Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Background: In recent time, people love online shopping but before any shopping feedbacks or reviews always required. These feedbacks help customers in decision making for buying any product or availing any service. In the country like India this trend of online shopping is increasing very rapidly because awareness and the use of internet which is increasing day by day. As result numbers of customers and their feedbacks are also increasing. It is creating a problem that how to read all reviews manually. So there should be some computerized mechanism that provides customers a summary without spending time in reading feedbacks. Besides big number of reviews another problem is that reviews are not structured. Objective: In this paper, we try to design, implement and compare two algorithms with manual approach for the crossed domain Product’s reviews. Methods: Lexicon based model is used and different types of reviews are tested and analyzed to check the performance of these algorithms. Results: Algorithm based on opinions and feature based opinions are designed, implemented, applied and compared with the manual results and it is found that algorithm # 2 is performing better than algorithm # 1 and near to manual results. Conclusion: Algorithm # 2 is found better on the different product’s reviews and still to be applied on other product’s reviews to enhance its scope. Finally, it will be helpful to automate existing manual process.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/2213275912666190626110342
2020-10-01
2025-10-18
Loading full text...

Full text loading...

/content/journals/rascs/10.2174/2213275912666190626110342
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test