Skip to content
2000
Volume 17, Issue 4
  • ISSN: 2405-5204
  • E-ISSN:

Abstract

Produced water is reported to have the largest volume of waste stream associated with hydrocarbon recovery. It was estimated to increase from 250 million B/D in 2007 to more than 300 million B/D between 2010 and 2012. Market research conducted by Adroit put the globally produced water treatment market at a value of USD 5.10 billion in 2022. This value is anticipated to be USD 9.80 billion in 2032 at a compound annual growth rate (CAGR) of 5.80% over the prediction period. Oil and gas companies have been mandated to comply with the newly enacted environmental regulations that require extensive treatment of this water before discharge or reuse. The limited quantity of freshwater resources coupled with the increasing oil and gas production activities has made it necessary for all stakeholders to look for sustainable management of this water. Presently, a certain percentage of produced water is reused while the rest is discharged into the ocean. In both cases, the water needs to be thoroughly treated. The choice of technologies for produced water treatment depends on numerous factors, such as the chemical composition of the water and the level of purity that must be attained before disposal, recycling, or re-use. Some of the technologies used for produced water treatment include physical separation methods such as gravity, adsorption, filtration, coalescence, cyclones, flotation, centrifuges, membranes, and oxidation. There are also chemical and biological separation methods. Contaminants such as small droplets of dispersed oil and dissolved hydrocarbons (DODHs) are very challenging to remove using the above-listed water treatment technologies. Moreover, the use of membrane technology has been limited only to the use of reverse osmosis and membrane filtration for removing salinity, metals, and other inorganics. This article highlights the opportunities for the use of membrane vapor permeation and pervaporation for the removal of the small droplets of DODHs, which have been reported to be very challenging contaminants to remove. The use of 3D printing technology for the fabrication of membrane materials was reviewed. The 3D membrane development method can be used to fabricate almost any shape of the material in a highly customized manner using computer-aided design. The information presented in this article will serve as a useful reference for the technologies used for a sustainable water treatment strategy in the oil and gas industry.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204328836240905060014
2024-12-01
2024-11-19
Loading full text...

Full text loading...

References

  1. DaleS. Statistical review of world energy.2022Available from: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf
    [Google Scholar]
  2. Grand challenges facing the E&P industry.2016Available from: https://www.spe.org/en/industry/globalchallenges/
  3. HalseyT. AgrawalG. BaileyJ.R. Grand challenges for the oil and gas industry for the next decade and beyond.J. Pet. Technol.2023757525610.2118/0723‑0052‑JPT
    [Google Scholar]
  4. SinghR. Hybrid membrane systems – Applications and case studies.Hybrid Membrane Systems for Water Purification2005313119610.1016/B978‑185617442‑8/50004‑X
    [Google Scholar]
  5. KusworoT.D. AryantiN. Qudratun, Utomo DP. Oilfield produced water treatment to clean water using integrated activated carbon-bentonite adsorbent and double stages membrane process.Chem. Eng. J.201834746247110.1016/j.cej.2018.04.136
    [Google Scholar]
  6. HirayamaA MaegaitoM KawaguchiM Omani oil fields produced water: Treatment and utilization.10.2118/74413‑MS
    [Google Scholar]
  7. What does Produced Water Contain? 2019Available from: www.halliburton.com
  8. Eds. 2 - Properties of fluids. In: OxfordButterworth-Heinemann20074379
    [Google Scholar]
  9. EmmonsR.V. Shyam SunderG.S. LidenT. Unraveling the complex composition of produced water by specialized extraction methodologies.Environ. Sci. Technol.20225642334234410.1021/acs.est.1c05826 35080868
    [Google Scholar]
  10. LiuY. LuH. LiY. A review of treatment technologies for produced water in offshore oil and gas fields.Sci. Total Environ.202177514548510.1016/j.scitotenv.2021.145485 33618302
    [Google Scholar]
  11. LiangY. NingY. LiaoL. YuanB. Special focus on produced water in oil and gas fields: Origin, management, and reinjection practice. In: InFormation Damage During Improved Oil Recovery.Gulf Professional Publishing2018515586
    [Google Scholar]
  12. FederJ. Reuse of produced water grows in the oil and gas industry.J. Pet. Technol.20207212606110.2118/1220‑0060‑JPT
    [Google Scholar]
  13. PatniH. RagunathanB. Recycling and re-usage of oilfield produced water – A review.Mater. Today Proc.20237730731310.1016/j.matpr.2022.11.372
    [Google Scholar]
  14. RichardsonN.A. TilstoneA.M. The use of a weight-of-evidence approach in assessing the ecological effects of produced water discharge offshore Nigeria. Paper presented at the SPE International Conference on Health, Safety, and EnvironmentLong Beach, California, USA March 2014.10.2118/168539‑MS
    [Google Scholar]
  15. ArnoldK. StwartM. Produced water treating systems. In: Surface Production Operations, 3thed.USAGulf Professional publishing200848260910.1016/B978‑075067853‑7.50012‑0
    [Google Scholar]
  16. AmakiriK.T. CanonA.R. MolinariM. Angelis-DimakisA. Review of oilfield produced water treatment technologies.Chemosphere202229813406410.1016/j.chemosphere.2022.134064 35240151
    [Google Scholar]
  17. VaneL.M. Review: membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation.J. Chem. Technol. Biotechnol.201994234336510.1002/jctb.5839 30930521
    [Google Scholar]
  18. AdewoleJ.K. AhmadA.L. IsmailS. LeoC.P. Current challenges in membrane separation of CO2 from natural gas: A review.Int. J. Greenh. Gas Control201317466510.1016/j.ijggc.2013.04.012
    [Google Scholar]
  19. KhanN.A. SinghS. López-MaldonadoE.A. Emerging membrane technology and hybrid treatment systems for the removal of micropollutants from wastewater.Desalination202356511687310.1016/j.desal.2023.116873
    [Google Scholar]
  20. AliS.A. SenguptaS. Octyl silane modified nano alumina-polydimethylsiloxane composite membrane for pervaporative desulfurization of model gasoline.J. Environ. Chem. Eng.202311511050410.1016/j.jece.2023.110504
    [Google Scholar]
  21. JafariA. MortahebH.R. Incorporating graphene nanosheets in PDMS membrane: Effects of filler functionalization on pervaporation performance.Chem. Eng. Process.202319110946410.1016/j.cep.2023.109464
    [Google Scholar]
  22. AdewoleJ.K. AhmadA.L. Polymeric membrane materials selection for high-pressure CO2 removal from natural gas.J. Polym. Res.20172457010.1007/s10965‑017‑1231‑6
    [Google Scholar]
  23. KorosW.J. KratochvilA. ShuS. HusainS. Energy and environmental issues and impacts of membranes in industry. In: Membrane Operations: Innovative Separations and Transformations.Wiley200913916510.1002/9783527626779.ch7
    [Google Scholar]
  24. KorosW.J. LivelyR.P. BiofuelsA. DriveB.G. SpringsB. Water and Beyond.Expanding the Spectrum Processes20125892624
    [Google Scholar]
  25. VaughnJ.T. KorosW.J. JohnsonJ.R. KarvanO. Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations.J. Membr. Sci.2012401-40216317410.1016/j.memsci.2012.01.047
    [Google Scholar]
  26. AdewoleJ.K. SultanA.S. Polymeric membranes for natural gas processing: Polymer synthesis and membrane gas transport properties BT - Functional Polymers. Jafar MazumderM.A. SheardownH. Al-AhmedA. ChamSpringer International Publishing2019941976
    [Google Scholar]
  27. BakerR.W. Vapor and gas separation by membranes.In: Advanced membrane technology and applications.Wiley200855758010.1002/9780470276280.ch21
    [Google Scholar]
  28. BakerR.W. WijmansJ.G. KaschemekatJ.H. The design of membrane vapor–gas separation systems.J. Membr. Sci.19981511556210.1016/S0376‑7388(98)00248‑8
    [Google Scholar]
  29. ChengX. PanF. WangM. Hybrid membranes for pervaporation separations.J. Membr. Sci.201754132934610.1016/j.memsci.2017.07.009
    [Google Scholar]
  30. WijmansJ.G. BakerR.W. The solution-diffusion model: A unified approach to membrane permeation. In: Materials science of membranes for gas and vapor separation.Wiley200615918910.1002/047002903X.ch5
    [Google Scholar]
  31. Van der BruggenB. LuisP. Pervaporation as a tool in chemical engineering: A new era?Curr. Opin. Chem. Eng.20144475310.1016/j.coche.2014.01.005
    [Google Scholar]
  32. LiuS. LiH. KruberB. SkiborowskiM. GaoX. Process intensification by integration of distillation and vapor permeation or pervaporation - An academic and industrial perspective.Results Eng20221510052710.1016/j.rineng.2022.100527
    [Google Scholar]
  33. KoberP.A. Pervaporation, perstillation and percrystallization.J. Am. Chem. Soc.191739594494810.1021/ja02250a011
    [Google Scholar]
  34. BrüschkeH.E. State‐of‐the‐art of pervaporation processes in the chemical industry. In: Membrane Technology: In the Chemical Industry.Wiley200615120210.1002/3527608788.ch10
    [Google Scholar]
  35. LakshmyK.S. LalD. NairA. Pervaporation as a successful tool in the treatment of industrial liquid mixtures.Polymers 2022148160410.3390/polym14081604 35458354
    [Google Scholar]
  36. BöddekerK.W. Terminology in pervaporation.J. Membr. Sci.199051325927210.1016/S0376‑7388(00)80350‑6
    [Google Scholar]
  37. RautA.M. PangarkarV.G. Pervaporation of aroma compounds using virgin and silicalite‐filled organophilic membranes: Effect of aroma compound structure and comparison with distillation selectivity.Sep. Sci. Technol.20053981791181410.1081/SS‑120030772
    [Google Scholar]
  38. Van HeckeW. HofmannT. De WeverH. Pervaporative recovery of ABE during continuous cultivation: Enhancement of performance.Bioresour. Technol.201312942142910.1016/j.biortech.2012.11.072 23262020
    [Google Scholar]
  39. OrmeC.J. HarrupM.K. McCoyJ.D. WeinkaufD.H. StewartF.F. Pervaporation of water–dye, alcohol–dye, and water–alcohol mixtures using a polyphosphazene membrane.J. Membr. Sci.20021971-28910110.1016/S0376‑7388(01)00633‑0
    [Google Scholar]
  40. SemenovaS.I. Polymer membranes for hydrocarbon separation and removal.J. Membr. Sci.20042311-218920710.1016/j.memsci.2003.11.022
    [Google Scholar]
  41. AdymkanovS.V. Yampol’skiiY.P. PolyakovA.M. Pervaporation of alcohols through highly permeable PIM-1 polymer films.Polym. Sci. Ser. A200850444445010.1134/S0965545X08040135
    [Google Scholar]
  42. LiuX. JinH. LiY. Metal–organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation.J. Membr. Sci.201342849850610.1016/j.memsci.2012.10.028
    [Google Scholar]
  43. RazaW. LeeJ. RazaN. LuoY. KimK.H. YangJ. Removal of phenolic compounds from industrial waste water based on membrane-based technologies.J. Ind. Eng. Chem.20197111810.1016/j.jiec.2018.11.024
    [Google Scholar]
  44. KitaH. Zeolite membranes for pervaporation and vapor permeation. In: Materials Science of Membranes.Wiley200637310.1002/047002903X.ch15
    [Google Scholar]
  45. KhalidA. AslamM. QyyumM.A. Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects.Renew. Sustain. Energy Rev.201910542744310.1016/j.rser.2019.02.002
    [Google Scholar]
  46. BakerR.W. Pervaporation. In: Membrane Technology and Applications.Wiley2004355392
    [Google Scholar]
  47. LiuG. JinW. Pervaporation membrane materials: Recent trends and perspectives.J. Membr. Sci.202163611955710.1016/j.memsci.2021.119557
    [Google Scholar]
  48. IslamM.N. ZhouW. HondaT. TanakaK. KitaH. OkamotoK. Preparation and gas separation performance of flexible pyrolytic membranes by low-temperature pyrolysis of sulfonated polyimides.J. Membr. Sci.20052611-2172610.1016/j.memsci.2005.02.019
    [Google Scholar]
  49. OkamotoK. KitaH. HoriiK. KondoK.T. Zeolite NaA membrane: Preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures.Ind. Eng. Chem. Res.200140116317510.1021/ie0006007
    [Google Scholar]
  50. MasudaT. NagaiK. Synthesis and permeation properties of substituted polyacetylenes for gas separation and pervaporation. In: Materials Science of Membranes for Gas and Vapor Separation.Wiley200623125010.1002/047002903X.ch8
    [Google Scholar]
  51. TanakaK. OkamotoK.I. Structure and transport properties of polyimides as materials for gas and vapor membrane separation. In: Materials science of membranes for gas and vapor separation.Wiley200627129110.1002/047002903X.ch10
    [Google Scholar]
  52. MoulikS. MoulikS. ParakalaS. SridharS. SridharS. Tackling challenging industrial separation problems through membrane technology. In: Membrane Processes: Pervaporation, Vapor Permeation and Membrane Distillation for Industrial Scale Separations.Wiley201813510.1002/9781119418399.ch1
    [Google Scholar]
  53. KhanR. Ul HaqI. MaoH. Enhancing the pervaporation performance of PEBA/PVDF membrane by incorporating MAF-6 for the separation of phenol from its aqueous solution.Separ. Purif. Tech.202125611780410.1016/j.seppur.2020.117804
    [Google Scholar]
  54. RohaniR. PakizehM. ChenarM.P. Toluene/water separation using MCM-41/PEBA mixed matrix membrane via pervaporation process.J. Membr. Sci.202266212098810.1016/j.memsci.2022.120988
    [Google Scholar]
  55. MerkelT.C. PinnauI. PrabhakarR. FreemanB.D. Gas and vapor transport properties of perfluoropolymers. In: Gas and vapor transport properties of perfluoropolymers.Wiley200610.1002/047002903X.ch9
    [Google Scholar]
  56. MeijerD. MadinC. Removal of dissolved and dispersed hydrocarbons from oil and gas produced water with macro porous polymer extraction technology to reduce toxicity and allow water reuse.APPEA J.201050163764810.1071/AJ09041
    [Google Scholar]
  57. TurnbullR.W. TullochS.J. Dissolved component removal from oilfield waters. In: InProduced Water 2: Environmental Issues and Mitigation Technologies.Boston, MASpringer US199642542910.1007/978‑1‑4613‑0379‑4_39
    [Google Scholar]
  58. SmathersC. JacksonT. BuckwaldS. GonzaloR. McPhersonR. Removing dispersed and dissolved hydrocarbons from water using adsorption media systems with multiple regeneration processes. . InSPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. Dammam, Saudi Arabia, 2018 Apr 23.201810.2118/192355‑MS
    [Google Scholar]
  59. StewartM. ArnoldK. Produced water treating systems.Emulsions and Oil Treating Equipment2009107211
    [Google Scholar]
  60. SherS. WaseemM. LetaM.K. Review of techniques for the removal of polycyclic aromatic hydrocarbons from produced water.Environments20231034010.3390/environments10030040
    [Google Scholar]
  61. BeyerJ. GoksøyrA. HjermannD.Ø. KlungsøyrJ. Environmental effects of offshore produced water discharges: A review focused on the Norwegian continental shelf.Mar. Environ. Res.202016210515510.1016/j.marenvres.2020.105155 32992224
    [Google Scholar]
  62. BakkeT. KlungsøyrJ. SanniS. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry.Mar. Environ. Res.20139215416910.1016/j.marenvres.2013.09.012 24119441
    [Google Scholar]
  63. MeijerD.T. KuijvenhovenC.A. Field-proven removal of dissolved hydrocarbons from offshore produced water by the macro porous polymer-extraction technology. Paper presented at theOffshore Technology ConferenceHouston, Texas , April 2001.10.4043/13217‑MS
    [Google Scholar]
  64. ThiamB.G. El MagriA. VanaeiH.R. VaudreuilS. 3D printed and conventional membranes- A review.Polymers 2022145102310.3390/polym14051023 35267846
    [Google Scholar]
  65. ZhouL.Y. FuJ. HeY. A review of 3D printing technologies for soft polymer materials.Adv. Funct. Mater.20203028200018710.1002/adfm.202000187
    [Google Scholar]
  66. Application of 3D-Printing in Membrane fabrication.2018www.membranetechbrief.com
  67. FemmerT. KuehneA.J.C. WesslingM. Print your own membrane: Direct rapid prototyping of polydimethylsiloxane.Lab Chip201414152610261310.1039/c4lc00320a 24828586
    [Google Scholar]
  68. FemmerT. KuehneA.J.C. WesslingM. Estimation of the structure dependent performance of 3-D rapid prototyped membranes.Chem. Eng. J.201527343844510.1016/j.cej.2015.03.029
    [Google Scholar]
  69. FemmerT. KuehneA.J.C. Torres-RendonJ. WaltherA. WesslingM. Print your membrane: Rapid prototyping of complex 3D-PDMS membranes via a sacrificial resist.J. Membr. Sci.2015478121810.1016/j.memsci.2014.12.040
    [Google Scholar]
  70. BadalovS. ArnuschC.J. Ink-jet printing assisted fabrication of thin film composite membranes.J. Membr. Sci.2016515798510.1016/j.memsci.2016.05.046
    [Google Scholar]
  71. BadalovS. OrenY. ArnuschC.J. Ink-jet printing assisted fabrication of patterned thin film composite membranes.J. Membr. Sci.201549350851410.1016/j.memsci.2015.06.051
    [Google Scholar]
  72. YuanS. StrobbeD. KruthJ.P. Van PuyveldeP. Van der BruggenB. Production of polyamide-12 membranes for microfiltration through selective laser sintering.J. Membr. Sci.201752515716210.1016/j.memsci.2016.10.041
    [Google Scholar]
  73. LvJ. GongZ. HeZ. 3D printing of a mechanically durable superhydrophobic porous membrane for oil–water separation.J. Mater. Chem. A Mater. Energy Sustain.2017524124351244410.1039/C7TA02202F
    [Google Scholar]
  74. SeoJ. KushnerD.I. HicknerM.A. 3D printing of micropatterned anion exchange membranes.ACS Appl. Mater. Interfaces2016826166561666310.1021/acsami.6b03455 27218137
    [Google Scholar]
  75. LowZ.X. ChuaY.T. RayB.M. MattiaD. MetcalfeI.S. PattersonD.A. Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques.J. Membr. Sci.201752359661310.1016/j.memsci.2016.10.006
    [Google Scholar]
  76. ThakkarH. LawsonS. RownaghiA.A. RezaeiF. Development of 3D-printed polymer-zeolite composite monoliths for gas separation.Chem. Eng. J.201834810911610.1016/j.cej.2018.04.178
    [Google Scholar]
  77. ShaoP. HuangR.Y.M. Polymeric membrane pervaporation.J. Membr. Sci.2007287216217910.1016/j.memsci.2006.10.043
    [Google Scholar]
  78. AthaydeA.L. BakerR.W. DanielsR. LeM.H. LyJ.H. Pervaporation for wastewater treatment.Chemtech1997271
    [Google Scholar]
  79. JiraratananonR. ChanachaiA. HuangR.Y.M. UttapapD. Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes.J. Membr. Sci.2002195214315110.1016/S0376‑7388(01)00563‑4
    [Google Scholar]
/content/journals/rice/10.2174/0124055204328836240905060014
Loading
/content/journals/rice/10.2174/0124055204328836240905060014
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test