Skip to content
2000
Volume 17, Issue 3
  • ISSN: 2405-5204
  • E-ISSN:

Abstract

Growing awareness of environmental concerns and the prioritisation of environmental stewardship necessitates the incorporation of sustainability practices that are both economical and profitable. This involves transforming existing industrial practices from the ‘take-make-waste’ approach to one that aligns with the principles of a circular economy. This includes the use and restoration of bioreserves or the cycling of products in a manner that minimizes waste generation by employing the concepts of reuse and recycling. The adoption of circular economy principles is especially critical in energy-intensive industries, and there is increased attention to implementing these principles through biomass gasification. Various methodologies exist for utilizing the potential of biomass by employing biomass gasification to achieve the desired levels of energy output. Techniques incorporating circular economy principles for biomass gasification have become increasingly sought after and achieved widespread implementation in the past few decades. In this paper, we examine the principle of a circular economy and how biomass gasification can be leveraged in processes requiring high-energy input to achieve the same.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204319671240515060552
2024-05-20
2024-11-19
Loading full text...

Full text loading...

References

  1. KorhonenJ. HonkasaloA. SeppäläJ. Circular economy: The concept and its limitations.Ecol. Econ.2018143374610.1016/j.ecolecon.2017.06.041
    [Google Scholar]
  2. GeorgeD.A.R. LinB.C. ChenY. A circular economy model of economic growth.Environ. Model. Softw.201573606310.1016/j.envsoft.2015.06.014
    [Google Scholar]
  3. YuanZ. BiJ. MoriguichiY. The circular economy: A new development strategy in China.J. Ind. Ecol.2006101-24810.1162/108819806775545321
    [Google Scholar]
  4. KunzN. MayersK. Van WassenhoveL.N. Stakeholder views on extended producer responsibility and the circular economy.Calif. Manage. Rev.2018603457010.1177/0008125617752694
    [Google Scholar]
  5. MurrayA. SkeneK. HaynesK. The circular economy: An interdisciplinary exploration of the concept and application in a global context.J. Bus. Ethics2017140336938010.1007/s10551‑015‑2693‑2
    [Google Scholar]
  6. RekleitisG. HaralambousK.J. LoizidouM. AravossisK. Utilization of agricultural and livestock waste in anaerobic digestion (A.D): Applying the biorefinery concept in a circular economy.Energies20201317442810.3390/en13174428
    [Google Scholar]
  7. BraungartM. McDonoughW. Cradle to cradle: Remaking the way we make things.LondonVintage2019
    [Google Scholar]
  8. Adoption of the paris agreement.Available From : https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf 0000
  9. Paris Agreement to the United Nations Framework Convention on Climate Change.Available From : https://unfccc.int/process-and-meetings/the-paris-agreement 2015
  10. U.S. Energy Information AdministrationInternational energy outlookAvailable From https://www.eia.gov/outlooks/ieo/consumption/sub-topic-03.php 2021
  11. NewellP. BulkeleyH. Landscape for change? International climate policy and energy transitions: evidence from sub-Saharan Africa.Clim. Policy201717565066310.1080/14693062.2016.1173003
    [Google Scholar]
  12. Hermoso-OrzáezM.J. Mota-PanizioR. Carmo-CaladoL. BritoP. Thermochemical and economic analysis for energy recovery by the gasification of WEEE plastic waste from the disassembly of large-scale outdoor obsolete luminaires by LEDs in the alto alentejo region (Portugal).Appl. Sci.20201013460110.3390/app10134601
    [Google Scholar]
  13. PoulikakosL.D. PapadaskalopoulouC. HofkoB. Harvesting the unexplored potential of European waste materials for road construction.Resour. Conserv. Recycling2017116324410.1016/j.resconrec.2016.09.008
    [Google Scholar]
  14. SchmidtW. CommehM. OlonadeK. Sustainable circular value chains: From rural waste to feasible urban construction materials solutions.Develop Built Environ2021610004710.1016/j.dibe.2021.100047
    [Google Scholar]
  15. SalvadorR. PuglieriF.N. HalogA. AndradeF.G. PiekarskiC.M. De FranciscoA.C. Key aspects for designing business models for a circular bioeconomy.J. Clean. Prod.202127812434110.1016/j.jclepro.2020.124341
    [Google Scholar]
  16. StephensonP.J. DamerellA. Bioeconomy and circular economy approaches need to enhance the focus on biodiversity to achieve sustainability.Sustainability202214171064310.3390/su141710643
    [Google Scholar]
  17. AntarM. LyuD. NazariM. ShahA. ZhouX. SmithD.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization.Renew. Sustain. Energy Rev.202113911069110.1016/j.rser.2020.110691
    [Google Scholar]
  18. SawatdeenarunatC. SurendraK.C. TakaraD. OechsnerH. KhanalS.K. Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities.Bioresour. Technol.201517817818610.1016/j.biortech.2014.09.103 25446783
    [Google Scholar]
  19. CecchiF. CavinatoC. Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects.Waste Manag. Res.201533542943810.1177/0734242X14568610 25687916
    [Google Scholar]
  20. WatkinsD. NuruddinM. HosurM. Tcherbi-NartehA. JeelaniS. Extraction and characterization of lignin from different biomass resources.J. Mater. Res. Technol.201541263210.1016/j.jmrt.2014.10.009
    [Google Scholar]
  21. ChaudharyP. BansalS. SharmaB.B. SainiS. JoshiA. Waste biomass-derived activated carbons for various energy storage device applications: A review.J. Energy Storage20247810999610.1016/j.est.2023.109996
    [Google Scholar]
  22. SharmaP. GuptaB. PandeyM. Singh BisenK. BaredarP. Downdraft biomass gasification: A review on concepts, designs analysis, modelling and recent advances.Mater. Today Proc.2021465333534110.1016/j.matpr.2020.08.789
    [Google Scholar]
  23. MacFarlaneD.W. Potential availability of urban wood biomass in Michigan: Implications for energy production, carbon sequestration and sustainable forest management in the U.S.A.Biomass Bioenergy200933462863410.1016/j.biombioe.2008.10.004
    [Google Scholar]
  24. LiM. HouY. JiaZ. LiJ. Role of green technological innovation in the green economic growth in China’s natural resource markets.Resour. Policy20238610418710.1016/j.resourpol.2023.104187
    [Google Scholar]
  25. OgunrewoO.F. NwuluN.I. Optimisation framework of biomass supply chain in southwest Nigeria.Cleaner Engineering and Technology20241810071110.1016/j.clet.2023.100711
    [Google Scholar]
  26. LiuY. HuangY. Assessing the interrelationship between fossil fuels resources and the biomass energy market for achieving a sustainable and green economy.Resour. Policy20248810439710.1016/j.resourpol.2023.104397
    [Google Scholar]
  27. DeyB. AhmedR. FerdousJ. HalimM.A. HaqueM.M.U. Biomass or LPG? A case study for unraveling cooking fuel choices and motivations of rural users in Maheshkhali Island, Bangladesh.Sustainable. Futures2024710015210.1016/j.sftr.2024.100152
    [Google Scholar]
  28. RahutD.B. AryalJ.P. ManchandaN. SonobeT. Examining energy justice: Empirical analysis of clean cooking transition across social groups in India, 2004–2018.Renew. Sustain. Energy Rev.202419311426010.1016/j.rser.2023.114260
    [Google Scholar]
  29. IndrawanN. KumarA. MoliereM. SallamK.A. HuhnkeR.L. Distributed power generation via gasification of biomass and municipal solid waste: A review.J Energy Inst20209362293231310.1016/j.joei.2020.07.001
    [Google Scholar]
  30. ColpanC. DincerI. HamdullahpurF. Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas.Int. J. Hydrogen Energy200732778779510.1016/j.ijhydene.2006.10.059
    [Google Scholar]
  31. BasuP. Design of Biomass Gasifiers.Biomass Gasification Design Handbook.Elsevier201016722810.1016/B978‑0‑12‑374988‑8.00006‑4
    [Google Scholar]
  32. Venkata MohanS. NikhilG.N. ChiranjeeviP. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives.Bioresour. Technol.201621521210.1016/j.biortech.2016.03.130 27068056
    [Google Scholar]
  33. ClarkJ.H. FarmerT.J. Herrero-DavilaL. SherwoodJ. Circular economy design considerations for research and process development in the chemical sciences.Green Chem.201618143914393410.1039/C6GC00501B
    [Google Scholar]
  34. BenjaafarS. LiY. DaskinM. Carbon footprint and the management of supply chains: Insights from simple models.IEEE Trans. Autom. Sci. Eng.20131019911610.1109/TASE.2012.2203304
    [Google Scholar]
  35. AbadV. AvilaR. VicentT. FontX. Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors.Bioresour. Technol.2019283101710.1016/j.biortech.2019.03.064 30897388
    [Google Scholar]
  36. HaasW. KrausmannF. WiedenhoferD. HeinzM. How circular is the global economy?: An assessment of material flows, waste production, and recycling in the european union and the world in 2005.J. Ind. Ecol.201519576577710.1111/jiec.12244
    [Google Scholar]
  37. DunnJ.B. GainesL. SullivanJ. WangM.Q. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.Environ. Sci. Technol.20124622127041271010.1021/es302420z 23075406
    [Google Scholar]
  38. VinayakA.K. XuZ. LiG. WangX. Current trends in sourcing, recycling, and regeneration of spent lithium-ion batteries—A review.Renewables20231329431510.31635/renewables.023.202200008
    [Google Scholar]
  39. BragugliaCM GallipoliA GianicoA PagliacciaP Anaerobic bioconversion of food waste into energy: A critical review.Bioresour Technol2018248Pt A375610.1016/j.biortech.2017.06.14528697976
    [Google Scholar]
  40. Mazur-WierzbickaE. Towards circular economy—A comparative analysis of the countries of the European Union.Resources20211054910.3390/resources10050049
    [Google Scholar]
  41. Pinyol AlberichJ. PanseraM. HartleyS. Understanding the EU’s circular economy policies through futures of circularity.J. Clean. Prod.202338513572310.1016/j.jclepro.2022.135723
    [Google Scholar]
  42. ChioattoE. SospiroP. Transition from waste management to circular economy: The European Union roadmap.Environ. Dev. Sustain.202325124927610.1007/s10668‑021‑02050‑3
    [Google Scholar]
  43. CiriminnaR. Lomeli-RodriguezM. Demma CaràP. Lopez-SanchezJ.A. PagliaroM. Limonene: A versatile chemical of the bioeconomy.Chem. Commun.20145097152881529610.1039/C4CC06147K 25341412
    [Google Scholar]
  44. ValeroA. ValeroA. thermodynamic rarity and recyclability of raw materials in the energy transition: The need for an in-spiral economy.Entropy201921987310.3390/e21090873
    [Google Scholar]
  45. LondoñoN.A.C. CabezasH. Perspectives on circular economy in the context of chemical engineering and sustainable development.Curr. Opin. Chem. Eng.20213410073810.1016/j.coche.2021.100738
    [Google Scholar]
  46. CooperS.J.G. GiesekamJ. HammondG.P. Thermodynamic insights and assessment of the ‘circular economy’.J. Clean. Prod.20171621356136710.1016/j.jclepro.2017.06.169
    [Google Scholar]
  47. TabelinC. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives.Miner. Eng.202016310674310.1016/j.mineng.2020.106743
    [Google Scholar]
  48. ChavezR. SharmaM. Profitability and environmental friendliness of a closed-loop supply chain for PET components: A case study of the Mexican automobile market.Resour. Conserv. Recycling201813517218910.1016/j.resconrec.2017.10.038
    [Google Scholar]
  49. IngebrigtsenS. JakobsenO.D. Environment and profitability in the reprocessing of paper in Norway: contradictory research reports in the context of circulation economics.Bus. Strategy Environ.200615638940110.1002/bse.455
    [Google Scholar]
  50. HodgeM. OchsendorfJ. FernándezJ. Quantifying potential profit from material recycling: A case study in brick manufacturing.J. Clean. Prod.201018121190119910.1016/j.jclepro.2010.03.008
    [Google Scholar]
  51. Vaverková . Landfill impacts on the environment— Review.Geosciences201991043110.3390/geosciences9100431
    [Google Scholar]
  52. ZhuJ. FanC. ShiH. ShiL. Efforts for a circular economy in China: A comprehensive review of policies.J. Ind. Ecol.201923111011810.1111/jiec.12754
    [Google Scholar]
  53. Leal FilhoW. SaariU. FedorukM. An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe.J. Clean. Prod.201921455055810.1016/j.jclepro.2018.12.256
    [Google Scholar]
  54. GuptY. SahayS. Review of extended producer responsibility: A case study approach.Waste Manag. Res.201533759561110.1177/0734242X15592275 26185163
    [Google Scholar]
  55. CorradoL. FazioA. PelloniA. Pro-environmental attitudes, local environmental conditions and recycling behavior.J. Clean. Prod.202236213239910.1016/j.jclepro.2022.132399
    [Google Scholar]
  56. DerksenL. GartrellJ. The social context of recycling.Am. Sociol. Rev.199358343410.2307/2095910
    [Google Scholar]
  57. WernerC.M. MakelaE. Motivations and behaviors that support recycling.J. Environ. Psychol.199818437338610.1006/jevp.1998.0114
    [Google Scholar]
  58. BarrS. FordN.J. GilgA.W. Attitudes towards Recycling Household Waste in Exeter, Devon: Quantitative and qualitative approaches.Local Environ.20038440742110.1080/13549830306667
    [Google Scholar]
  59. MolinoA. ChianeseS. MusmarraD. Biomass gasification technology: The state of the art overview.J. Energy Chem.2016251102510.1016/j.jechem.2015.11.005
    [Google Scholar]
  60. IakovouE. KaragiannidisA. VlachosD. TokaA. MalamakisA. Waste biomass-to-energy supply chain management: A critical synthesis.Waste Manag.201030101860187010.1016/j.wasman.2010.02.030 20231084
    [Google Scholar]
  61. GumisirizaR. HawumbaJ.F. OkureM. HenselO. Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda.Biotechnol. Biofuels20171011110.1186/s13068‑016‑0689‑5 28066511
    [Google Scholar]
  62. Fatih DemirbasM. BalatM. BalatH. Biowastes-to-biofuels.Energy Convers. Manage.20115241815182810.1016/j.enconman.2010.10.041
    [Google Scholar]
  63. LiuC.M. WuS.Y. From biomass waste to biofuels and biomaterial building blocks.Renew. Energy2016961056106210.1016/j.renene.2015.12.059
    [Google Scholar]
  64. WidjayaE.R. ChenG. BowtellL. HillsC. Gasification of non-woody biomass: A literature review.Renew. Sustain. Energy Rev.20188918419310.1016/j.rser.2018.03.023
    [Google Scholar]
  65. TripathiM. SahuJ.N. GanesanP. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review.Renew. Sustain. Energy Rev.20165546748110.1016/j.rser.2015.10.122
    [Google Scholar]
  66. WainainaS HorváthIS TaherzadehMJ Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review.Bioresour Technol2018248Pt A1132110.1016/j.biortech.2017.06.07528651875
    [Google Scholar]
  67. LiY. ZhouL.W. WangR.Z. Urban biomass and methods of estimating municipal biomass resources.Renew. Sustain. Energy Rev.2017801017103010.1016/j.rser.2017.05.214
    [Google Scholar]
  68. AtayŞ. AkbalF. Classification and effects of sludge disintegration technologies integrated into sludge handling units: An overview.Clean20164491198121310.1002/clen.201400084
    [Google Scholar]
  69. WangY. KinoshitaC.M. Kinetic model of biomass gasification.Sol. Energy1993511192510.1016/0038‑092X(93)90037‑O
    [Google Scholar]
  70. KajitaniS. ZhangY. UmemotoS. AshizawaM. HaraS. Co-gasification reactivity of coal and woody biomass in high-temperature gasification.Energy Fuels201024114515110.1021/ef900526h
    [Google Scholar]
  71. SafarianS. UnnþórssonR. RichterC. A review of biomass gasification modelling.Renew. Sustain. Energy Rev.201911037839110.1016/j.rser.2019.05.003
    [Google Scholar]
  72. LeungD.Y.C. YinX.L. WuC.Z. A review on the development and commercialization of biomass gasification technologies in China.Renew. Sustain. Energy Rev.20048656558010.1016/j.rser.2003.12.010
    [Google Scholar]
  73. MahapatraS. DasappaS. Off-grid biomass gasification based rural electrification in lieu of grid extension.19th European Biomass Conference and ExhibitionBerlin, Germany, 6-10 June, 2011, pp. 2203-2208
    [Google Scholar]
  74. GurupreethaB. ShruthiS. PrabhuN. A review on production of biofuels from novel biomass.Int. Res. J. Biol. Sci.2020945364
    [Google Scholar]
  75. PatraT.K. ShethP.N. Biomass gasification models for downdraft gasifier: A state-of-the-art review.Renew. Sustain. Energy Rev.20155058359310.1016/j.rser.2015.05.012
    [Google Scholar]
  76. SulewskiP. IgnaciukW. SzymańskaM. WąsA. Development of the biomethane market in Europe.Energies2023164200110.3390/en16042001
    [Google Scholar]
  77. AdnanA.I. OngM.Y. NomanbhayS. ChewK.W. ShowP.L. Technologies for biogas upgrading to biomethane: A review.Bioengineering2019649210.3390/bioengineering6040092 31581659
    [Google Scholar]
  78. RyckeboschE. DrouillonM. VervaerenH. Techniques for transformation of biogas to biomethane.Biomass Bioenergy20113551633164510.1016/j.biombioe.2011.02.033
    [Google Scholar]
  79. Romero-GarcíaJ.M. NiñoL. Martínez-PatiñoC. ÁlvarezC. CastroE. NegroM.J. Biorefinery based on olive biomass. State of the art and future trends.Bioresour. Technol.201415942143210.1016/j.biortech.2014.03.062 24713236
    [Google Scholar]
  80. Gómez-de la CruzF.J. Casanova-PeláezP.J. Palomar-CarniceroJ.M. Cruz-PeragónF. Drying kinetics of olive stone: A valuable source of biomass obtained in the olive oil extraction.Energy20147514615210.1016/j.energy.2014.06.085
    [Google Scholar]
  81. HodaifaG. MartínezM.E. SánchezS. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus.Bioresour. Technol.20089951111111710.1016/j.biortech.2007.02.020 17434730
    [Google Scholar]
  82. KumarA. KumarN. BaredarP. ShuklaA. A review on biomass energy resources, potential, conversion and policy in India.Renew. Sustain. Energy Rev.20154553053910.1016/j.rser.2015.02.007
    [Google Scholar]
  83. NizamiA.S. RehanM. WaqasM. Waste biorefineries: Enabling circular economies in developing countries.Bioresour. Technol.20172411101111710.1016/j.biortech.2017.05.097 28579178
    [Google Scholar]
  84. ManaraP. ZabaniotouA. Co-valorization of crude glycerol waste streams with conventional and/or renewable fuels for power generation and industrial symbiosis perspectives.Waste Biomass Valoriz.20167113515010.1007/s12649‑015‑9439‑3
    [Google Scholar]
  85. DasariM.A. KiatsimkulP.P. SutterlinW.R. SuppesG.J. Low-pressure hydrogenolysis of glycerol to propylene glycol.Appl. Catal. A Gen.20052811-222523110.1016/j.apcata.2004.11.033
    [Google Scholar]
  86. SkoulouV.K. ZabaniotouA.A. Co-gasification of crude glycerol with lignocellulosic biomass for enhanced syngas production.J. Anal. Appl. Pyrolysis20139911011610.1016/j.jaap.2012.10.015
    [Google Scholar]
  87. Đurišić-MladenovićN. ŠkrbićB.D. ZabaniotouA. Chemometric interpretation of different biomass gasification processes based on the syngas quality: Assessment of crude glycerol co-gasification with lignocellulosic biomass.Renew. Sustain. Energy Rev.20165964966110.1016/j.rser.2016.01.002
    [Google Scholar]
  88. StrianiR. StasiE. GiuriA. SeitiM. FerrarisE. Esposito CorcioneC. Development of an innovative and green method to obtain nanoparticles in aqueous solution from carbon-based waste ashes.Nanomaterials202111357710.3390/nano11030577 33668967
    [Google Scholar]
  89. KarmeeS.K. Noodle waste based biorefinery: An approach to address fuel, waste management and sustainability.Biofuels20189339540410.1080/17597269.2016.1271631
    [Google Scholar]
  90. MirmoshtaghiG. Biomass gasification in fluidized bed gasifiers: Modeling and simulation. PhD Thesis, Mälardalen University2016
    [Google Scholar]
  91. NaJ.I. ParkS.J. KimY.K. LeeJ.G. KimJ.H. Characteristics of oxygen-blown gasification for combustible waste in a fixed-bed gasifier.Appl. Energy2003753-427528510.1016/S0306‑2619(03)00041‑2
    [Google Scholar]
  92. ReedT.B. DasA. Handbook of Biomass Downdraft Gasifier Engine Systems.Solar Energy Research Institute198810.2172/5206099
    [Google Scholar]
  93. BrarJ.S. SinghK. WangJ. KumarS. Cogasification of coal and biomass: A review.Int. J. For. Res.2012201211010.1155/2012/363058
    [Google Scholar]
  94. ChenJ.S. GunkelW.W. Modeling and simulation of co-current moving bed gasification reactors — Part II. A detailed gasifier model.Biomass1987142759810.1016/0144‑4565(87)90012‑6
    [Google Scholar]
  95. ArmestoL. BahilloA. VeijonenK. CabanillasA. OteroJ. Combustion behaviour of rice husk in a bubbling fluidised bed.Biomass Bioenergy200223317117910.1016/S0961‑9534(02)00046‑6
    [Google Scholar]
  96. LiX. GraceJ.R. WatkinsonA.P. LimC.J. ErgüdenlerA. Equilibrium modeling of gasification: A free energy minimization approach and its application to a circulating fluidized bed coal gasifier.Fuel200180219520710.1016/S0016‑2361(00)00074‑0
    [Google Scholar]
  97. MirmoshtaghiG. SkvarilJ. CampanaP.E. LiH. ThorinE. DahlquistE. The influence of different parameters on biomass gasification in circulating fluidized bed gasifiers.Energy Convers. Manage.201612611012310.1016/j.enconman.2016.07.031
    [Google Scholar]
  98. GovindR. ShahJ. Modeling and simulation of an entrained flow coal gasifier.AIChE J.1984301799210.1002/aic.690300113
    [Google Scholar]
  99. Indian State Forest Report 2019, Forest Survey of India.Available From : https://ruralindiaonline.org/en/library/resource/india-state-of-forest-report-2019-volume-i/ 2019
  100. VonkG. PiriouB. Felipe Dos SantosP. WolbertD. VaïtilingomG. Comparative analysis of wood and solid recovered fuels gasification in a downdraft fixed bed reactor.Waste Manag.20198510612010.1016/j.wasman.2018.12.023 30803563
    [Google Scholar]
  101. PrasertcharoensukP. HernandezD.A. BullS.J. PhanA.N. Optimisation of a throat downdraft gasifier for hydrogen production.Biomass Bioenergy201811621622610.1016/j.biombioe.2018.06.019
    [Google Scholar]
  102. Sunil SinhaR ChaitanyaB Design, fabrication, and performance evaluation of a novel biomass-gasification-based hot water generation system.Energy201918514815710.1016/j.energy.2019.06.186
    [Google Scholar]
  103. SitumorangY.A. ZhaoZ. YoshidaA. AbudulaA. GuanG. Small-scale biomass gasification systems for power generation (<200 kW class): A review.Renew. Sustain. Energy Rev.202011710948610.1016/j.rser.2019.109486
    [Google Scholar]
  104. WuC.Z. HuangH. ZhengS.P. YinX.L. An economic analysis of biomass gasification and power generation in China.Bioresour. Technol.2002831657010.1016/S0960‑8524(01)00116‑X 12058832
    [Google Scholar]
  105. IsaacsN. Saville-SmithK. CamilleriM. BurroughL. Energy in New Zealand houses: comfort, physics and consumption.Build. Res. Inform.201038547048010.1080/09613218.2010.494383
    [Google Scholar]
  106. AlvarezS. RubioA. Compound method based on financial accounts versus process-based analysis in product carbon footprint: A comparison using wood pallets.Ecol. Indic.201549889410.1016/j.ecolind.2014.10.005
    [Google Scholar]
  107. BonamenteE. ScruccaF. RinaldiS. MericoM.C. AsdrubaliF. LamastraL. Environmental impact of an Italian wine bottle: Carbon and water footprint assessment.Sci. Total Environ.2016560-56127428310.1016/j.scitotenv.2016.04.026 27101464
    [Google Scholar]
  108. QinL. WangM. ZhuJ. WeiY. ZhouX. HeZ. Towards circular economy through waste to biomass energy in Madagascar.Complexity2021202111010.1155/2021/9160354
    [Google Scholar]
  109. TorrisiS. AnastasiE. LonghitanoS. Clara LongoI. ZerboA. BorzìG. Circular economy and the benefits of biomass as a renewable energy source.Procedia Environ Sci Eng Manag201854175781
    [Google Scholar]
  110. SherwoodJ. The significance of biomass in a circular economy.Bioresour. Technol.202030012275510.1016/j.biortech.2020.122755 31956060
    [Google Scholar]
  111. ZengX. OgunseitanO.A. NakamuraS. Reshaping global policies for circular economy.Circular Economy20221110000310.1016/j.cec.2022.100003
    [Google Scholar]
  112. KhajuriaA. AtienzaV.A. ChavanichS. Accelerating circular economy solutions to achieve the 2030 agenda for sustainable development goals.Circular Economy20221110000110.1016/j.cec.2022.100001
    [Google Scholar]
  113. Rodriguez-AntonJ.M. Rubio-AndradaL. Celemín-PedrocheM.S. Alonso-AlmeidaM.D.M. Analysis of the relations between circular economy and sustainable development goals.Int. J. Sustain. Dev. World Ecol.201926870872010.1080/13504509.2019.1666754
    [Google Scholar]
  114. Sensitization Workshop Manual on Sub-Megawatt Scale Biomass Power Generation.Available From : https://www.undp.org/sites/g/files/zskgke326/files/migration/in/sensitization-workshop-manual-on-sub-megawatt-scale-biomass-powe.pdf 2013
  115. NarnawareS.L. PanwarN.L. Biomass gasification for climate change mitigation and policy framework in India: A review.Bioresour. Technol. Rep.20221710089210.1016/j.biteb.2021.100892
    [Google Scholar]
  116. PalitD. MalhotraR. KumarA. Sustainable model for financial viability of decentralized biomass gasifier based power projects.Energy Policy20113994893490110.1016/j.enpol.2011.06.026
    [Google Scholar]
  117. PurohitP. Economic potential of biomass gasification projects under clean development mechanism in India.J. Clean. Prod.200917218119310.1016/j.jclepro.2008.04.004
    [Google Scholar]
  118. NouniM.R. MullickS.C. KandpalT.C. Biomass gasifier projects for decentralized power supply in India: A financial evaluation.Energy Policy20073521373138510.1016/j.enpol.2006.03.016
    [Google Scholar]
  119. ChambonC.L. KariaT. SandwellP. HallettJ.P. Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India.Renew. Energy202015443244410.1016/j.renene.2020.03.002
    [Google Scholar]
  120. Gururaja RaoS. SridharH.V. SudarshanM.S. Case studies on small scale biomass gasifier based decentralized energy generation systems.Available From: https://gasifier.bioenergylists.org/iiscHosahallivillage 2016
  121. MazzolaS. AstolfiM. MacchiE. The potential role of solid biomass for rural electrification: A techno economic analysis for a hybrid microgrid in India.Appl. Energy201616937038310.1016/j.apenergy.2016.02.051
    [Google Scholar]
  122. MahapatraS. DasappaS. Rural electrification: Optimising the choice between decentralised renewable energy sources and grid extension.Energy Sustain. Dev.201216214615410.1016/j.esd.2012.01.006
    [Google Scholar]
  123. MandelliS. BarbieriJ. MereuR. ColomboE. Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review.Renew. Sustain. Energy Rev.2016581621164610.1016/j.rser.2015.12.338
    [Google Scholar]
  124. UrpelainenJ. Grid and off-grid electrification: An integrated model with applications to India.Energy Sustain. Dev.201419667110.1016/j.esd.2013.12.008
    [Google Scholar]
  125. OwenM. RipkenR. Bioenergy for sustainable energy access in Africa - Technology country case study report.Available From : https://www.gov.uk/research-for-development-outputs/bioenergy-for-sustainable-energy-access-in-africa-technology-country-case-study-report-incorporating-country-scoping-reports 2017
  126. YueQ. LiS. HuX. ZhangY. XueM. WangH. Sustainability analysis of electricity generation technologies based on life‐cycle assessment and life cycle cost—A case study in liaoning province.Energy Technol.201977190036510.1002/ente.201900365
    [Google Scholar]
  127. InnocenziV. CantariniF. ZuevaS. Environmental and economic assessment of gasification wastewater treatment by life cycle assessment and life cycle costing approach.Resour. Conserv. Recycling202116810525210.1016/j.resconrec.2020.105252
    [Google Scholar]
/content/journals/rice/10.2174/0124055204319671240515060552
Loading
/content/journals/rice/10.2174/0124055204319671240515060552
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test