Skip to content
2000
image of A Study on Privacy Preserving Techniques in Fog Computing: Issues, Challenges, and Solutions

Abstract

Privacy plays a substantial role in both public and private, databases especially in the healthcare industry and government sectors require a high-confidential data transmission process. Most often, these data contain personal information that must be concealed throughout data processing and transmission between terminal devices and cloud data centers, such as username, ID, account information, and a few more sensitive details. Recently, fog computing highly utilized for such data transmission, storing, and network interconnection processes due to its low latency, mobility, reduced computational cost, position awareness, data localization, and geographical distribution. It delivers to cloud computing and the widespread positioning of IoT applications. Since fog-based service is provided to the massive-scale end-end users by fog server/node, privacy is a foremost concern for fog computing. Fog computing poses several challenges if it comes to delivering protected data transfer; making the development of privacy preservation strategies particularly desirable. This paper exhibits a systematical literature review (SLR) on privacy preservation methods developed for fog computing in terms of issues, challenges, and various solutions. The main objective of this paper is to categorize the existing privacy-related research methods and solutions that have been published between 2012 and 2022 using analytical and statistical methods. The next step is to present specific practical issues in this area. Depending on the issues, the merits and drawbacks of each suggested fog security method are explored, and some suggestions are made for how to tackle the privacy concerns with fog computing. To build, deploy, and maintain fog systems, several imminent motivational directions and open concerns in this topic were presented.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558283303250103030013
2025-02-19
2025-07-11
Loading full text...

Full text loading...

References

  1. Li T. Li N. Zhang J. Slicing: A new approach for privacy preserving data publishing. IEEE Trans. Knowl. Data Eng. 2012 24 3 561 574 10.1109/TKDE.2010.236
    [Google Scholar]
  2. Cisco global cloud networking survey. 2012 Available from: https://www.cisco.com/c/dam/en/us/solutions/enterprise-networks/2012_Cisco_Global_Cloud_Networking_Survey_Results.pdf
  3. Kute R.D.V. A review paper on security concerns in cloud computing and proposed security models. Proceedings of International Conference on Emerging Trends in Inform, Vellore, India, 24-25 Feb. 2020, pp. 1-4. 10.1109/ic‑ETITE47903.2020.37
    [Google Scholar]
  4. Benslimane Y. Yang Z. Bahli B. Key topics in cloud computing security: A systematic literature review 2nd International Conference on Information Science and Security (ICISS), Seoul, Korea (South), 14-16 Dec. 2015, pp. 1-4. 10.1109/ICISSEC.2015.7371014
    [Google Scholar]
  5. Mondal A. Paul S. Goswami R.T. Nath S. Cloud computing security issues & challenges: A review. Proceedings of International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 22-24 Jan. 2020, pp. 1-5. 10.1109/ICCCI48352.2020.9104155
    [Google Scholar]
  6. Liu K. Chen C. Guo J. Li Q. Guo Y. A review of research on security of cloud service platform in medical environment. IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW), Yilan, Taiwan, 20-22 May 2019, pp. 1-2. 10.1109/ICCE‑TW46550.2019.8992007
    [Google Scholar]
  7. Shanmugasundaram G. Aswini V. Suganya G. A comprehensive review on cloud computing security. Proceedings of International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 17-18 March 2017, pp. 1-5.
    [Google Scholar]
  8. Cotroneo D. Simone L.D. Liguori P. Natella R. Fault injection analytics: A novel approach to discover failure modes in cloud-computing systems. IEEE Trans. Depend. Secure Comput. 2020 2020
    [Google Scholar]
  9. Yang Z. Liang B. Ji W. An intelligent end-edge-cloud architecture for visual iot assisted healthcare systems. IEEE Internet Things J. 2021 8 23 16779 16786 10.1109/JIOT.2021.3052778
    [Google Scholar]
  10. Modi C. Patel D. Borisaniya B. Patel H. Patel A. Rajarajan M. A survey of intrusion detection techniques in Cloud. J. Netw. Comput. Appl. 2013 36 1 42 57 10.1016/j.jnca.2012.05.003
    [Google Scholar]
  11. Lai J. Guo F. Susilo W. Huang X. Jiang P. Zhang F. Data access control in cloud computing: Flexible and receiver extendable. IEEE Trans. Serv. Comput. 2021 15 5 2658 2670 10.1109/TSC.2021.3057197
    [Google Scholar]
  12. Su Z. Wang Y. Luan T. Zhang N. Li F. Chen T. Cao H. Secure and efficient federated learning for smart grid with edgecloud collaboration. IEEE Trans. Industr. Inform. 2021 2021
    [Google Scholar]
  13. Nie X. Suo H. Security in the cloud computing: A review. Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, Changchun, China, 29-31 Dec. 2012, pp. 2145-2149. 10.1109/ICCSNT.2012.6526342
    [Google Scholar]
  14. Nakhodchi B. Zolfaghari B. Yazdinejad A. Dehghantanha A. Steeleye: An application-layer attack detection and attribution model in industrial control systems using semi-deep learning. 18th International Conference on Privacy, Security and Trust (PST), Auckland, New Zealand, 13-15 Dec. 2021, pp. 1-8. 10.1109/PST52912.2021.9647777
    [Google Scholar]
  15. Yazdinejad A. Srivastava G. Parizi R.M. Dehghantanha A. Choo K.K.R. Aledhari M. Decentralized authentication of distributed patients in hospital networks using blockchain. IEEE J. Biomed. Health Inform. 2020 24 8 2146 2156 10.1109/JBHI.2020.2969648 31995507
    [Google Scholar]
  16. Yazdinejad A. Parizi R.M. Bohlooli A. Dehghantanha A. Choo K.K.R. A high-performance framework for a network programmable packet processor using P4 and FPGA. J. Netw. Comput. Appl. 2020 156 102564 10.1016/j.jnca.2020.102564
    [Google Scholar]
  17. Sun J. Privacy protection and data security in cloud computing: A survey, challenges, and solutions. IEEE Access 2019 7 147420 147452 10.1109/ACCESS.2019.2946185
    [Google Scholar]
  18. Chenthara S. Ahmed K. Wang H. Whittaker F. Security and privacy-preserving challenges of e-health solutions in cloud computing. IEEE Access 2019 74361 74382 10.1109/ACCESS.2019.2919982
    [Google Scholar]
  19. Yang P. Xiong N. Ren J. Data security and privacy protection for cloud storage: A survey. IEEE Access 2020 8 131723 131740 10.1109/ACCESS.2020.3009876
    [Google Scholar]
  20. Masood A. Lakew D.S. Cho S. Security and privacy challenges in connected vehicular cloud computing. IEEE Commun. Surv. Tutor. 2020 22 4 2725 2764 10.1109/COMST.2020.3012961
    [Google Scholar]
  21. Abbas A. Khan S.U. A review on the state-of-the-art privacy-preserving approaches in the e-health clouds. IEEE J. Biomed. Health Inform. 2014 18 4 1431 1441 10.1109/JBHI.2014.2300846 25014943
    [Google Scholar]
  22. Yu H. A survey of public key encryption with search functionality for cloud-assisted iot. IEEE Internet Things J. 2021 2021
    [Google Scholar]
  23. Vishwanath A. Peruri R. Security in fog computing through encryption. IJITCS 2016 8 5 10.5815/ijitcs.2016.05.03
    [Google Scholar]
  24. Yang Y. Wu L. Yin G. Li L. Zhao H. A survey on security and privacy issues in Internet of Things. IEEE Internet Things J. 2017 4 5 1250 1258 10.1109/JIOT.2017.2694844
    [Google Scholar]
  25. AlBelooshi B. Damiani E. Salah K. Martin T. Securing cryptographic keys in the cloud: A survey. IEEE Cloud Computing 2016 3 4 42 56 10.1109/MCC.2016.89
    [Google Scholar]
  26. Gupta K. Gupta D. Prasad S.K. Johri P. A review on cryptography based data security techniques for the cloud computing Proceedings of International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 04-05 March 2021, pp. 1039-1044.
    [Google Scholar]
  27. Abdullah S. A review of cloud security based on cryptographic mechanisms Proceedings of International Symposium on Biometrics and Security Technologies (ISBAST), Kuala Lumpur, Malaysia, 2014.
    [Google Scholar]
  28. Hanafy A. Data security in cloud computing using steganography: A review Proceedings of International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2019.
    [Google Scholar]
  29. Ahmadi S. Salehfar M. Privacy-preserving cloud computing: Ecosystem, life cycle, layered architecture and future roadmap. arXiv 2022 2022 11120 10.48550/arXiv.2204.11120
    [Google Scholar]
  30. Rezapour R. Asghari P. Javadi H.H.S. Ghanbari S. Security in fog computing: A systematic review on issues, challenges and solutions. Comput. Sci. Rev. 2021 41 100421 10.1016/j.cosrev.2021.100421
    [Google Scholar]
  31. Yahuza M. Idris M. Wahab A. Ho A. Khan S. Musa S. Taha A. Systematic review on security and privacy requirements in edge computing: State of the art and future research opportunities. IEEE Access 2020 8 76541 76567 10.1109/ACCESS.2020.2989456
    [Google Scholar]
  32. Zhang K. Mao Y. Leng S. Zhao Q. Li L. Peng X. Pan L. Maharjan S. Zhang Y. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 2016 4 5896 5907 10.1109/ACCESS.2016.2597169
    [Google Scholar]
  33. Rodrigues T.G. Suto K. Nishiyama H. Kato N. Hybrid method for minimizing service delay in edge cloud computing through vm migration and transmission power control. IEEE Trans. Comput. 2017 66 5 810 819 10.1109/TC.2016.2620469
    [Google Scholar]
  34. Rapuzzi R. Repetto M. Building situational awareness for network threats in fog/edge computing: Emerging paradigms beyond the security perimeter model. Future Gener. Comput. Syst. 2018 85 235 249 10.1016/j.future.2018.04.007
    [Google Scholar]
  35. Shi W. Cao J. Zhang Q. Li Y. Xu L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016 3 5 637 646 10.1109/JIOT.2016.2579198
    [Google Scholar]
  36. Mahmud R. Kotagiri R. Buyya R. A data utility model for data-intensive applications in fog computing environments. Fog Computing Cham Springer Mahmood Z. 2018 183 202 10.1007/978‑3‑319‑94890‑4
    [Google Scholar]
  37. Hu P. Dhelim S. Ning H. Qiu T. Survey on fog computing: architecture, key technologies, applications and open issues. J. Netw. Comput. Appl. 2017 98 27 42 10.1016/j.jnca.2017.09.002
    [Google Scholar]
  38. Munir A. Kansakar P. Khan S.U. IFCIoT: Integrated Fog Cloud IoT: A novel architectural paradigm for the future Internet of Things. IEEE Consum. Electron. Mag. 2017 6 3 74 82 10.1109/MCE.2017.2684981
    [Google Scholar]
  39. Muniswamaiah M. Agerwala T. Tappert C.C. Fog Computing and the Internet of Things (IoT): A Review. 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom) 2021 10.1109/CSCloud‑EdgeCom52276.2021.00012
    [Google Scholar]
  40. H S. v N. A Review on Fog Computing: Architecture, Fog with IoT, Algorithms and Research Challenges. ICT Express 2021 7 2 162 176 10.1016/j.icte.2021.05.004
    [Google Scholar]
  41. Atlam H. Walters R. Wills G. Fog Computing and the Internet of Things: A Review. Big Data and Cognitive Computing 2018 2 2 10 10.3390/bdcc2020010
    [Google Scholar]
  42. Available from: https://www.spiceworks.com/tech/edge-computing/articles/what-is-fog-computing/
  43. Kitanov S. Janevski T. State of the art: Fog computing for 5G networks 2016 24th Telecommunications Forum (TELFOR) 2016 1 4 10.1109/TELFOR.2016.7818728
    [Google Scholar]
  44. Meng Y. Naeem M.A. Almagrabi A.O. Ali R. Kim H.S. Advancing the state of the fog computing to enable 5G network technologies. Sensors 2020 20 6 1754 10.3390/s20061754 32245261
    [Google Scholar]
  45. Peter N. FOG computing and its real time applications. Int. J. Emerg. Technol. Adv. Eng. 2015 5 266 269
    [Google Scholar]
  46. Aazam M. Huh E.N. Fog computing and smart gateway based communication for cloud of things. Proceedings of the 2014 International Conference on Future Internet of Things Cloud, FiCloud 2014, Barcelona, Spain, 27–29 August 2014; pp. 464–470. 2014
    [Google Scholar]
  47. Liu Y. Fieldsend J.E. Min G. A framework of fog computing: Architecture, challenges and optimization. IEEE Access 2017 5 25445 25454 10.1109/ACCESS.2017.2766923
    [Google Scholar]
  48. Naha R.K. Garg S. Georgakopoulos D. Jayaraman P.P. Gao L. Xiang Y. Ranjan R. Fog computing: Survey of trends, architectures, requirements, and research directions. IEEE Access 2018 6 47980 48009 10.1109/ACCESS.2018.2866491
    [Google Scholar]
  49. Aazam M. Huh E.N. Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT. Proceeding of the 29th IEEE International Conference on Advanced Information Networking and Applications (AINA) 2015 687 694 10.1109/AINA.2015.254
    [Google Scholar]
  50. Arkian H.R. Diyanat A. Pourkhalili A. MIST: Fog-based data analytics scheme with cost-efficient resource provisioning for IoT crowdsensing applications. J. Netw. Comput. Appl. 2017 82 152 165 10.1016/j.jnca.2017.01.012
    [Google Scholar]
  51. Luan T.H. Gao L. Li Z. Fog computing: Focusing on mobile users at the edge. networking and internet architecture. arxiv 2015 2015 01815
    [Google Scholar]
  52. Nadeem M.A. Saeed M.A. Fog computing: An emerging paradigm. Proceeding of the 6th International Conference on Innovative Computing Technology (INTECH) 2016 83 86
    [Google Scholar]
  53. Taneja M. Davy A. Resource aware placement of data analytics platform in fog computing. Procedia Comput. Sci. 2016 97 153 156 10.1016/j.procs.2016.08.295
    [Google Scholar]
  54. Sarkar S. Misra S. Theoretical modelling of fog computing: a green computing paradigm to support IoT applications. IET Netw. 2016 5 2 23 29 10.1049/iet‑net.2015.0034
    [Google Scholar]
  55. Dastjerdi A.V. Gupta H. Calheiros R.N. Fog computing: Principles, architectures, and applications. Internet of Things: Principle & Paradigms. USA Elsevier Kaufmann M. 2016 1 26 10.1016/B978‑0‑12‑805395‑9.00004‑6
    [Google Scholar]
  56. Hosseinpour F. Plosila J. Tenhunen H. An Approach for Smart Management of Big Data in the Fog Computing Context. Proceeding of the IEEE International Conference on Cloud Computing Technology and Science (CloudCom) 2016 468 471 10.1109/CloudCom.2016.0080
    [Google Scholar]
  57. Baccarelli E. Naranjo P.G.V. Scarpiniti M. Shojafar M. Abawajy J.H. Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study. IEEE Access 2017 5 9882 9910 10.1109/ACCESS.2017.2702013
    [Google Scholar]
  58. Jayaraman P.P. Yang X. Yavari A. Georgakopoulos D. Yi X. Privacy preserving Internet of Things: From privacy techniques to a blueprint architecture and efficient implementation. Future Gener. Comput. Syst. 2017 76 540 549 10.1016/j.future.2017.03.001
    [Google Scholar]
  59. Ni J. Zhang A. Lin X. Shen X.S. Security, privacy, and fairness in fog-based vehicular crowd sensing. IEEE Commun. Mag. 2017 55 6 146 152 10.1109/MCOM.2017.1600679
    [Google Scholar]
  60. Aleisa N. Renaud K. Privacy of the internet of things: A systematic literature review arXiv 2017 2017 10.24251/HICSS.2017.717
    [Google Scholar]
  61. Sarwar K. A Brief Survey on IoT Privacy: Taxonomy, Issues and Future Trends. ICSOC 2018 Workshops 2019 11434 208 219
    [Google Scholar]
  62. Abubaker N. Dervishi L. Ayday E. Privacy-preserving fog computing paradigm 2017 IEEE Conference on Communications and Network Security (CNS) 2017 502 509 10.1109/CNS.2017.8228709
    [Google Scholar]
  63. Lopez J. Rios R. Bao F. Wang G. Evolving privacy: From sensors to the Internet of Things. Future Gener. Comput. Syst. 2017 75 46 57 10.1016/j.future.2017.04.045
    [Google Scholar]
  64. Chen Y. Lu Z. Xiong H. Xu W. Privacy-preserving data aggregation protocol for fog computing-assisted vehicle-to-infrastructure scenario. Secur. Commun. Net. 2018 1 14 10.1155/2018/1378583
    [Google Scholar]
  65. Yildirim F. Ozdemir S. Xiao Y. Fog computing-based privacy preserving data aggregation protocols. Emerg. Telecom. Technol. 2020 33 4 e3900 10.1002/ett.3900
    [Google Scholar]
  66. Lu R. Heung K. Lashkari A.H. Ghorbani A.A. A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access 2017 5 3302 3312 10.1109/ACCESS.2017.2677520
    [Google Scholar]
  67. Chen C. Wang T. Tian J. Improving timing attack on RSA-CRT via error detection and correction strategy. Inf. Sci. 2013 232 464 474 10.1016/j.ins.2012.01.027
    [Google Scholar]
  68. Li X. Sangaiah A.K. Kumari S. Wu F. Shen J. Khan M.K. An efficient authentication and key agreement scheme with user anonymity for roaming service in smart city. Pers. Ubiquitous Comput. 2017 21 5 791 805 10.1007/s00779‑017‑1054‑9
    [Google Scholar]
  69. Jiang Q. Chen Z. Li B. Shen J. Yang L. Ma J. Security analysis and improvement of bio-hashing based three-factor authentication scheme for telecare medical information systems. J. Ambient Intell. Humaniz. Comput. 2017
    [Google Scholar]
  70. Ndoye M. Barker A.M. Krogmeier J.V. Bullock D.M. A recursive multiscale correlation-averaging algorithm for an automated distributed road-condition-monitoring system. IEEE Trans. Intell. Transp. Syst. 2011 12 3 795 808 10.1109/TITS.2011.2132799
    [Google Scholar]
  71. Stojmenovic I. Fog computing: A cloud to the ground support for smart things and machine-to-machine networks Proceedings of the 2014 Australasian Telecommunication Networks and Applications Conference, ATNAC 2014, Australia, 2014, pp.117-122. 10.1109/ATNAC.2014.7020884
    [Google Scholar]
  72. Olumofin F. Goldberg I. Privacy-preserving queries over relational databases. Privacy Enhancing Technologies Berlin, Heidelberg Springer Atallah M.J. Hopper N.J. 2010 10.1007/978‑3‑642‑14527‑8_5
    [Google Scholar]
  73. Chow S.S.M. Lee J-H. Subramanian L. Two-party computation model for privacy-preserving queries over distributed databases. Proceedings of the Network and Distributed System Security Symposium, NDSS, San Diego, California, USA, 8-11 Feb. 2009, pp 1-16.
    [Google Scholar]
  74. De Cristofaro E. Lu Y. Tsudik G. Efficient techniques for privacy-preserving sharing of sensitive information. Trust and Trustworthy Computing Berlin, Heidelberg Springer McCune J.M. Balacheff B. Perrig A. Sadeghi A.R. Sasse A. Beres Y. 2011 239 253 10.1007/978‑3‑642‑21599‑5_18
    [Google Scholar]
  75. Hore B. Mehrotra S. Tsudik G. A Privacy-Preserving Index for Range Queries VLDB ’04: Proceedings of the Thirtieth international conference on Very large data bases 2004 720 731
    [Google Scholar]
  76. Tonyali S. Akkaya K. Saputro N. Uluagac A.S. Nojoumian M. Privacy-preserving protocols for secure and reliable data aggregation in IoT-enabled Smart Metering systems. Future Gener. Comput. Syst. 2018 78 547 557 10.1016/j.future.2017.04.031
    [Google Scholar]
  77. Androulaki E. Cocco S. Ferris C. Private and confdential transactions with Hyperledger Fabric. 2018 Available from:https://developer.ibm.com/tutorials/cl-blockchainprivate-confdential-transactions-hyperledger-fabric-zero-knowledge-proof/
  78. Ben-Sasson E. Bentov I. Horesh Y. Riabzev M. Scalable, transparent, and post-quantum secure computational integrity. 2018 Available from: https://eprint.iacr.org/2018/46
  79. Boneh D. Twenty years of attacks on the RSA cryptosystem. 2018 Available from: https://crypto.stanford.edu/%7Edabo/pubs/papers/RSA-survey.pdf
  80. Ben-Sasson E. Chiesa A. Garman C. Green M. Miers I. Tromer E. Virza M. Zerocash: Decentralized anonymous payments from bitcoin. IEEE Symposium on Security and Privacy 2014
    [Google Scholar]
  81. Nuñez D. Agudo I. BlindIdM: A privacy-preserving approach for identity management as a service. Int. J. Inf. Secur. 2014 13 2 199 215 10.1007/s10207‑014‑0230‑4
    [Google Scholar]
  82. Chow S. He Y.J. Hui L. Yiu S. SPICE–simple privacy-preserving identity-management for cloud environment. Applied Cryptography and Network Security Berlin, Heidelberg Springer Bao F. Samarati P. Zhou J. 2012 526 543 10.1007/978‑3‑642‑31284‑7_31
    [Google Scholar]
  83. Bertino E. Paci F. Ferrini R. Shang N. Privacy preserving digital identity management for cloud computing. Q. Bull. Comput. Soc. IEEE Tech. Comm. Data Eng. 2009 32 1 21 27
    [Google Scholar]
  84. Dey A. Weis S. PseudoID: Enhancing privacy for federated login. 3rd Hot Topics in Privacy Enhancing Technologies - HotPETs, Berlin, Germany, July 23, 2010, pp. 1-13.
    [Google Scholar]
  85. Shivaprasad S. Li H. Zou X. Privacy Preservation in Location Based Services. J. Comput. (Taipei) 2016 11 5 •••
    [Google Scholar]
  86. Jia X. Xing L. Gao J. Wu H. A Survey of Location Privacy Preservation in Social Internet of Vehicles. IEEE Access 2020 8 201966 201984 10.1109/ACCESS.2020.3036044
    [Google Scholar]
  87. Dietzel S. Petit J. Kargl F. Scheuermann B. In-network aggregation for vehicular Ad hoc networks. IEEE Commun. Surv. Tutor. 2014 16 4 1909 1932 10.1109/COMST.2014.2320091
    [Google Scholar]
  88. Caballero-Gil C. Molina-Gil J. Hernández-Serrano J. León O. Soriano-Ibañez M. Providing k-anonymity and revocation in ubiquitous VANETs. Ad Hoc Netw. 2016 36 482 494 10.1016/j.adhoc.2015.05.016
    [Google Scholar]
  89. Mei Y. Cui Y.Q. Jiang G.Z. A privacy preserving communication scheme for VANETs. Applied Mechanics and Materials Trans Tech Publications, Ltd. 2014 556-562 5133 5138 10.4028/www.scientific.net/AMM.556‑562.5133
    [Google Scholar]
  90. Gope P. Lightweight and privacy-preserving RFID authentication scheme for distributed IoT infrastructure with secure localization services for smart city environment. Future Gener. Comput. Syst. 2017
    [Google Scholar]
  91. Yang X. Ren X. Yang S. McCann J. A novel temporal perturbation based privacy-preserving scheme for real-time monitoring systems. Comput. Netw. 2015 88 72 88 10.1016/j.comnet.2015.06.007
    [Google Scholar]
  92. Ara A. Al-Rodhaan M. Tian Y. Al-Dhelaan A. A secure privacy-preserving data aggregation scheme based on bilinear ElGamal cryptosystem for remote health monitoring systems. IEEE Access 2017 5 12601 12617 10.1109/ACCESS.2017.2716439
    [Google Scholar]
  93. Zhou J. Cao Z. Dong X. Vasilakos A.V. Security and privacy for cloud-based IoT: challenges. IEEE Commun. Mag. 2017 55 1 26 33 10.1109/MCOM.2017.1600363CM
    [Google Scholar]
  94. Henze M. Hermerschmidt L. Kerpen D. Häußling R. Rumpe B. Wehrle K. A comprehensive approach to privacy in the cloud-based Internet of Things. Future Gener. Comput. Syst. 2016 56 701 718 10.1016/j.future.2015.09.016
    [Google Scholar]
  95. Le J. Liao X. Yang B. Full autonomy: A novel individualized anonymity model for privacy preserving. Comput. Secur. 2017 66 204 217 10.1016/j.cose.2016.12.010
    [Google Scholar]
  96. Neisse R. Steri G. Fovino I.N. Baldini G. SecKit: a model-based security toolkit for the internet of things. Comput. Secur. 2015 54 60 76 10.1016/j.cose.2015.06.002
    [Google Scholar]
  97. Huang Q. Yang Y. Wang L. Secure data access control with ciphertext update and computation outsourcing in fog computing for internet of things. IEEE Access 2017 5 12941 12950 10.1109/ACCESS.2017.2727054
    [Google Scholar]
  98. Ivascu T. Frîncu M. Negru V. Considerations towards security and privacy in Internet of Things based eHealth applications. IEEE 14th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 2016, pp. 275-280. 10.1109/SISY.2016.7601512
    [Google Scholar]
  99. Sarwar K. Yongchareon S. Yu J. ur Rehman S. Lightweight, Divide-and-Conquer privacy-preserving data aggregation in fog computing. Future Gener. Comput. Syst. 2021 119 188 199 10.1016/j.future.2021.02.013
    [Google Scholar]
  100. Baniata H. Almobaideen W. Kertesz A. A Privacy Preserving Model for Fog-enabled MCC systems using 5G Connection 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC) 2020 223 230 10.1109/FMEC49853.2020.9144814
    [Google Scholar]
  101. Rana S. Mishra D. Arora R. Privacy-Preserving Key Agreement Protocol for Fog Computing Supported Internet of Things Environment. Wirel. Pers. Commun. 2021 119 1 727 747 10.1007/s11277‑021‑08234‑4
    [Google Scholar]
  102. Shen X. Zhu L. Xu C. Sharif K. Lu R. A privacy-preserving data aggregation scheme for dynamic groups in fog computing. Inf. Sci. 2020 514 118 130 10.1016/j.ins.2019.12.007
    [Google Scholar]
  103. Khan S. Parkinson S. Qin Y. Fog computing security: a review of current applications and security solutions. J. Cloud Comput. (Heidelb.) 2017 6 1 19 10.1186/s13677‑017‑0090‑3
    [Google Scholar]
  104. Piao C. Shi Y. Yan J. Zhang C. Liu L. Privacy-preserving governmental data publishing: A fog-computing-based differential privacy approach. Future Gener. Comput. Syst. 2019 90 158 174 10.1016/j.future.2018.07.038
    [Google Scholar]
  105. Wang X. Gu B. Qu Y. Ren Y. Xiang Y. Gao L. Reliable Customized Privacy-Preserving in Fog Computing ICC 2020 - 2020 IEEE International Conference on Communications (ICC) 2020 1 6 10.1109/ICC40277.2020.9148989
    [Google Scholar]
  106. Tong Q. Miao Y. Li H. Liu X. Deng R.H. Privacy-preserving ranked spatial keyword query in mobile cloud-assisted fog computing. IEEE Trans. Mobile Comput. 2023 22 6 3604 3618 10.1109/TMC.2021.3134711
    [Google Scholar]
  107. Kaur A. Auluck N. Real‐time trust aware scheduling in fog‐cloud systems. Concurr. Comput. 2023 35 10 e7680 10.1002/cpe.7680
    [Google Scholar]
  108. Bian M. Liu J. Sun S. Zhang X. Ren Y. Verifiable privacy-enhanced rotation invariant LBP feature extraction in fog computing. IEEE Trans. Industr. Inform. 2023 19 12 11518 11530 10.1109/TII.2023.3246992
    [Google Scholar]
  109. Bai W. Huang A. Privacy-preserving collaborative sharing for sharing economy in fog-enhanced IoT. IEEE Access 2023 11 95295 95306 10.1109/ACCESS.2023.3280637
    [Google Scholar]
  110. Guifang Z. A novel approach for privacy preserving technique in IoT fog and cloud environment. Intelligent Sustainable System Singapore Springer Raj J.S. Perikos I. Balas V.E. 2023 117 136 10.1007/978‑981‑99‑1726‑6_10
    [Google Scholar]
  111. Sendhil R. Amuthan A. Verifiable quaternion fully homomorphic encryption scheme for mitigating false data injection attacks by privacy preservation in fog environment. J. Inf. Secur. Appl. 2022 71 103383 10.1016/j.jisa.2022.103383
    [Google Scholar]
  112. Yu Z. Privacy-preserving federated deep learning for cooperative hierarchical caching in fog computing. IEEE Internet Things J. 2022 9 22 10.1109/JIOT.2021.3081480
    [Google Scholar]
  113. Kim H-J. Kim Y-K. Lee H-J. Chang J-W. Privacy-preserving top-k query processing algorithms using efficient secure protocols over encrypted database in cloud computing environment. Electronics (Basel) 2022 11 18 2870 10.3390/electronics11182870
    [Google Scholar]
  114. Gowda N.C. Manvi S.S. Malakreddy B. Blockchain-based access control model with privacy preservation in a fog computing environment. IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 08-10 July 2022, pp. 1-6. 10.1109/CONECCT55679.2022.9865845
    [Google Scholar]
  115. Li Y. Practical Privacy-Preserving Federated Learning in Vehicular Fog Computing. IEEE Trans. Vehicular Technol. 2022 71 5 1 10.1109/TVT.2022.3150806
    [Google Scholar]
  116. Wan J. An efficient impersonation attack detection method in fog computing. Comput. Mater. Contin. 2021 68 1 267 281 10.32604/cmc.2021.016260
    [Google Scholar]
  117. Tu S. Waqas M. Rehman S.U. Aamir M. Rehman O.U. Jianbiao Z. Chang C-C. Security in fog computing: A novel technique to tackle an impersonation attack. IEEE Access 2018 6 74993 75001 10.1109/ACCESS.2018.2884672
    [Google Scholar]
  118. Arrington M. In our inbox: Hundreds of confidential Twitter documents. 2009 Available from: http://techcrunch.com/2009/07/14/ in-our-inbox-hundreds-of-confidential-twitter-documents/
  119. Takahashi D. French hacker who leaked twitter documents to techcrunch is busted. 2010 Available from: http://venturebeat.com/2010/03/24/ french-hacker-who-leaked-twitter-documents-to-techcrunch-is-busted/
  120. Allen P. Obamas Twitter password revealed after french hacker arrested for breaking into U.S. presidents account. 2010 Available from: http://www.dailymail.co.uk/news/article-1260488/ Barack-Obamas-Twitter-password-revealed-French-hacker-arrested. html
  121. Rocha F. Correia M. Lucy in the sky without diamonds: Stealing confidential data in the cloud 2011 10.1109/DSNW.2011.5958798
    [Google Scholar]
  122. Pepitone J. Dropbox’s password nightmare highlights cloud risks. 2011 Available from: http://money.cnn.com/ 2011/06/22/technology/dropbox passwords/index.html
  123. Stolfo S.J. Salem M.B. Keromytis A.D. Fog computing: Mitigating insider data theft attacks in the Cloud Proc. IEEE Symp. on Security and Privacy Workshops 2012 125 128 10.1109/SPW.2012.19
    [Google Scholar]
  124. Abdulkareem K.H. Mohammed M.A. Gunasekaran S.S. Al-Mhiqani M.N. Mutlag A.A. Mostafa S.A. Ali N.S. Ibrahim D.A. A review of fog computing and machine learning: Concepts, applications, challenges, and open issues. IEEE Access 2019 7 153123 153140 10.1109/ACCESS.2019.2947542
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558283303250103030013
Loading
/content/journals/rascs/10.2174/0126662558283303250103030013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test