Skip to content
2000
Volume 17, Issue 3
  • ISSN: 2405-5204
  • E-ISSN:

Abstract

Introduction

Acoustic parameters can help us understand how temperature and concentration affect the behaviour of potassium ferrocyanide and potassium chromate electrolytes in the aqueous solvent Dimethylformamide.

Methods

The solution's density (ρ), viscosity (η), and ultrasonic speed (u) were measured at various concentrations and temperatures (ranging from 293 K to 313 K) using a pycnometer, an Ostwald viscometer, and an ultrasonic interferometer at frequencies of 1MHz, respectively. Based on these measurements, other acoustic parameters were calculated, such as free length (Lr), internal pressure (πi), adiabatic compressibility (β), acoustic impedance (Z), relaxation time (τ), and Gibbs free energy (ΔG).

Results

These acoustic and thermodynamic parameters were used to explore various interactions, molecular motion, and interaction modes, as well as their effects, which were influenced by the size of the pure component and the mixtures. The analysis showed that changes in temperature and concentration led to specific parameter differences, which affected the interactions between the solute and solvent.

Conclusion

This study demonstrated that increasing the concentration of the mixture increased the density, viscosity, and ultrasonic velocity due to the interaction between the solute and solvent, indicating molecular interaction in the mixture.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204296907240330083154
2024-04-16
2024-11-19
Loading full text...

Full text loading...

References

  1. SumathiT. AnandhiS. Ultrasonic studies on some electrolytes in n, n, dimethylformamide+ water mixtures at 303k.Int J Phys Appl Sci201528720
    [Google Scholar]
  2. DasM. DasS. PattanaikA.K. Acoustical behaviour of sodium nitroprusside in aquo-organic solvent media at 308.15 k.J. Chem.2013201311010.1155/2013/942430
    [Google Scholar]
  3. PandaS. Thermo-acoustic parameters of polymer dextran with aqueous sodium hydroxide: An ultrasonic study.Current Materials Science202316221722410.2174/2666145415666220817124330
    [Google Scholar]
  4. NaseemB. MukhtarM. ArifI. JamalM.A. Effect of concentration and temperature on the interactions between saline soil salts and nitro phosphate fertilizer under atmospheric pressure: A thermo-acoustic approach.J. Mol. Liq.201724715116310.1016/j.molliq.2017.09.064
    [Google Scholar]
  5. ZolkifleeN.F. AffandiM.M.R.M.M. MajeedA.B.A. Molecular dynamics and related solution chemistry of lovastatin in aqueous solution of arginine: Viscometric analysis.J. Mol. Liq.201927938639110.1016/j.molliq.2019.01.102
    [Google Scholar]
  6. TiwariS. KusmariyaB.S. TiwariA. PathakV. MishraA.P. Acoustical and viscometric studies of buspirone hydrochloride with cobalt(II) and copper(II) ions in aqueous medium.J. Taibah Univ. Sci.201711110110910.1016/j.jtusci.2015.10.012
    [Google Scholar]
  7. PandaS. Thermoacoustical parameters of dextran polymer in sodium hydroxide solutions.Songklanakarin J. Sci. Technol.20224441125113010.14456/sjst‑psu.2022.146
    [Google Scholar]
  8. SyalV.K. PatialB.S. ChauhanS. Ultrasonic velocity, viscosity and density studies in binary mixtures of dimethyl formamide and ethylmethylketone at different temperatures.Indian J. Pure Appl. Phy.19993705366370
    [Google Scholar]
  9. RiddickJ.A. BungerW.B. SakanoT.K. Organic solvents: Physical properties and methods of purification.J Chromatographic Sci. Wiley-InterscienceNew YorkJohn Wiley and Sons197412(2)38A
    [Google Scholar]
  10. PatnaikP. ChakrabortyN. KaurP. JuglanKC. KumarH. Thermodynamic and acoustic investigation of d-panthenol in homologous series of polyethylene glycol at different temperatures.Adv Funct Smart Mat.Springer, Singapore2021403424
    [Google Scholar]
  11. PandaS. Molecular interaction of novel polymer dextran with 1 (N) sodium hydroxide solution: Ultrasonic studies.Asia-Pac. J. Sci. Technol.20222761710.14456/apst.2022.85
    [Google Scholar]
  12. TiwariV. PandeR. Volumetric studies and thermodynamics of viscous flow of hydroxamic acids in acetone +water solvent at temperatures 303.15 and 313.15K.Thermochim. Acta2006443220621110.1016/j.tca.2006.01.019
    [Google Scholar]
  13. SinghS. TalukdarM. DashU.N. Ultrasonic studies on paracetamol in aqueous solutions of sodium salicylate and nicotinamide.J. Mol. Liq.201824981582410.1016/j.molliq.2017.11.099
    [Google Scholar]
  14. DashU.N. MohantyB.K. Partial molar and ultrasonic properties of benzoic and phenyl acetic acids in water and water+ alcohol mixtures.Phys. Chem. Liquids199937444345310.1080/00319109908031448
    [Google Scholar]
  15. DashU.N. RoyG.S. MohantyS. Ultrasonic studies on sodium thiosulphate and ammonium thiosulphate in water and water+ acetone mixtures.Indian J. Chem. Technol.200411178184
    [Google Scholar]
  16. MoreyP.B. NaikA.B. Acoustic and thermodynamical studies of ternary mixture of 2-aminothiazole with acetonitrile in water at varying temperatures.Int. J. Sci. Res.20134.438
    [Google Scholar]
  17. VillaroelE. AgredoS.J. PetrierC. TabordaG. PalmaT.R.A. Ultrasonic degradation of acetaminophen in water: Effect of sonochemical parameters and water matrix.Ultrason. Sonochem.20142151763176910.1016/j.ultsonch.2014.04.002 24768106
    [Google Scholar]
  18. RagamathunnisaM. PadmavathyR. RadhaN. Ultrasonic and spectroscopic investigation of thiourea in non-aqueous media.Int. J. Curr. Res. Rev.201242330
    [Google Scholar]
  19. PandaS. Ultrasonic study of novel polymer dextran in aqueous media at 12 mhz.Curr. Microw. Chem.202310223724310.2174/2213335610666230810094605
    [Google Scholar]
  20. KharatS.J. Density, viscosity, conductivity, ultrasonic velocity, and refractive index studies of aqueous solutions of citric acid at different temperatures.Int J Appl Chem200843223236
    [Google Scholar]
  21. BhatJ.I. ManjunathaM.N. VaraprasadN.S. Acoustic behaviour of citric acid in aqueous and partial aqueous media.Indian J. Pure Appl. Phy.20104812875880
    [Google Scholar]
  22. RajS.J. SubhaV. AlwarS.S.B. Ultrasonic velocity studies of benzoic acid and substituted benzoic acids in aqueous mixed solvent systems.Rasayan J. Chem.20221442622262610.31788/RJC.2021.1445767
    [Google Scholar]
  23. DhokS. KhobragadeV.B. SawalakheP. NarwadeM.L. Ultrasonic studies on interaction of benzoic acid, salicylic acid and 4 –hydroxy benzoic acid in water-dioxane and water-dmf mixtures at 303.15 k.Scient Rev Chem Commun20122532539
    [Google Scholar]
  24. PraharajM.K. SatapathyA. MishraP.R. MishraS. Study of acoustical and thermodynamic properties of aqueous solution of NaCl at different concentrations and temperatures through ultrasonic technique.Arch. Appl. Sci. Res.201242837845
    [Google Scholar]
  25. PandaS. Analysis of aqueous dextran: An ultrasonic study.Curr. Microw. Chem.202291303610.2174/2213335609666220324144409
    [Google Scholar]
  26. BeebiS. NayeemS.M. RambabuC. Investigation of molecular interactions in binary mixture of dimethyl carbonate + N-methylformamide at T = (303.15, 308.15, 313.15 and 318.15) K.J. Therm. Anal. Calorim.201913563387339910.1007/s10973‑018‑7574‑3
    [Google Scholar]
  27. KaurK. KumarH. Viscometric measurements of l-serine with antibacterial drugs ampicillin and amoxicillin at different temperatures: (305.15 to 315.15) K.J. Mol. Liq.2013177495310.1016/j.molliq.2012.09.016
    [Google Scholar]
  28. PandaS. Thermoacoustical analysis of polymer dextran at different frequencies subhraraj panda.Bulgarian J Phys202249213614410.55318/bgjp.2022.49.2.136
    [Google Scholar]
  29. JyothirmaiG. NayeemS.M. KhanI. AnjaneyuluC. Thermo-physicochemical investigation of molecular interactions in binary combination (dimethyl carbonate + methyl benzoate).J. Therm. Anal. Calorim.2018132169370710.1007/s10973‑017‑6926‑8
    [Google Scholar]
  30. ThirumaranS. SabuK. Ultrasonic investigation of amino acids in aqueous sodium acetate medium.Indian J. Pure Appl. Phy.2009478796
    [Google Scholar]
  31. PandaS. Molecular interaction study of binary liquid solution using ultrasonic technique.Recent Innov. Chem. Eng.202215213814610.2174/2405520415666220707142909
    [Google Scholar]
  32. AliA. AkhtarY. HyderS. Ultrasonic and volumetric studies of glycine in aqueous electrolytic solutions.J Pure Appl Ultrasonics20032511318
    [Google Scholar]
  33. PatilK.C. DudheC.M. Acoustical and viscometric studies of Gentamicin sulphate in aqueous medium.Pharma Chem2016820227233
    [Google Scholar]
  34. KaurM. PathaniaV. VermaniB.K. AnandV. GillD.S. Ultrasonic velocity and thermoacoustic parameters for copper(i) nitrates in dimethylsulfoxide with pyridine as a co-solvent at 298 k.Curr. Phys. Chem.202212213615810.2174/1877946812666220331122201
    [Google Scholar]
  35. PandaS. Molecular interaction of polymer dextran in sodium hydroxide through evaluation of thermo acoustic parameters.Indian J Pharm Ed Res202054363063610.5530/ijper.54.3.112
    [Google Scholar]
  36. RamanaS.M. AmiithaganesanG. Ultrasonic study of intermolecular association through hydrogen bonding in aqueous solutions of D-mannitol.Indian J. Phys.200478121329
    [Google Scholar]
  37. ReddyS.M. NayeemS.M. RajuK.T.S.S. BabuH.B. The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium tetrafluoroborate + 2-ethoxyethanol from density, speed of sound, and refractive index measurements.J. Therm. Anal. Calorim.2016124295997110.1007/s10973‑015‑5205‑9
    [Google Scholar]
  38. PandaS. MahapatraA.P. Intermolecular interaction of dextran with urea.Int. J. Innov. Technol. Explor. Eng.201981174274810.35940/ijitee.K1445.0981119
    [Google Scholar]
  39. DashU.N. RoyG.S. TalukdarM. MoharathaD. Acoustic and viscosity studies of alkali metals and ammonium halides in aqueous dextran solutions at four different temperatures.Indian J. Pure Appl. Phy.201048651657
    [Google Scholar]
  40. NithiyananthamS. PalaniappanL. Ultrasonic study on some monosaccharides in aqueous media at 298.15K.Arab. J. Chem.201251253010.1016/j.arabjc.2010.07.018
    [Google Scholar]
  41. WankhadeS. KeneS. Molecular interaction study in binary liquid solution using ultrasonic technique.Sci Revs Chem Commun201223355360
    [Google Scholar]
  42. AswaleS.S. AswaleS.R. HajareR.S. Adiabatic compressibility, intermolecular free length and acoustic relaxation time of aqueous antibiotic cefotaxime sodium.J. Chem. Pharm. Res.20124526712677
    [Google Scholar]
  43. PandaS. MahapatraA.P. Molecular interaction of dextran with urea through ultrasonic technique.Clay Res.20193813542
    [Google Scholar]
  44. SastryN.V. GeorgeJ. Thermophysical properties of nonelectrolyte mixtures. Densities, viscosities, and sound speeds of binary mixtures of methyl methacrylate+ branched alcohols (propan-2-ol, 2-methylpropan-1-ol, butan-2-ol, and 2-methylpropan-2-ol) at T= 298.15 and 308.15 K.Int. J. Thermophys.20032441089110410.1023/A:1025061103289
    [Google Scholar]
  45. PandaS. MahapatraA.P. Ultrasonic investigation of aqueous dextran at different temperatures and frequencies.World J Pharma Life Sci20184127682
    [Google Scholar]
  46. SinghG. PatyarP. KaurT. KaurG. Volumetric behavior of glycine in aqueous succinic acid and sodium succinate buffer at different temperatures.J. Mol. Liq.201622280481710.1016/j.molliq.2016.07.042
    [Google Scholar]
  47. GodhaniD.R. DobariyaP.B. SanghaniA.M. MehtaJ.P. Thermodynamic properties of binary mixtures of 1,3,4-oxadiazole derivative with chloroform, N, N -dimethyl formamide at 303, 308 and 313 K and atmospheric pressure.Arab. J. Chem.201710S422S43010.1016/j.arabjc.2012.10.002
    [Google Scholar]
  48. NithiyananthamS. PalaniappanL. Ultrasonic study of adsorption in disaccharide (maltose) metabolism.Appl. Acoust.201071875475810.1016/j.apacoust.2010.03.007
    [Google Scholar]
  49. PalA. KumarH. KumarB. GabaR. Density and speed of sound for binary mixtures of 1,4-dioxane with propanol and butanol isomers at different temperatures.J. Mol. Liq.201318727828610.1016/j.molliq.2013.08.009
    [Google Scholar]
  50. RajendranV. Excess enthalpies of some ternary liquid mixtures.Indian J. Pure Appl. Phy.19943219
    [Google Scholar]
  51. PandaS. MahapatraA.P. Molecular interaction studies of aqueous Dextran solution through ultrasonic measurement at 313 K with different concentration and frequency.Arch Phys Res201561612
    [Google Scholar]
  52. KanhekarS.R. PawarP. BichileG.K. Thermodynamic properties of electrolytes in aqueous solution of glycine at different temperatures.Ind. J Pure Appl. Phys.2010489599
    [Google Scholar]
  53. AkhtarY. IbrahimS.F. Ultrasonic and thermodynamic studies of glycine in aqueous electrolytes solutions at 303K.Arab. J. Chem.20114448749010.1016/j.arabjc.2010.07.009
    [Google Scholar]
  54. PandaS MohapatraAP Study of acoustic and thermodynamic properties of aqueous solution of dextran at different concentration and temperature through ultrasonic technique.Int Symp Ultrasonics.Vol. 503508
    [Google Scholar]
  55. RichardsT.W. A brief history of the investigation of internal pressures.Chem. Rev.19252331534810.1021/cr60007a002
    [Google Scholar]
  56. HillT.L. Free-volume models for liquids.J. Phys. Colloid Chem.19475161219123210.1021/j150456a001 20269033
    [Google Scholar]
  57. AwasthiA. AwasthiA. Intermolecular interactions in formamide+2-alkoxyethanols: Viscometric study.Thermochim. Acta2012537576410.1016/j.tca.2012.03.001
    [Google Scholar]
  58. PandaS. MahapatraA.P. Acoustic and ultrasonic studies of dextran in 2 (M) glycine-variation with frequencies and concentrations.Int J Pure Appl Phys20161217179
    [Google Scholar]
/content/journals/rice/10.2174/0124055204296907240330083154
Loading
/content/journals/rice/10.2174/0124055204296907240330083154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test