Skip to content
2000
image of Machine Learning Based Cancer Detection and Classification: A Critical Review of Approaches and Performance

Abstract

Background

Cancer is known as a deadly disease, which includes several types of cancer. Cancer cannot be cured without proper treatment. Also, it is crucial to detect cancer at an early stage. The objective of this study is to examine, assess, classify, and explore recent advancements in the detection of different human body cancer types, such as breast, brain, lung, liver, and skin cancer.

Method

This study explores several tools and methods in machine learning, either supervised or unsupervised, and deep learning involved in treatment procedures. It also highlights current issues and provides directions for future research projects. In this review study, different advanced machine learning, deep learning and artificial intelligence algorithms are used for the detection and classification of different types of cancers, including breast, skin, lung cancer and brain tumor.

Results

This paper reviews advanced techniques, standard dataset comparison and analysis of identification of skin, breast, lung cancer and brain tumors. It also evaluates these techniques from the perspectives of F-measure, sensitivity, specificity, accuracy, and precision.

Conclusion

This research article focuses on detecting cancer using machine learning techniques. Successive improvements and detection of cancer over the past decades are reviewed, covering various types of cancer-like breast, brain, lung, liver, skin, and others. This paper focuses on the usage of machine learning in the diagnosis, treatment, and improvement of cancer.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558360533250221044123
2025-03-17
2025-07-10
Loading full text...

Full text loading...

References

  1. Saber A. Sakr M. Abo-Seida O.M. Keshk A. Chen H. A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique. IEEE Access 2021 9 71194 71209 10.1109/ACCESS.2021.3079204
    [Google Scholar]
  2. Sandeep D. Bethel B.G. N. A survey on accurate breast cancer detection and classification using machine learning approach. E3S Web Conf. 2021 309 1 6 10.1051/e3sconf/202130901116
    [Google Scholar]
  3. Yap M.H. Pons G. Martí J. Ganau S. Sentís M. Zwiggelaar R. Davison A.K. Martí R. Pons G. Marti J. Ganau S. Sentis M. Zwiggelaar R. Davison A.K. Marti R. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 2018 22 4 1218 1226 10.1109/JBHI.2017.2731873 28796627
    [Google Scholar]
  4. Aljuaid H. Alturki N. Alsubaie N. Cavallaro L. Liotta A. Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning. Comput. Methods Programs Biomed. 2022 223 106951 10.1016/j.cmpb.2022.106951 35767911
    [Google Scholar]
  5. Arooj S. Atta-ur-Rahman Zubair M. Khan M.F. Alissa K. Khan M.A. Mosavi A. Breast cancer detection and classification empowered with transfer learning. Front. Public Health 2022 10 924432 10.3389/fpubh.2022.924432 35859776
    [Google Scholar]
  6. Dewangan K.K. Dewangan D.K. Sahu S.P. Janghel R. Breast cancer diagnosis in an early stage using novel deep learning with hybrid optimization technique. Multim. Tools Appl. 2022 81 10 13935 13960 10.1007/s11042‑022‑12385‑2 35233181
    [Google Scholar]
  7. Basurto-Hurtado J.A. Cruz-Albarran I.A. Toledano-Ayala M. Ibarra-Manzano M.A. Morales-Hernandez L.A. Perez-Ramirez C.A. Diagnostic strategies for breast cancer detection: From image generation to classification strategies using artificial intelligence algorithms. Cancers 2022 14 14 3442 10.3390/cancers14143442 35884503
    [Google Scholar]
  8. R. P.R Nair S. ”A Comparative Study of Lung Cancer Detection using Machine Learning Algorithms 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT) Coimbatore, India 2019, pp. 1-4. 10.1109/ICECCT.2019.8869001
    [Google Scholar]
  9. Borja M.G.B. Huauya R. Lazo C. A brief survey on deep learning based methods for lung cancer classification using computerized tomography scans 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON) Valparaiso, Chile 2019, pp. 1-5. 10.1109/CHILECON47746.2019.8987722
    [Google Scholar]
  10. Kulkarni A. Panditrao A. Classification of lung cancer stages on CT scan images using image processing 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies Ramanathapuram, India 2014, pp. 1384-1388. 10.1109/ICACCCT.2014.7019327
    [Google Scholar]
  11. Firmino M. Morais A.H. Mendoça R.M. Dantas M.R. Hekis H.R. Valentim R. Computer-aided detection system for lung cancer in computed tomography scans: Review and future prospects. Biomed. Eng. Online 2014 13 1 41 10.1186/1475‑925X‑13‑41 24713067
    [Google Scholar]
  12. Chon A. Balachandar N. Deep convolutional neural networks for lung cancer detection. 2017 https://www.semanticscholar.org/paper/Deep-Convolutional-Neural-Networks -for-Lung-Cancer-Chon-Balachandar/5c63cad49501b5ab0b455647a2ccad7a3c827c85
  13. Ker J. Wang L. Rao J. Lim T. Deep learning applications in medical image analysis. IEEE Access 2018 6 9375 9389 10.1109/ACCESS.2017.2788044
    [Google Scholar]
  14. Lu X. Firoozeh Abolhasani Zadeh Y.A. Deep learning-based classification for melanoma detection using xceptionNet. J. Healthc. Eng. 2022 2022 1 10 10.1155/2022/2196096 35360474
    [Google Scholar]
  15. Ali A.A. Al-Marzouqi H. Melanoma detection using regular convolutional neural networks 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA) Ras Al Khaimah, United Arab Emirates 2017, pp. 1-5. 10.1109/ICECTA.2017.8252041
    [Google Scholar]
  16. Nida N. Irtaza A. Javed A. Yousaf M.H. Mahmood M.T. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. Int. J. Med. Inform. 2019 124 37 48 10.1016/j.ijmedinf.2019.01.005 30784425
    [Google Scholar]
  17. Javaid A. Sadiq M. Akram F. Skin cancer classification using image processing and machine learning 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST) Islamabad, Pakistan 2021, pp. 439-444. 10.1109/IBCAST51254.2021.9393198
    [Google Scholar]
  18. Dildar M. Akram S. Irfan M. Khan H.U. Ramzan M. Mahmood A.R. Alsaiari S.A. Saeed A.H.M. Alraddadi M.O. Mahnashi M.H. Skin cancer detection: A review using deep learning techniques. Int. J. Environ. Res. Public Health 2021 18 10 5479 10.3390/ijerph18105479 34065430
    [Google Scholar]
  19. Wang S. Hamian M. Skin cancer detection based on extreme learning machine and a developed version of thermal exchange optimization. Comput. Intell. Neurosci. 2021 2021 1 9528664 10.1155/2021/9528664 34777495
    [Google Scholar]
  20. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  21. Farwell M.D. Pryma D.A. Mankoff D.A. PET/CT imaging in cancer: Current applications and future directions. Cancer 2014 120 22 3433 3445 10.1002/cncr.28860 24947987
    [Google Scholar]
  22. Schwarz C.G. Uses of human mr and pet imaging in research of neurodegenerative brain diseases. Neurotherapeutics 2021 18 2 661 672 10.1007/s13311‑021‑01030‑9 33723751
    [Google Scholar]
  23. Sun Y. Cheng Z. Qiu J. Lu W. Performance and application of the total-body PET/CT scanner: A literature review. EJNMMI Res. 2024 14 1 38 10.1186/s13550‑023‑01059‑1 38607510
    [Google Scholar]
  24. Martucci M. Russo R. Schimperna F. D’Apolito G. Panfili M. Grimaldi A. Perna A. Ferranti A.M. Varcasia G. Giordano C. Gaudino S. Magnetic resonance imaging of primary adult brain tumors: State of the art and future perspectives. Biomedicines 2023 11 2 364 10.3390/biomedicines11020364 36830900
    [Google Scholar]
  25. Jena B. Saxena S. Nayak G.K. Balestrieri A. Gupta N. Khanna N.N. Laird J.R. Kalra M.K. Fouda M.M. Saba L. Suri J.S. Brain tumor characterization using radiogenomics in artificial intelligence framework. Cancers 2022 14 16 4052 10.3390/cancers14164052 36011048
    [Google Scholar]
  26. Mittal A. Kumar D. Mittal M. Saba T. Abunadi I. Rehman A. Roy S. Detecting pneumonia using convolutions and dynamic capsule routing for chest x-ray images. Sensors 2020 20 4 1068 10.3390/s20041068 32075339
    [Google Scholar]
  27. Khan M.Q. Hussain A. Rehman S.U. Khan U. Maqsood M. Mehmood K. Khan M.A. Classification of melanoma and nevus in digital images for diagnosis of skin cancer. IEEE Access 2019 7 90132 90144 10.1109/ACCESS.2019.2926837
    [Google Scholar]
  28. Javed R. An improved framework by mapping salient features for skin lesion detection and classification using the optimized hybrid features 2019 8 1.6 95 101 10.30534/ijatcse/2019/1581.62019
    [Google Scholar]
  29. Yang G. Luo S. Greer P. Advancements in skin cancer classification: A review of machine learning techniques in clinical image analysis. Multimedia Tools Appl. 2024 1 1 8 10.1007/s11042‑024‑19298‑2
    [Google Scholar]
  30. Dora L. Agrawal S. Panda R. Abraham A. optimal breast cancer classification using gauss–newton representation based algorithm 2017 85 134 145 10.1016/j.eswa.2017.05.035
    [Google Scholar]
  31. Rabidas R. Midya A. Chakraborty J. Arif W. A study of different texture features based on local operator for benign-malignant mass classification. Procedia Comput. Sci. 2016 93 389 395 10.1016/j.procs.2016.07.225
    [Google Scholar]
  32. Ramadan S.Z. Methods used in computer-aided diagnosis for breast cancer detection using mammograms: A review. J. Healthc. Eng. 2020 2020 1 21 10.1155/2020/9162464 32300474
    [Google Scholar]
  33. Khan S. Islam N. Jan Z. Din U.I. Rodrigues J.J.P.C. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit. Lett. 2019 125 1 6 10.1016/j.patrec.2019.03.022
    [Google Scholar]
  34. Alquran H. The melanoma skin cancer detection and classification using support vector machine 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT) Aqaba, Jordan 2017, pp. 1-5. 10.1109/AEECT.2017.8257738
    [Google Scholar]
  35. Liao H. Li Y. Luo J. Skin disease classification versus skin lesion characterization: Achieving robust diagnosis using multi-label deep neural networks 23rd International Conference on Pattern Recognition (ICPR) Cancun, 2016, pp. 355-360. 10.1109/ICPR.2016.7899659
    [Google Scholar]
  36. Bisla D. Choromanska A. Stein J.A. Polsky D. Berman R. Towards Automated Melanoma Detection with Deep Learning: Data Purification and Augmentation. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 2019, pp. 1-5. 10.1109/CVPRW.2019.00330
    [Google Scholar]
  37. DeVries T. Ramachandram D. Skin Lesion Classification Using Deep Multi-scale Convolutional Neural Networks. arXiv preprint arXiv:1703.01402. 2017 1 6
    [Google Scholar]
  38. Albahar M.A. Skin lesion classification using convolutional neural network with novel regularizer. IEEE Access 2019 7 38306 38313 10.1109/ACCESS.2019.2906241
    [Google Scholar]
  39. Takiddin A. Schneider J. Yang Y. Abd-Alrazaq A. Househ M. Artificial intelligence for skin cancer detection: A scoping review. J. Med. Internet Res. 2020 Jul 23 11 e22934 10.2196/22934 34821566
    [Google Scholar]
  40. Medhat S. Abdel-Galil H. Aboutabl A.E. Saleh H. Skin cancer diagnosis using convolutional neural networks for smartphone images: A comparative study. J. Rad. Res. Appl. Sci. 2022 15 1 262 267 10.1016/j.jrras.2022.03.008
    [Google Scholar]
  41. Devihosur N. G R.K.M. Enhancing precision in lung cancer diagnosis through machine learning algorithms. Int. J. Adv. Comput. Sci. Appl. 2023 14 8 10.14569/IJACSA.2023.01408116
    [Google Scholar]
  42. Shen W. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognit. 2017 61 663 673 10.1016/j.patcog.2016.05.029
    [Google Scholar]
  43. Nazir I. Haq I. AlQahtani S.A. Jadoon M.M. Dahshan M. Machine learning‐based lung cancer detection using multiview image registration and fusion. J. Sens. 2023 2023 1 6683438 10.1155/2023/6683438
    [Google Scholar]
  44. Gayap H. T. Akhloufi M. A. Deep machine learning for medical diagnosis, Application to lung cancer detection: A review 2024 4 1 236 284 10.3390/biomedinformatics4010015
    [Google Scholar]
  45. Li Y. Wu X. Yang P. Jiang G. Luo Y. Machine learning for lung cancer diagnosis, Treatment, and prognosis. Genom. Proteom. Bioinform.s 2022 20 5 850 866 10.1016/j.gpb.2022.11.003 36462630
    [Google Scholar]
  46. Altuhaifa F.A. Win K.T. Su G. Predicting lung cancer survival based on clinical data using machine learning: A review. Comput. Biol. Med. 2023 165 107338 10.1016/j.compbiomed.2023.107338 37625260
    [Google Scholar]
  47. M T. Koti M.S. A B.N. v G. P K.S. Mathivanan S.K. Dalu G.T. Lung cancer diagnosis based on weighted convolutional neural network using gene data expression. Sci. Rep. 2024 14 1 3656 10.1038/s41598‑024‑54124‑7 38351141
    [Google Scholar]
  48. Shaikh F.J. Rao D.S. Prediction of cancer disease using machine learning approach. Mater. Today Proc. 2021 50 40 47 10.1016/j.matpr.2021.03.625
    [Google Scholar]
  49. Wang F. Su Q. Li C. Identification of novel biomarkers in non-small cell lung cancer using machine learning Sci. Rep. 2022 12 1 16693 10.1038/s41598‑022‑21050‑5 36202977
    [Google Scholar]
  50. Forte G.C. Altmayer S. Silva R.F. Stefani M.T. Libermann L.L. Cavion C.C. Youssef A. Forghani R. King J. Mohamed T.L. Andrade R.G.F. Hochhegger B. Deep learning algorithms for diagnosis of lung cancer: A systematic review and meta-analysis. Cancers 2022 14 16 3856 10.3390/cancers14163856 36010850
    [Google Scholar]
  51. Mathivanan S.K. Sonaimuthu S. Murugesan S. Rajadurai H. Shivahare B.D. Shah M.A. Employing deep learning and transfer learning for accurate brain tumor detection. Sci. Rep. 2024 14 1 7232 10.1038/s41598‑024‑57970‑7
    [Google Scholar]
  52. Vimala B.B. Srinivasan S. Mathivanan S.K. Mahalakshmi P. Jayagopal P. Dalu G.T. Detection and classification of brain tumor using hybrid deep learning models. Sci. Rep. 2023 13 1 23029 10.1038/s41598‑023‑50505‑6 38155247
    [Google Scholar]
  53. Akinyelu A.A. Zaccagna F. Grist J.T. Castelli M. Rundo L. Brain tumor diagnosis using machine learning, Convolutional neural networks, Capsule neural networks and vision transformers, Applied to MRI: A survey. J. Imag. 2022 8 8 205 10.3390/jimaging8080205 35893083
    [Google Scholar]
  54. Anantharajan S. Gunasekaran S. Subramanian T. R V. MRI brain tumor detection using deep learning and machine learning approaches. Meas. Sensors 2024 31 101026 10.1016/j.measen.2024.101026
    [Google Scholar]
  55. Abbasi S. Tajeripour F. Detection of brain tumor in 3D MRI images using local binary patterns and histogram orientation gradient. Neurocomputing 2017 219 526 535 10.1016/j.neucom.2016.09.051
    [Google Scholar]
  56. Das D. Mahanta L.B. Ahmed S. Baishya B.K. Haque I. Automated classification of childhood brain tumours based on texture feature. Songklanakarin J. Sci. Technol. 2019 41 5 1014 1020 [SJST]. 10.14456/sjst‑psu.2019.128
    [Google Scholar]
  57. Saba T. Mohamed S.A. El-Affendi M. Amin J. Sharif M. Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res. 2020 59 221 230 10.1016/j.cogsys.2019.09.007
    [Google Scholar]
  58. Pandian R. Vedanarayanan V. Kumar R.D.N.S. Rajakumar R. Detection and classification of lung cancer using CNN and Google net. Meas. Sensors 2022 24 100588 10.1016/j.measen.2022.100588
    [Google Scholar]
  59. Naqi S.M. Sharif M. Lali I.U. A 3D nodule candidate detection method supported by hybrid features to reduce false positives in lung nodule detection. Multimedia Tools Appl. 2019 78 18 26287 26311 10.1007/s11042‑019‑07819‑3
    [Google Scholar]
  60. Khan S.A. Nazir M. Khan M.A. Saba T. Javed K. Rehman A. Akram T. Awais M. Lungs nodule detection framework from computed tomography images using support vector machine. Microsc. Res. Tech. 2019 82 8 1256 1266 10.1002/jemt.23275 30974031
    [Google Scholar]
  61. Naqi S.M. Sharif M. Jaffar A. Lung nodule detection and classification based on geometric fit in parametric form and deep learning. Neural Comput. Appl. 2020 32 9 4629 4647 10.1007/s00521‑018‑3773‑x
    [Google Scholar]
  62. Çayır Sercan “Patch-based approaches to whole slide histologic grading of breast cancer using convolutional neural networks.” Diagnostic Biomedical Signal and Image Processing Applications with Deep Learning Methods. United States Academic Press 2023 103 118
    [Google Scholar]
  63. Tekin Eren Tubule-U-Net: A novel dataset and deep learning-based tubule segmentation framework in whole slide images of breast cancer. Sci. Rep. 2023 13 1 128 10.1038/s41598‑022‑27331‑3 36599960
    [Google Scholar]
  64. Çayır S. Solmaz G. Kusetogullari H. Tokat F. Bozaba E. Karakaya S. Iheme L.O. Tekin E. Yazıcı Ç. Özsoy G. Ayaltı S. Kayhan C.K. İnce Ü. Uzel B. Kılıç O. MITNET: A novel dataset and a two-stage deep learning approach for mitosis recognition in whole slide images of breast cancer tissue. Neural Comput. Appl. 2022 34 20 17837 17851 10.1007/s00521‑022‑07441‑9
    [Google Scholar]
  65. Wakili M.A. Classification of breast cancer histopathological images using DenseNet and transfer learning. 2022 15 5 e0232127 10.1371/journal.pone.0232127 32365142
    [Google Scholar]
  66. Nateghi R. Danyali H. Helfroush M.S. A deep learning approach for mitosis detection: Application in tumor proliferation prediction from whole slide images. Artif. Intell. Med. 2021 114 102048 10.1016/j.artmed.2021.102048 33875159
    [Google Scholar]
  67. Al-Dhabyani W. Gomaa M. Khaled H. Fahmy A. Dataset of breast ultrasound images. Data Brief 2020 28 104863 10.1016/j.dib.2019.104863 31867417
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558360533250221044123
Loading
/content/journals/rascs/10.2174/0126662558360533250221044123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test