2017479432854350
    [Google Scholar]
  26. FinneganJ. BrownS. An analysis of the energy consumption of LPWA-based IoT devices.2018 International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy, 19-21 June 2018, pp. 1-6.10.1109/ISNCC.2018.8531068
    [Google Scholar]
  27. MichelusiN. LevoratoM. Energy-based adaptive multiple access in LPWAN IoT systems with energy harvesting.2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25-30 June 2017, pp. 1112-1116.10.1109/ISIT.2017.8006701
    [Google Scholar]
  28. SheraziH.H.R. ImranM.A. BoggiaG. GriecoL.A. Energy harvesting in LoRaWAN: A cost analysis for the industry 4.0.IEEE Commun. Lett.201822112358236110.1109/LCOMM.2018.2869404
    [Google Scholar]
  29. SureshV.M. SidhuR. KarkareP. PatilA. LeiZ. BasuA. Powering the IoT through embedded machine learning and LoRa.2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 05-08 February 2018, pp. 349-354.10.1109/WF‑IoT.2018.8355177
    [Google Scholar]
  30. PurkovicD. HönschM. MeyerT.R.M.K. An energy efficient communication protocol for low power, energy harvesting sensor modules.IEEE Sens. J.201919270171410.1109/JSEN.2018.2876746
    [Google Scholar]
  31. StusekM. MoltchanovD. MasekP. MikhaylovK. HosekJ. AndreevS. KoucheryavyY. KustarevP. ZemanO. RoubicekM. LPWAN coverage assessment planning without explicit knowledge of base station locations.IEEE Internet Things J.2022964031405010.1109/JIOT.2021.3102694
    [Google Scholar]
  32. VeeduS.N.K. MozaffariM. HöglundA. YavuzE.A. TirronenT. BergmanJ. WangY.P.E. Toward smaller and lower-cost 5G devices with longer battery life: an overview of 3GPP release 17 Redcap.IEEE Communications Standards Magazine202263849010.1109/MCOMSTD.0001.2200029
    [Google Scholar]
  33. RatasukR. MangalvedheN. LeeG. BhatoolaulD. Reduced capability devices for 5G IoT.2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13-16 September 2021, pp. 1339-1344.10.1109/PIMRC50174.2021.9569595
    [Google Scholar]
  34. HernandezD.M. PeraltaG. ManeroL. GomezR. BilbaoJ. ZubiaC. Energy and coverage study of LPWAN schemes for Industry 4.0.2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), Donostia, Spain, 24-26 May 2017, pp. 1-6.10.1109/ECMSM.2017.7945893
    [Google Scholar]
  35. YousufA.M. RochesterE.M. OusatB. GhaderiM. Throughput, coverage and scalability of LoRa LPWAN for internet of things.2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 04-06 June 2018, pp. 1-10.10.1109/IWQoS.2018.8624157
    [Google Scholar]
  36. PérezM. Sierra-SánchezF.E. ChaparroF. ChavesD.M. Paez-RuedaC-I. GalindoG.P. FajardoA. Coverage and energy-efficiency experimental test performance for a comparative evaluation of unlicensed LPWAN: LoRaWAN and SigFox.IEEE Access202210971839719610.1109/ACCESS.2022.3206030
    [Google Scholar]
  37. VejlgaardB. LauridsenM. NguyenH. KovácsI.Z. MogensenP. SorensenM. Coverage and capacity analysis of Sigfox, Lora, GPRS, and NB-IoT.2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia, 04-07 June 2017, pp. 1-5.
    [Google Scholar]
  38. StusekM. MoltchanovD. MasekP. MikhaylovK. ZemanO. RoubicekM. KoucheryavyY. HosekJ. Accuracy assessment and cross-validation of LPWAN propagation models in urban scenarios.IEEE Access2020815462515463610.1109/ACCESS.2020.3016042
    [Google Scholar]
  39. KulkarniP. HakimQ.O.A. LakasA. Experimental evaluation of a campus-deployed IoT network using LoRa.IEEE Sens. J.20202052803281110.1109/JSEN.2019.2953572
    [Google Scholar]
  40. AnbarasiK. HemanthC. SangeethaR.G. Block error rate performance analysis of RS coded M-QAM modulated coherent OFDM-FSO system.Opt. Quantum Electron.20235517810.1007/s11082‑022‑04328‑w
    [Google Scholar]
  41. OgbodoE. DorrellD. Abu-MahfouzA. Energy-efficient distributed heterogeneous clustered spectrum-aware cognitive radio sensor network for guaranteed quality of service in smart grid.Int. J. Distrib. Sens. Netw.202117710.1177/15501477211028399
    [Google Scholar]
  42. Available from: https://www.etsi.org/deliver/etsi_ts/138200_138299/138214/15.09.00_60/ts_138214v150900p.pdf
  43. HeK. ZhangX. RenS. SunJ. Delving deep into rectifiers: Surpassing human-level performance on image net classification.Proceedings of the IEEE international conference on computer vision, Santiago, Chile, 07-13 December 2015, pp. 1026-1034.10.1109/ICCV.2015.123
    [Google Scholar]
  44. El JaafariI. EllahyaniA. CharfiS. Parametric rectified nonlinear unit (PRenu) for convolution neural networks.Signal Image Video Process.202115224124610.1007/s11760‑020‑01746‑9
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279312219240520053431
Loading
/content/journals/swcc/10.2174/0122103279312219240520053431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test