Skip to content
2000
Volume 17, Issue 4
  • ISSN: 2405-5204
  • E-ISSN: 2405-5212

Abstract

The current understanding and development of monazite decomposition technology using sodium hydroxide are examined. Most previous assessments have primarily focused on the post-leaching processing of monazite using sodium hydroxide, including processing steps to produce the total rare earth oxide product. However, the initial leaching process of monazite with alkali solution proves to be highly significant in practice. It presents numerous problems, such as the requirement for fine grinding of the ore down to below 45 microns, substantial alkali excess, and extended reaction times to achieve the desired efficiency. These requirements result in increased energy, chemical, and equipment costs. This article is focused on discussing the leaching conditions of monazite with alkali solution based on published literature, the problems associated with this process, the underlying reasons, newly proposed variations such as sodium hydroxide leaching under pressure and sodium hydroxide leaching in a heated ball mill, limitations of these variations, and unresolved issues. Furthermore, the manuscript introduces a novel technique, high-intensity ultrasound, to support the leaching process, which has been applied in technological cases. The discussion delves into the mechanisms of high-intensity ultrasound and its applicability in the monazite leaching process using sodium hydroxide.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204299715240802065930
2024-12-01
2025-01-20
Loading full text...

Full text loading...

References

  1. Mineral Commodity Summaries2024Available from: https://pubs.usgs.gov/publication/mcs2024
  2. KumariA. JhaM. HaitJ. SahuS.K. KumarV. Processing of Korean monazite concentrate for the recovery of rare earth metals (REMs).J. Indian Chem. Soc.20139021052110
    [Google Scholar]
  3. HedrickJJR US Geological Survey, 983 National Center. 2004
    [Google Scholar]
  4. TeixeiraL.A.V. SilvaR.G. AvelarA. MajusteD. Selective extraction of rare earth elements from monazite ores with high iron content.Metall Explor201936123524410.1007/s42461‑018‑0035‑5
    [Google Scholar]
  5. SusiloY.S.B. Regulation review of radioactive mineral as by product of tin mining activities to accelerate industrialization process. AIP Conf Proc 2024; 2967(1)10.1063/5.0192848
    [Google Scholar]
  6. WidanaK.S. FaizahY. PratiwiF. SumaryantoA. ManawanM. Beneficiation and characterization of low-grade monazite from Bangka tin mining post processing. . AIP Conf Proc 2024; 2967(1)10.1063/5.0192972
    [Google Scholar]
  7. AplanF. The processing of rare earth minerals. In: Rare Earths.Extraction. Preparation and Applications19891534
    [Google Scholar]
  8. KrishnamurthyN. GuptaC.K. Extractive Metallurgy of Rare Earths.2nd edCRC Press201510.1201/b19055
    [Google Scholar]
  9. RajagopalanP. High-pressure hydrometallurgy of uranium and thorium.Indian Min J19575411
    [Google Scholar]
  10. MirsonG. Alkaline leaching of monazite.At. Energ.195739259264
    [Google Scholar]
  11. CuthbertF.L. Thorium production technology.Addison-Wesley Pub. Co.1958
    [Google Scholar]
  12. KaplanG. Alkaline processing of monazite and zircon.Proceedings of the international conference on the peaceful uses of atomic energy Geneva1958vol. 3 no. 1, 274281
    [Google Scholar]
  13. KaplanG. UspenskayaT. Zarembo YuI. ChirkovI. Thorium, its Raw Resources, Chemistry and Technology.MoscowAtomizdat1960
    [Google Scholar]
  14. WeltM. SmutzM. Processing methods of monazite sands.JOM196019321
    [Google Scholar]
  15. ZelikmanA. Metallurgy of rare earth.Moscow, Russian FederationMetallurgizdat1963
    [Google Scholar]
  16. FarahM. Reactor grade uranium from Egyptian monazite by newer techniques.Proceedings of the international conference on the peaceful uses of atomic energyGeneva1964vol. 12147156
    [Google Scholar]
  17. SinyaverB. Autoclave processes in nonferrous metallurgy, metallurgy of nonferrous metals and gold.MoscowNonfer. Metal Inf1966171185
    [Google Scholar]
  18. HilalO. KiwanA. Extraction of uranium from monazite after separation of thorium and rare earths.CairoNational Research Center1968
    [Google Scholar]
  19. AnwarY. Abdel-RehimA. Extraction of thorium from Egyptian monazite.Bull. Fac. Sci. Alex. Univ.197010152171
    [Google Scholar]
  20. DoyleF.M. DuyvesteynS. Aqueous processing of minerals, metals, and materials.J. Miner. Met. Mater. Soc.1993454465410.1007/BF03223287
    [Google Scholar]
  21. HabashiF. A textbook of hydrometallurgy.Quebec CityExtractive Metallurgy Quebec1999
    [Google Scholar]
  22. FerneliusW. Inorganic Synthesis Volume II,. McGraw-hill book company 19461293
    [Google Scholar]
  23. BarghusenJ. SmutzM. Processing of monazite sands.Ind. Eng. Chem.195850121754175510.1021/ie50588a031
    [Google Scholar]
  24. BorrowmanS.R. RosenbaumJ. Recovery of thorium from a Wyoming ore.US Department of the Interior, Bureau of Mines1962
    [Google Scholar]
  25. KimE. Osseo-AsareK. Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy: Eh–pH diagrams for the systems Th–, Ce–, La–, Nd– (PO4)–(SO4)–H2O at 25 °C.Hydrometallurgy2012113-114677810.1016/j.hydromet.2011.12.007
    [Google Scholar]
  26. ShawV.E. BauerD.J. Extraction and Separation of Rare-earth Elements in Idaho Euxenite Concentrate.US Department of the Interior, Bureau of Mines1965
    [Google Scholar]
  27. SmutzM. BridgerG. ShawK. WhatleyM. The ames process for separation of monazite. nuclear engineering, part III.Chem Eng Progr Symposium Ser1954
    [Google Scholar]
  28. PilkingtonE.S. WylieA.W. Production of rare earth and thorium compounds from monazite. Part I.J. Soc. Chem. Ind.1947661138739410.1002/jctb.5000661103
    [Google Scholar]
  29. PilkingtonE.S. WylieA.W. Production of lanthanon and thorium compounds from monazite. II.J. Appl. Chem. 19522526527310.1002/jctb.5010020509
    [Google Scholar]
  30. PilkingtonE.S. WylieA.W. Production of lanthanon and thorium compounds from monazite. III. Preparation of pure thorium nitrate.J. Appl. Chem. 195441056858010.1002/jctb.5010041008
    [Google Scholar]
  31. WeltM.A. MortonS. Method of processing monazite sand. U.S. Patent 2811411A,,1958
    [Google Scholar]
  32. ParkerJ.G. BarochC.T. The rare-earth elements, yttrium, and thorium: A materials survey.US Bureau of Mines1971
    [Google Scholar]
  33. GuptaC.K. KrishnamurthyN. Extractive metallurgy of rare earths.Int. Mater. Rev.199237119724810.1179/imr.1992.37.1.197
    [Google Scholar]
  34. KumariA. PandaR. JhaM.K. KumarJ.R. LeeJ.Y. Process development to recover rare earth metals from monazite mineral: A review.Min. Eng.20157910211510.1016/j.mineng.2015.05.003
    [Google Scholar]
  35. PeelmanS. SunZ.H.I. SietsmaJ. YangY. Leaching of rare earth elements. In: Rare Earths Industry.Elsevier201631933410.1016/B978‑0‑12‑802328‑0.00021‑8
    [Google Scholar]
  36. LucasJ. LucasP. Le MercierT. RollatA. DavenportW.G. Rare earths: Science, technology, production and use.Elsevier201451
    [Google Scholar]
  37. KaplanG. UspenskayaT. Zarembo YuI. ChirkovI.J.M.A. Thorium, its Raw Resources.Chemistry and Technology1960
    [Google Scholar]
  38. ZelikmanA. Metallurgy of Rare-Earth Metals, Thorium and Uranium.MoscowMetallurgizdat1961
    [Google Scholar]
  39. BenedictM. PigfordT. LeviH. Fuel reprocessing.Nuclear Chemical Engineering1981457564
    [Google Scholar]
  40. MelardP. Quality control on an industrial scale at the la rochelle rare earths plant. In: The Rare Earths in Modern Science and Technology.Springer198051752610.1007/978‑1‑4613‑3054‑7_97
    [Google Scholar]
  41. SulaimanM.Y. An overview of the rare-earth mineral processing industry in Malaysia.Mater. Sci. Forum199170-7238939610.4028/www.scientific.net/MSF.70‑72.389
    [Google Scholar]
  42. DeR.C. MauriceP. Treatment of monazite. U.S. Patent US2783125A1957
  43. NeyC. TauhataL. Oliveira FilhoD. Dose equivalent estimate of works in a Brazilian monazite sand plant. 8 International congress of the International Radiation Protection Association (IRPA8), 1992 1722
    [Google Scholar]
  44. da Costa LauriaD. Rochedo ERJRd. The legacy of monazite processing in Brazil.Radiat. Prot. Dosimetry2005114454655010.1093/rpd/nci303
    [Google Scholar]
  45. ZangZ.B. KingL.K.Y. ChuK. ChengW.W. ChengW.W.J.H. Rare earth industry in China.Hydrometallurgy19829220521010.1016/0304‑386X(82)90017‑2
    [Google Scholar]
  46. NarajananN. ThulasidossS. RamachandranT. SwaminathanT. PrasadK. Processing of Monazite at the Rare Earths Division, Udyogamandal.MSF1991304556
    [Google Scholar]
  47. MiaoY. HorngJ. Decomposition of Taïwan local black monazite by hydrothermal and soda fusion methods. In: Rare earths.TaiwanInstitute of Nuclear Energy Research, CAEC Lung-Tan1988
    [Google Scholar]
  48. McersonG. KaplanG. UspenskaiaT.J.T.S.J.A.E. An improved process for the caustic soda decomposition of monazite. In: Sov.J. At Energy195731054105610.1007/BF01515747
    [Google Scholar]
  49. SuslickK.S. NyborgW.L. Ultrasound: Its chemical, physical and biological effects.Acoustical Society of America199010.1121/1.398864
    [Google Scholar]
  50. LeightonT. The acoustic bubble.Academic press2012
    [Google Scholar]
  51. MasonT J Uses of power ultrasound in chemistry and processing . Applied sonochemistry2002
    [Google Scholar]
  52. LévêqueJ-M. CravottoG. DelattreF. CintasP. Cavitation and chemical reactivity.Organic Sonochemistry: Challenges and Perspectives for the 21st Century. LévêqueJ-M. CravottoG. DelattreF. CintasP. ChamSpringer201811610.1007/978‑3‑319‑98554‑1_1
    [Google Scholar]
  53. SuslickK.S. The chemical effects of ultrasound.Sci. Am.19892602808610.1038/scientificamerican0289‑80
    [Google Scholar]
  54. RieszP. KondoT. KrishnaC.M. Sonochemistry of volatile and non-volatile solutes in aqueous solutions: E.p.r. and spin trapping studies.Ultrasonics199028529530310.1016/0041‑624X(90)90035‑M 2203196
    [Google Scholar]
  55. XuH. ZeigerB.W. SuslickK.S. Sonochemical synthesis of nanomaterials.Chem. Soc. Rev.20134272555256710.1039/C2CS35282F 23165883
    [Google Scholar]
  56. SwamyK.M. NarayanaK.L. Ultrasonically assisted leaching.Adv Sonochem2001614117910.1016/S1569‑2868(01)80008‑5
    [Google Scholar]
  57. PolyukhinP. The Use of Ultrasonics in Extractive Metallurgy.Stonehouse, UKTechnicopy1978
    [Google Scholar]
  58. Diez-BarraE. De la HozA. Sánchez-MigallónA. TejedaJ.J.H. Phase transfer catalysis without solvent. Synthesis of bisazolylalkanes. In: Heterocycles.1992347136573
    [Google Scholar]
  59. ChenB. BaoS. ZhangY. LiS.J.S TechnologyP. A high-efficiency and sustainable leaching process of vanadium from shale in sulfuric acid systems enhanced by ultrasound.Sep. Purif. Technol .202024011662410.1016/j.seppur.2020.116624
    [Google Scholar]
  60. ZhuR. WangS. ChenY. Ultrasound enhanced in-situ chemical oxidation for leaching Ag from zinc leaching residue and response surface optimization.Chem. Eng. J.202448915124310.1016/j.cej.2024.151243
    [Google Scholar]
  61. ZhangH. OuX. SunY. XiangY. YangS. ChenZ. Leaching of palladium from spent Pd/Al2O3 catalysts by coupled ultrasound-microwave technique.Separ. Purif. Tech.202434612749210.1016/j.seppur.2024.127492
    [Google Scholar]
  62. ZhangF. QinY. ZhangM. Highly selective extraction of Pd from nuclear glass waste through the combination of ultrasound-assisted acid leaching and solid phase adsorption.Separ. Purif. Tech.202433912664610.1016/j.seppur.2024.126646
    [Google Scholar]
  63. ChenY. XiangD. ZhuM. Mechanism and kinetics of ultrasound enhanced removal of arsenic from high alkali leaching solution for alkali recovery.Chem. Eng. J.202448915129910.1016/j.cej.2024.151299
    [Google Scholar]
  64. ChenY. LinG. WangS. Ultrasonic-enhanced selective arsenic removal and sulfide conversion from iron slag.J. Clean. Prod.202445014188510.1016/j.jclepro.2024.141885
    [Google Scholar]
  65. MaA. LiJ. ChangJ. ZhengX. Mechanism analysis and experimental research on leaching zn from zinc oxide dust with an ultrasound-enhanced NH3-NH4Cl-H2O system.Sustainability2024167290110.3390/su16072901
    [Google Scholar]
  66. WanY. XinC. DingW. ZhangH. YangH. BaoS. Kinetics and mechanism of ultrasonic-enhanced mixed acid leaching of zinc from zinc-bearing dust.J. Environ. Chem. Eng.125202411324610.1016/j.jece.2024.113246
    [Google Scholar]
  67. LiuB. Clean and ultrafast recovery of Zn from waste galvanized iron sheet by ultrasound-assisted acid pickling and ion flotation techniques.SSRN202410.2139/ssrn.4816752
    [Google Scholar]
  68. SunG. Mechanism and kinetic analysis of ultrasonic cavitation-assisted ozone dissolution of copper.J Sustain Metall202411410.1007/s40831‑024‑00784‑8
    [Google Scholar]
  69. Marin RiveraR. ElgarC.E. JacobsonB. Ultra-fast extraction of metals from a printed circuit board using high power ultrasound in a calcium chloride-based deep eutectic solvent.RSC Sustainability20242240341510.1039/D3SU00147D
    [Google Scholar]
  70. ZhuC. HuX. LeiY. Investigation on kinetics and mechanism of energy dissipation by ultrasound-assisted leaching of low-nickel matte.J. Miner. Met. Mater. Soc.202476141843110.1007/s11837‑023‑06260‑0
    [Google Scholar]
  71. ZhangY. ChuQ. LiuB. HanG. HuangY. Intensifying acid leaching behaviors of Fe, Ni, and Cr from stainless-steel scraps via ultrasonic treatment. In: TMS Annual Meeting & Exhibition. Springer 2024 5273610.1007/978‑3‑031‑50304‑7_51
    [Google Scholar]
  72. MhanduT.J. Ammonium thiosulfate leaching of arsenic-bearing refractory gold ores.Hokkaido University2024
    [Google Scholar]
  73. LiuJ. ChenH. ZhangM. Mg2+ leaching and Co2 sequestration of magnesium tailings enhanced by external field coupled with pretreatment.SSRN202410.2139/ssrn.4763920
    [Google Scholar]
  74. LiS. WangH. WangS. XieF. Study on the kinetics and mechanism of ultrasonic-microwave synergistic enhancement for leaching indium from zinc oxide dust.Chem. Zvesti20247863667368510.1007/s11696‑024‑03338‑0
    [Google Scholar]
  75. HuangY.F. HsiaW.N. LoS.L. Ultrasound-assisted leaching and supported liquid membrane extraction of waste liquid crystal displays for indium recovery.Sustain. Chem. Pharm.20233510122710.1016/j.scp.2023.101227
    [Google Scholar]
  76. GuedesP. MateusE.P. AlshawabkehA.N. RibeiroA.B. Ultrasound-assisted electrodialytic separation of cobalt from tungsten carbide scrap powder.Sustain. Chem. Pharm.20243810147110.1016/j.scp.2024.101471
    [Google Scholar]
  77. LiuB. ShiC. HuangY. HanG. SunH. ZhangL. Intensifying separation of Pb and Sn from waste Pb-Sn alloy by ultrasound-assisted acid leaching: Selective dissolution and sonochemistry mechanism.Ultrason. Sonochem.202410210675810.1016/j.ultsonch.2024.106758 38219552
    [Google Scholar]
  78. LiuB. ChuQ. HuangY. HanG. SunH. ZhangL. Ultrasound-assisted extraction of Sn from tinplate scraps by alkaline leaching: Novel acoustoelectric synergy effect underlying intensifying mechanism.Ultrason. Sonochem.202310010663110.1016/j.ultsonch.2023.106631 37837707
    [Google Scholar]
  79. LiuB. DuanL. CaiS. A clean and efficient route for extraction of vanadium from vanadium slag by electro-oxidation combined with ultrasound cavitation.Ultrason. Sonochem.202410210673510.1016/j.ultsonch.2023.106735 38128390
    [Google Scholar]
  80. LiH. RenQ. TianJ. Efficient recovery of vanadium from calcification roasted-acid leaching tailings enhanced by ultrasound in H2SO4-H2O2 system.Miner. Eng.202420510849210.1016/j.mineng.2023.108492
    [Google Scholar]
  81. LiH. Mechanism and kinetics study of vanadium leaching from landfilled metallurgical residues by ultrasonic with ozonation enhancement in a low-acid medium.SSRN202410.1016/j.ultsonch.2024.106998
    [Google Scholar]
  82. XiaH. Study on ultrasonic intensive leaching of germanium from germanium concentrate.Preprints2023
    [Google Scholar]
  83. LiangM. DiH. HongY. Physical effect of ultrasonic on leaching system of zinc oxide dust containing germanium.Int. J. Chem. React. Eng.202321111433144110.1515/ijcre‑2023‑0042
    [Google Scholar]
  84. YuanY. YuX. ShenQ. ZhaoQ. LiY. WuT. A novel approach for ultrasonic assisted organic acid leaching of waste lithium-containing aluminum electrolyte and recovery of lithium.Chem. Eng. Process.202319210950810.1016/j.cep.2023.109508
    [Google Scholar]
  85. NshizirunguT. RanaM. JoY.T. UwiragiyeE. KimJ. ParkJ.H. Ultrasound-assisted sustainable recycling of valuable metals from spent Li-ion batteries via optimisation using response surface methodology.J. Environ. Chem. Eng.202412211237110.1016/j.jece.2024.112371
    [Google Scholar]
  86. ZhaoY. WangY.H. WuJ.J. MaW.H. Study on the behavior of impurity removal from lithium-iron-phosphate slag using the ultrasonic-assisted sulphuric acid leaching.J Min Metall Sect B: Metall2024601597010.2298/JMMB230810005Z
    [Google Scholar]
  87. ShiY. ZhuB. GuoX. MOF-derived metal sulfides for electrochemical energy applications.Energy Storage Mater.20225184087210.1016/j.ensm.2022.07.027
    [Google Scholar]
  88. PiY. QiuZ. SunY. Synergistic mechanism of sub‐nanometric ru clusters anchored on tungsten oxide nanowires for high‐efficient bifunctional hydrogen electrocatalysis.Adv. Sci.2023107220609610.1002/advs.202206096 36594619
    [Google Scholar]
  89. CaoS. LiY. TangY. Space‐confined metal ion strategy for carbon materials derived from cobalt benzimidazole frameworks with high desalination performance in simulated seawater.Adv. Mater.20233523230101110.1002/adma.202301011 36990112
    [Google Scholar]
  90. TyagiV.K. LoS.L. AppelsL. DewilR. Ultrasonic treatment of waste sludge: A review on mechanisms and applications.Crit. Rev. Environ. Sci. Technol.201444111220128810.1080/10643389.2013.763587
    [Google Scholar]
  91. ChuahL.F. KlemešJ.J. YusupS. BokhariA. AkbarM.M. A review of cleaner intensification technologies in biodiesel production.J. Clean. Prod.201714618119310.1016/j.jclepro.2016.05.017
    [Google Scholar]
  92. ChuahL.F. Mohd AminM. YusupS. Influence of green catalyst on transesterification process using ultrasonic-assisted.J. Clean. Prod.2016136142210.1016/j.jclepro.2016.05.003
    [Google Scholar]
  93. TabatabaeiM. AghbashloM. DehhaghiM. Reactor technologies for biodiesel production and processing: A review.Pror. Energy Combust. Sci.20197423930310.1016/j.pecs.2019.06.001
    [Google Scholar]
  94. Al-SharrahG. MarafiM. Process simulation and techno-economic evaluation of recovery of metals and alumina from spent hydroprocessing catalysts using leaching with EDTA.J Eng Res20241213641
    [Google Scholar]
  95. Al-SheehaH. MarafiM. RaghavanV. RanaM.S. Recycling and recovery routes for spent hydroprocessing catalyst waste.Ind. Eng. Chem. Res.20135236127941280110.1021/ie4019148
    [Google Scholar]
  96. MarafiM. FurimskyE. Hydroprocessing catalysts containing noble metals: Deactivation, regeneration, metals reclamation, and environment and safety.Energy Fuels20173165711575010.1021/acs.energyfuels.7b00471
    [Google Scholar]
  97. MarafiM. Role of EDTA on metal removal from refinery waste catalysts.WIT Trans. Ecol. Environ.2019231137147
    [Google Scholar]
  98. VinatoruM. An overview of the ultrasonically assisted extraction of bioactive principles from herbs.Ultrason. Sonochem.20018330331310.1016/S1350‑4177(01)00071‑2 11441615
    [Google Scholar]
  99. SamarakoneS. The sonochemical extraction of monazite using sulfuric acid.Polytechnique montréal2023
    [Google Scholar]
  100. HacklR. DreisingerD. PetersE. KingJ.J.H. Passivation of chalcopyrite during oxidative leaching in sulfate media.Hydrometallurgy1995391-3254810.1016/0304‑386X(95)00023‑A
    [Google Scholar]
  101. CórdobaE. MuñozJ. BlázquezM. GonzálezF. BallesterA.J.M.E. Passivation of chalcopyrite during its chemical leaching with ferric ion at 68°C.Miner. Eng.200922322923510.1016/j.mineng.2008.07.004
    [Google Scholar]
  102. StottM. WatlingH. FranzmannP. Sutton DJMe. The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching.Miner. Eng.20001310-111117112710.1016/S0892‑6875(00)00095‑9
    [Google Scholar]
  103. ParkerA. KlauberC. KougianosA. WatlingH. Van BronswijkW.J.H. An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite.Hydrometallurgy2003711-226527610.1016/S0304‑386X(03)00165‑8
    [Google Scholar]
  104. CarneiroM.F.C. LeãoV.A.J.H. The role of sodium chloride on surface properties of chalcopyrite leached with ferric sulphate.Hydrometallurgy2007873-4738210.1016/j.hydromet.2007.01.005
    [Google Scholar]
  105. Viramontes-GamboaG. Peña-GomarM.M. DixonD.G.J.H. Electrochemical hysteresis and bistability in chalcopyrite passivation.Hydrometallurgy20101051-214014710.1016/j.hydromet.2010.08.012
    [Google Scholar]
  106. XianY.J. WenS.M. DengJ.S. LiuJ. NieQ. Leaching chalcopyrite with sodium chlorate in hydrochloric acid solution.Can. Metall. Q.201251213314010.1179/1879139512Y.0000000001
    [Google Scholar]
  107. YoonH-S. Ultrasonic-assisted leaching kinetics in aqueous FeCl3-HCl solution for the recovery of copper by hydrometallurgy from poorly soluble chalcopyrite.Korean J. Chem. Eng.2017341748175510.1007/s11814‑017‑0053‑x
    [Google Scholar]
  108. ZhangD. FuL. LiuH. High-efficiency leaching of chalcopyrite by ozone with ultrasonic promotion: Kinetics and mechanism.J. Mol. Liq.202440112468210.1016/j.molliq.2024.124682
    [Google Scholar]
  109. UdayakumarS. BaharunN. RezanS.A. IsmailA.F. Mohamed TakipK. Economic evaluation of thorium oxide production from monazite using alkaline fusion method.Nucl. Eng. Technol.20215372418242510.1016/j.net.2021.01.028
    [Google Scholar]
  110. Mohd SalehuddinA.H.J. IsmailA.F. Che Zainul BahriC.N.A. AzimanE.S. Economic analysis of thorium extraction from monazite.Nucl. Eng. Technol.201951263164010.1016/j.net.2018.11.005
    [Google Scholar]
  111. MukhlisR.Z. LeeJ-Y. KangH.N. Techno-economic evaluation of an environmental-friendly processing route to extract rare earth elements from monazite.Clean Eng Technol20242010074210.1016/j.clet.2024.100742
    [Google Scholar]
  112. PathakH. Energy requirements of self dependent India and contribution of thorium.2021
    [Google Scholar]
  113. HussainW. Thorium based indian nuclear program.Nucleus20236016064
    [Google Scholar]
  114. V. Đ T. Research on technology for recovering total rare earth oxides, Th, and U from Vietnamese monazite ore by the method of roasting ore decomposition with sulfuric acid, 2024https://www.vista.gov.vn/news/khoa-hoc-ky-thuat-va-cong-nghe/nghien-cuu-cong-nghe-thu-nhan-tong-oxit-dat-hiem-th-va-u-tu-quang-monazit-viet-nam-bang-phuong-phap-nung-phan-huy-quang-voi-axit-sunphuric-855.html
  115. FindeißM. SchäfferA. Fate and environmental impact of thorium residues during rare earth processing.J Sustainable Metall20173117918910.1007/s40831‑016‑0083‑3
    [Google Scholar]
  116. AzimanE.S. IsmailA.F. RahmatM.A. Balancing economic growth and environmental protection: A sustainable approach to Malaysia’s rare-earth industry.Resour. Policy20238310375310.1016/j.resourpol.2023.103753
    [Google Scholar]
  117. JiJ. LuX. CaiM. XuZ. Improvement of leaching process of Geniposide with ultrasound.Ultrason. Sonochem.200613545546210.1016/j.ultsonch.2005.08.003 16289805
    [Google Scholar]
  118. XueJ. LuX. DuY. MaoW. WangY. LiJ. Ultrasonic-assisted oxidation leaching of nickel sulfide concentrate.Chin. J. Chem. Eng.201018694895310.1016/S1004‑9541(09)60152‑X
    [Google Scholar]
  119. ÇetintaşS. BingölD. Performance evaluation of leaching processes with and without ultrasound effect combined with reagent-assisted mechanochemical process for nickel recovery from Laterite: Process optimization and kinetic evaluation.Miner. Eng.202015710656210.1016/j.mineng.2020.106562
    [Google Scholar]
  120. DingW. BaoS. ZhangY. XiaoJ. Mechanism and kinetics study on ultrasound assisted leaching of gallium and zinc from corundum flue dust.Miner. Eng.202218310762410.1016/j.mineng.2022.107624
    [Google Scholar]
  121. DaviesL.A. DargueA. DeanJ.R. DearyM.E. Use of 24 kHz ultrasound to improve sulfate precipitation from wastewater.Ultrason. Sonochem.20152342443110.1016/j.ultsonch.2014.08.017 25218769
    [Google Scholar]
  122. ZhaoC. ZhangY. CaoH. Lithium carbonate recovery from lithium-containing solution by ultrasound assisted precipitation.Ultrason. Sonochem.20195248449210.1016/j.ultsonch.2018.12.025 30595487
    [Google Scholar]
  123. DoddsJ. EspitalierF. LouisnardO. The effect of ultrasound on crystallisation‐precipitation processes: Some examples and a new segregation model.Part. Part. Syst. Charact.2007241182810.1002/ppsc.200601046
    [Google Scholar]
  124. MohodA.V. GogateP.R. Improved crystallization of ammonium sulphate using ultrasound assisted approach with comparison with the conventional approach.Ultrason. Sonochem.20184131031810.1016/j.ultsonch.2017.09.047 29137757
    [Google Scholar]
  125. NalessoS. BussemakerM.J. SearR.P. HodnettM. LeeJ. A review on possible mechanisms of sonocrystallisation in solution.Ultrason. Sonochem.20195712513810.1016/j.ultsonch.2019.04.020 31208608
    [Google Scholar]
  126. ZhangX. YuanJ. TianJ. Ultrasonic-enhanced selective sulfide precipitation of copper ions from copper smelting dust using monoclinic pyrrhotite.Trans. Nonferrous Met. Soc. China202232268269510.1016/S1003‑6326(22)65825‑4
    [Google Scholar]
  127. PesicB. ZhouT. Application of ultrasound in extractive metallurgy: Sonochemical extraction of nickel.Metall. Trans., B, Process Metall.1992231132210.1007/BF02654031
    [Google Scholar]
  128. DaryaborM. AhmadiA. ZiloueiH. Solvent extraction of cadmium and zinc from sulphate solutions: Comparison of mechanical agitation and ultrasonic irradiation.Ultrason. Sonochem.20173493193710.1016/j.ultsonch.2016.07.014 27773323
    [Google Scholar]
  129. RanJ. LiY. WangX. Metal recovery from industrial solid waste by ultrasonic-assisted hydrometallurgical leaching: A review.Environ. Chem. Lett.20242242055209010.1007/s10311‑024‑01743‑1
    [Google Scholar]
/content/journals/rice/10.2174/0124055204299715240802065930
Loading
/content/journals/rice/10.2174/0124055204299715240802065930
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test