Skip to content
2000
image of A Study on Learning Resources Recommendation Based on Multi-Domain Fusion Network

Abstract

Background

Considering the singularity of collaborative filtering algorithms in recommending learning resources and the problem that existing knowledge graph convolutional networks cannot deeply mine the neighbourhood information of learning resource nodes in application scenarios with less neighbourhood information, a multi-domain fusion convolutional network learning resource recommendation model based on knowledge graphs is proposed here.

Objective

This study aimed to improve the accuracy and personalization of recommendations of filtering algorithms.

Methods

First, the model mapped learner nodes, learning resources, and their neighbour nodes into low-dimensional dense vectors. Second, the multi-domain fusion layer and the multi-domain aggregator were used to obtain the fused multi-domain learning resource vector. Finally, the learner vector and the multi-domain learning resource vector were fed into the prediction layer to calculate the interaction probability.

Results

To verify the effectiveness of the algorithm, we conducted a comparative experiment using the publicly available datasets MOOPer and MOOCCubeX. The experimental results showed that the proposed model outperformed baseline models, such as CKE, MKR, KGCN, DEKGCN, and KGIN, in terms of evaluation metrics, such as AUC, ACC, and F1. At the same time, when the neighborhood information was limited, the AUC, ACC, and F1 values of the proposed model still maintained the optimal value.

Conclusion

Compared to the optimal baseline model, the effectiveness of the proposed model has been proven.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558350372241226071208
2024-12-30
2025-06-23
Loading full text...

Full text loading...

References

  1. Zhang X. Zhang Y. Zhang Y. VeriTrain: Validating MLaaS training efforts via anomaly detection. IEEE Trans. Depend. Secure Comput. 2024 21 3 1032 1049 10.1109/TDSC.2023.3266427
    [Google Scholar]
  2. Li N. Xia Y. Movie recommendation based on ALS collaborative filtering recommendation algorithm with deep learning model. Entertain. Comput. 2024 51 100715 10.1016/j.entcom.2024.100715
    [Google Scholar]
  3. Wu S. Sun F. Zhang W. Xie X. Cui B. Graph neural networks in recommender systems: A survey. ACM Comput. Surv. 2023 55 5 1 37 10.1145/3535101
    [Google Scholar]
  4. Chen J. Dong H. Wang X. Feng F. Wang M. He X. Bias and debias in recommender system: A survey and future directions. ACM Trans. Inf. Syst. 2023 41 3 1 39 10.1145/3564284
    [Google Scholar]
  5. Da’u A. Salim N. Recommendation system based on deep learning methods: A systematic review and new directions. Artif. Intell. Rev. 2020 53 4 2709 2748 10.1007/s10462‑019‑09744‑1
    [Google Scholar]
  6. Guo Q. Zhuang F. Qin C. Zhu H. Xie X. Xiong H. He Q. A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. 2022 34 8 3549 3568 10.1109/TKDE.2020.3028705
    [Google Scholar]
  7. Jian L. Feng L. Jianxing Z. A dynamic adaptive multi-view fusion graph convolutional network recommendation model with dilated mask convolution mechanism. Inf. Sci. 2024 ••• 658120028
    [Google Scholar]
  8. Cui Z. Xu X. Xue F. Cai X. Cao Y. Zhang W. Chen J. Personalized recommendation system based on collaborative filtering for IoT scenarios. IEEE Trans. Serv. Comput. 2020 13 4 685 695 10.1109/TSC.2020.2964552
    [Google Scholar]
  9. Fang H Zhang D Shu Y Deep learning for sequential recommendation: Algorithms, influential factors, and evaluations. ACM Trans. Inf. Syst. 2020 39 1 1 42
    [Google Scholar]
  10. Safarov F. Kutlimuratov A. Abdusalomov A.B. Nasimov R. Cho Y-I. Deep learning recommendations of e-education based on clustering and sequence. Electronics 2023 12 4 809 10.3390/electronics12040809
    [Google Scholar]
  11. Gao M. Li J.Y. Chen C.H. Li Y. Zhang J. Zhan Z-H. Enhanced multi-task learning and knowledge graph-based recommender system. IEEE Trans. Knowl. Data Eng. 2023 35 10 10281 10294 10.1109/TKDE.2023.3251897
    [Google Scholar]
  12. Pham P. Nguyen L.T.T. Nguyen N.T. Kozma R. Vo B. A hierarchical fused fuzzy deep neural network with heterogeneous network embedding for recommendation. Inf. Sci. 2023 620 105 124 10.1016/j.ins.2022.11.085
    [Google Scholar]
  13. Ji S. Pan S. Cambria E. Marttinen P. Yu P.S. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 2022 33 2 494 514 10.1109/TNNLS.2021.3070843 33900922
    [Google Scholar]
  14. Hogan A. Blomqvist E. Cochez M. D’amato C. Melo G.D. Gutierrez C. Kirrane S. Gayo J.E.L. Navigli R. Neumaier S. Ngomo A-C.N. Polleres A. Rashid S.M. Rula A. Schmelzeisen L. Sequeda J. Staab S. Zimmermann A. Knowledge Graphs. ACM Comput. Surv. 2022 54 4 1 37 10.1145/3447772
    [Google Scholar]
  15. Shu J. Shen X. Liu H. Yi B. Zhang Z. A content-based recommendation algorithm for learning resources. Multimedia Syst. 2018 24 2 163 173 10.1007/s00530‑017‑0539‑8
    [Google Scholar]
  16. Zhou L. Zhang F. Zhang S. Xu M. Study on the personalized learning model of learner-learning resource matching. Int. J. Inf. Educ. Technol. 2021 11 3 143 147 10.18178/ijiet.2021.11.3.1503
    [Google Scholar]
  17. ZHAO L L. G-raph representation learning on location-B-ased social networks. Chinese J. Comput. 2022 4 045
    [Google Scholar]
  18. Vatter J. Mayer R. Jacobsen H.A. The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey. ACM Comput. Surv. 2024 56 1 1 37 10.1145/3597428
    [Google Scholar]
  19. Ma W. Zhang M. Cao Y. Jointly learning explainable rules for recommendation with knowledge graph. Proceedings of the The World Wide Web Conference Switzerland, 13 May 2019: pp. 1210-1221.
    [Google Scholar]
  20. Yue Q. Research on knowledge graph enhanced online course recommendation method. Master's Degree Thesis, Wuhan: Huazhong Normal University. 2020
    [Google Scholar]
  21. Shi D. Wang T. Xing H. Xu H. A learning path recommendation model based on a multidimensional knowledge graph framework for e-learning. Knowl. Base. Syst. 2020 195 105618 10.1016/j.knosys.2020.105618
    [Google Scholar]
  22. Wei L. Zhao H. He Z. Yao Q. Neural architecture search for GNN-based graph classification. ACM Trans. Inf. Syst. 2024 42 1 1 29 10.1145/3584945
    [Google Scholar]
  23. Kipf T.N. Welling M. Semi-Supervised classification with graph convolutional networks. 5th International Conference on Learning Representations 06 Feb 2017.
    [Google Scholar]
  24. Wu Z. Pan S. Chen F. Long G. Zhang C. Yu P.S. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2021 32 1 4 24 10.1109/TNNLS.2020.2978386 32217482
    [Google Scholar]
  25. Wang Z. Ding H. Pan L. Li J. Gong Z. Yu P.S. From cluster assumption to graph convolution: Graph-based semi-supervised learning revisited. IEEE Trans. Neural Netw. Learn. Syst. 2024 PP 1 12 10.1109/TNNLS.2024.3454710 39374279
    [Google Scholar]
  26. Xu G. Jia G. Shi L. Zhang Z. Personalized course recommendation system fusing with knowledge graph and collaborative filtering. Comput. Intell. Neurosci. 2021 2021 1 9590502 10.1155/2021/9590502 34616447
    [Google Scholar]
  27. Boughareb R. Seridi H. Beldjoudi S. Explainable recommendation based on weighted knowledge graphs and graph convolutional networks. J. Inf. Knowl. Manag. 2023 22 3 2250098 10.1142/S0219649222500988
    [Google Scholar]
  28. Li M. Ma W. Chu Z. KGIE: Knowledge graph convolutional network for recommender system with interactive embedding. Knowl. Base. Syst. 2024 295 111813 10.1016/j.knosys.2024.111813
    [Google Scholar]
  29. Chen J. Fan D. Qian X. Mei L. KGCN‐LSTM: A graph convolutional network considering knowledge fusion of point of interest for vehicle trajectory prediction. IET Intell. Transp. Syst. 2023 17 6 1087 1103 10.1049/itr2.12341
    [Google Scholar]
  30. Guoshu L. Li Y. Sichang B. BIKAGCN: Knowledge-aware recommendations under bi-layer graph convolutional networks. Neural Process. Lett. 2024 56 1
    [Google Scholar]
  31. Wei Z. Qing D. Yongjian F. A personalized programming exercise recommendation algorithm based on knowledge structure tree. J. Intell. Fuzzy Syst. 2022 41 3 2169 2180
    [Google Scholar]
  32. Lauriola I. Lavelli A. Aiolli F. LAVELLI A, AIOLLI F. An introduction to deep learning in natural language processing: models, techniques, and tools. Neurocomputing 2022 470 443 456 10.1016/j.neucom.2021.05.103
    [Google Scholar]
  33. Tang J. Ke W. Personalized top-n sequential recommendation via convolutional sequence embedding. WSDM '18: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining Marina Del Rey, CA, USA, 02 February 2018, pp. 565–573.
    [Google Scholar]
  34. Di J. Hu Z. Bi S. Zhang H. Wang Y. Sun Z. Temporal refinement network: Combining dynamic convolution and multi-scale information for fine-grained action recognition. Image Vis. Comput. 2024 147 105058 10.1016/j.imavis.2024.105058
    [Google Scholar]
  35. Hafidi H. Ghogho M. Ciblat P. Swami A. Negative sampling strategies for contrastive self-supervised learning of graph representations. Signal Processing 2022 190 108310 10.1016/j.sigpro.2021.108310
    [Google Scholar]
  36. Wang X. Gao T. Zhu Z. Zhang Z. Liu Z. Li J. Tang J. KEPLER: A unified model for knowledge embedding and pre-trained language representation. Trans. Assoc. Comput. Linguist. 2021 9 176 194 10.1162/tacl_a_00360
    [Google Scholar]
  37. Gong J. Wan Y. Liu Y. Li X. Zhao Y. Wang C. Lin Y. Fang X. Feng W. Zhang J. Tang J. Reinforced moocs concept recommendation in heterogeneous information networks. ACM Trans. Web 2023 17 3 1 27 10.1145/3580510
    [Google Scholar]
  38. Ma T. Huang L. Lu Q. Hu S. Kr-gcn: Knowledge-aware reasoning with graph convolution network for explainable recommendation. ACM Trans. Inf. Syst. 2023 41 1 1 27 10.1145/3511019
    [Google Scholar]
  39. Tran T.T. Snasel V. Nguyen L.T. Combining social relations and interaction data in recommender system with graph convolution collaborative filtering. IEEE Access 2023 11 139759 139770 10.1109/ACCESS.2023.3340209
    [Google Scholar]
  40. Zou X. A survey on application of knowledge graph. J. Phys.: Conf. Ser. 2020 1487 1 012016
    [Google Scholar]
  41. Xiangnan He. Neural collaborative filtering. WWW '17: Proceedings of the 26th International Conference on World Wide Web Perth, Australia, 03 April 2017, 173–182.
    [Google Scholar]
  42. Huang Z. Qi L. Zhai C. Exploring multi-objective exercise recommendations in online education systems. CIKM '19: Proceedings of the 28th ACM International Conference on Information and Knowledge Management Beijing, China, November 3–7, 2019, pp. 1261 - 12.
    [Google Scholar]
  43. Zhang H. Shen X. Yi B. Wang W. Feng Y. KGAN: Knowledge grouping aggregation network for course recommendation in MOOCs. Expert Syst. Appl. 2023 211 118344 10.1016/j.eswa.2022.118344
    [Google Scholar]
  44. Zhou G. Na M. Ying F. Deep interest evolution network for click-through rate prediction. AAAI'19/IAAI'19/EAAI'19: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence Honolulu, Hawaii, USA, 27 January 2019, pp. 5941 - 5948.
    [Google Scholar]
  45. Li Z. Liu F. Yang W. Peng S. Zhou J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022 33 12 6999 7019 10.1109/TNNLS.2021.3084827 34111009
    [Google Scholar]
  46. Zhang F. Yuan N.J. Lian D. Collabo-rative knowledge base embedding for rec-ommender systems. Proceedings of the 22nd ACM SIGKDD International Confer-ence San Francisco California USA, 2016: pp. 353-362.
    [Google Scholar]
  47. Wang H W RippleNet: Propagating user preferences on the knowledge graph for recommender systems. Proceedings of the 27th ACM International Conference on Information and Knowledge Management New York: ACM,2018, pp. 417-426.
    [Google Scholar]
  48. Wang Hongwei Multi-task feature learning for knowledge graph enhanced recommendation. WWW '19: The World Wide Web Conference San Francisco, CA, USA, 13 May 2019, pp 2000 - 2010. 10.1145/3308558.3313411
    [Google Scholar]
  49. WANG H W. Knowledge graph convolutional networks for recommender systems. WWW '19: The World Wide Web Conference San Francisco, CA, USA, 13 May 2019, pp 3307 - 3313.
    [Google Scholar]
  50. FAN H W. Improved learning recommendation algorithm of deep neural network based on MLP. Jisuanji Yingyong Yanjiu 2020 37 9 2628 2633
    [Google Scholar]
  51. LI X. Double end knowledge graph convolutional networks for recommender systems. J. Front. Comput. Sci. Technol. 2022 16 1 176 184
    [Google Scholar]
  52. FAN H W. Online learning resource recommendation algorithm based on neighbor double-ended fusion knowledge graph. Jisuanji Yingyong 2022 42 10 3054 3059
    [Google Scholar]
  53. Zhang X. Liu S. Wang H. Personalized learning path recommendation for e-learning based on knowledge graph and graph convolutional network. Int. J. Softw. Eng. Knowl. Eng. 2023 33 1 109 131 10.1142/S0218194022500681
    [Google Scholar]
  54. Wang Z. Ye X. Wang C. Cui J. Yu P.S. Network embedding with completely-imbalanced labels. IEEE Trans. Knowl. Data Eng. 2021 33 11 3634 3647 10.1109/TKDE.2020.2971490
    [Google Scholar]
  55. Cao Y. Xiang W. He X. Unifying knowledge graph learning and recommendation: Towards a better understanding of user preferences. WWW '19: The World Wide Web Conference New York: ACM, 2019, pp. 151-161.
    [Google Scholar]
  56. Zheng T. Li S. Liu Y. Zhang Z. Jiang M. An effective neighbor information mining and fusion method for recommender systems based on generative adversarial network. Expert Syst. Appl. 2024 248 123396 10.1016/j.eswa.2024.123396
    [Google Scholar]
  57. Ko H. Lee S. Park Y. Choi A. A survey of recommendation systems: Recommendation models, techniques, and application fields. Electronics 2022 11 1 141 10.3390/electronics11010141
    [Google Scholar]
  58. Zhao Z. Fan W. Li J. Recommender systems in the era of large language models (llms). arxiv preprint 2023 2307.02046
    [Google Scholar]
  59. Chen X. Yao L. McAuley J. Zhou G. Wang X. Deep reinforcement learning in recommender systems: A survey and new perspectives. Knowl. Base. Syst. 2023 264 110335 10.1016/j.knosys.2023.110335
    [Google Scholar]
  60. Zhang Z. Li Z. Liu H. Xiong N.N. Multi-scale dynamic convolutional network for knowledge graph embedding. IEEE Trans. Knowl. Data Eng. 2022 34 5 2335 2347 10.1109/TKDE.2020.3005952
    [Google Scholar]
  61. Imran M. Yin H. Chen T. Nguyen Q.V.H. Zhou A. Zheng K. ReFRS: Resource-efficient federated recommender system for dynamic and diversified user preferences. ACM Trans. Inf. Syst. 2023 41 3 1 30 10.1145/3560486
    [Google Scholar]
  62. Wang Z. Zero-shot node classification with decomposed graph prototype network. KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining Virtual Event, Singapore, 14 August 2021, pp. 1769 - 177. 10.1145/3447548.3467230
    [Google Scholar]
  63. Zhaoyu S. Yiru W. Pan C. Huibing Z. Personalized knowledge map recommendations based on interactive behavior preferences. Int. J. Perform. Eng. 2021 17 1 36 10.23940/ijpe.21.01.p4.3649
    [Google Scholar]
  64. Cen Y. Zhang J. Xu Z. Controllable multi-interest framework for recommendation. Proc of the 26th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining(KDD), New York: ACM, 2020: 2942-2951.
    [Google Scholar]
  65. Zhu R. Zhang J.S. Zhu J. A two-stage deep learning multi-task recommendation model based on KCNN and MKR. J. Shaanxi Norm. Univ. 2020 48 06 82 89 [J]. [Natural Science Edition]. 10.15983/j.cnki.jsnu.2020.01.020
    [Google Scholar]
  66. Kojima R. Ishida S. Ohta M. Iwata H. Honma T. Okuno Y. kGCN: A graph-based deep learning framework for chemical structures. J. Cheminform. 2020 12 1 32 10.1186/s13321‑020‑00435‑6 33430993
    [Google Scholar]
  67. Zhou G. Zhu X. Song C. Deep interest network for click-through rate prediction. KDD '18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining New York: ACM, 19 July 2018: 1059-1068.
    [Google Scholar]
  68. Xiang W. Jin H. An Z. Disentangled graph collaborative filtering. SIGIR '20: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval Virtual Event, China, 25 July 2020, pp. 1001 - 1010.
    [Google Scholar]
  69. Guo J. Yang Y. Song X. Learning multi-granularity consecutive user intent unit for session-based recommendation. WSDM '22: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining Virtual Event, AZ, USA, pp. 343-352.
    [Google Scholar]
  70. Tao Q. Wu F. Wu C. HieRec: Hierarchical user interest modeling for personalized news recommendation. Proc of the 59th Annual Meeting of the Association for Computational Linguistics Stroudsburg, PA: ACL, 2021, pp. 5446-5456.
    [Google Scholar]
  71. Kong L.Y. Ma H. Peng Y. Hybrid recommendation of personalized MOOC resources: A user context-aware approach. Proceedings of the 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design Hangzhou: IEEE, 2022. pp. 537–542. 10.1109/CSCWD54268.2022.9776112
    [Google Scholar]
  72. Li W. rLLM: Relational table learning with LLMs. arXiv preprint. 2024 2407.20157
    [Google Scholar]
  73. ZHANG J. Research on personalized learning resource recommendation based on knowledge graph. 2023 3rd International Conference on Electronic Information Engineering and Computer Communication (EIECC), Wuhan, China, 2023, pp. 111-118. 10.1109/EIECC60864.2023.10456638
    [Google Scholar]
  74. Li B. Li G. Xu J. Li X. Liu X. Wang M. Lv J. A personalized recommendation framework based on MOOC system integrating deep learning and big data. Comput. Electr. Eng. 2023 106 108571 10.1016/j.compeleceng.2022.108571
    [Google Scholar]
  75. DUAN S. Research on personalized learning recommendation based on subject knowledge graphs and learner portraits. International Conference on Computer Science and Educational Informatization. Singapore: Springer Nature Singapore, 10 January 2024, pp. 367-374.
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558350372241226071208
Loading
/content/journals/rascs/10.2174/0126662558350372241226071208
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test