Skip to content
2000
image of Deep Neural Network Framework for Predicting Cardiovascular Diseases from ECG Signals

Abstract

Introduction

Cardio Vascular Disease (CVD), a primary cause of death worldwide, includes a variety of heart-related disorders like heart failure, arrhythmias, and coronary artery disease (CAD), where plaque buildup narrows the heart muscle's blood vessels and causes angina or heart attacks. Genetics, congenital anomalies, bad diet, lack of exercise, smoking, and chronic diseases including hypertension and diabetes can cause cardiac disease.

Method

The symptoms can range from chest pain and shortness of breath to exhaustion and palpitations and diagnosis usually involves a medical history, physical examination, and electrocardiograms (ECGs), and stress testing. Lifestyle adjustments, medicines, angioplasty, and bypass grafts or heart transplants are possible treatments. Preventive measures include healthy living, risk factor management, and frequent checkups, which are few measures, whereas advanced algorithms can analyze massive volumes of ECG and MRI data to find patterns and anomalies that humans may overlook.

Results

The deep learning models increase arrhythmia, coronary artery disease, and heart failure diagnosis accuracy and speed. They enable predictive analytics, early intervention, and personalized treatment programs, increasing cardiac care results. The proposed DNN model consists of a 3-layer architecture having input, hidden, and output layers. In the hidden layer, 2 layers, namely, the dense layer and batch normalization layer are added to enhance its accuracy.

Conclusion

Three different optimizers namely Adam, AdaGrad, and AdaDelta are tested on 50 epochs and 32 batch sizes for predicting cardiovascular disease. Adam optimizer has the highest accuracy of 85% using the proposed deep neural network.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558346126241222214404
2024-12-30
2025-01-31
Loading full text...

Full text loading...

References

  1. Amin M.S. Chiam Y.K. Varathan K.D. Identification of significant features and data mining techniques in predicting heart disease. Telemat. Inform. 2019 36 82 93 10.1016/j.tele.2018.11.007
    [Google Scholar]
  2. Katarya R. Srinivas P. Predicting heart disease at early stages using machine learning: a survey. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 2020, pp. 302-305. 10.1109/ICESC48915.2020.9155586
    [Google Scholar]
  3. Soni J. Ansari U. Sharma D. Soni S. Predictive data mining for medical diagnosis: An overview of heart disease prediction. Int. J. Comput. Appl. 2011 17 8 43 48 10.5120/2237‑2860
    [Google Scholar]
  4. Faieq A.K. Mijwil M.M. Prediction of of heart diseases utilising support vector machine and artificial neural network. Indones. J. Electr. Eng. Comput. Sci. 2022 26 1 374 380 10.11591/ijeecs.v26.i1.pp374‑380
    [Google Scholar]
  5. Scoville H. Evolution of the Human Heart’s Four Chambers. 2020 Available from:https://www.thoughtco.com/evolution-of-the-human-heart-1224781
  6. Saboor A. Usman M. Ali S. Samad A. Abrar M.F. Ullah N. A method for improving prediction of human heart disease using machine learning algorithms. Mob. Inf. Syst. 2022 2022 1 9 10.1155/2022/1410169
    [Google Scholar]
  7. Suresh T. Assegie T.A. Rajkumar S. Komal Kumar N. A hybrid approach to medical decision-making: diagnosis of heart disease with machine-learning model. IJECE 2022 12 2 1831 1838 10.11591/ijece.v12i2.pp1831‑1838
    [Google Scholar]
  8. Assegie T.A. A support vector machine based heart disease prediction. J Softw Eng Intell Syst 2019 4 111 116
    [Google Scholar]
  9. Allah E.M.A. El-Matary D.E. Eid E.M. Dien A.S.T.E. Performance comparison of various machine learning approaches to identify the best one in predicting heart disease. J. Comput. Commun. 2022 10 2 1 18 10.4236/jcc.2022.102001
    [Google Scholar]
  10. Khan A. Qureshi M. Daniyal M. Tawiah K. A novel study on machine learning algorithm-based cardiovascular disease prediction. Health Soc. Care Community 2023 2023 1 10 10.1155/2023/1406060
    [Google Scholar]
  11. Prasher S. Nelson L. Hariharan S. Evaluation of Machine Learning Algorithms for Heart Disease Prediction in Healthcare. 2023 International Conference on Innovations in Engineering and Technology (ICIET) 2023, pp.1-4. 10.1109/ICIET57285.2023.10220917
    [Google Scholar]
  12. Sk K.B. Roja D. Priya S.S. Dalavi L. Vellela S.S. Reddy V. Coronary Heart Disease Prediction and Classification using Hybrid Machine Learning Algorithms. 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA) 2023, pp.1-7. 10.1109/ICIDCA56705.2023.10099579
    [Google Scholar]
  13. Saini A. Guleria K. Sharma S. Performance analysis of machine learning approaches for stroke prediction in healthcare. 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), 2023, pp. 903-907.
    [Google Scholar]
  14. Barhoom A.M. Almasri A. Abu-Nasser B.S. Abu-Naser S.S. Prediction of heart disease using a collection of machine and deep learning algorithms. IJEAIS 2022 6 4 1 13
    [Google Scholar]
  15. Sharma S. Parmar M. Heart diseases prediction using deep learning neural network model. Int. J. Innov. Technol. Explor. Eng. 2020 9 3 2244 2248 10.35940/ijitee.C9009.019320
    [Google Scholar]
  16. Lomoio U. Vizza P. Giancotti R. Tradigo G. Petrolo S. Flesca S. Guzzi P.H. Veltri P. AUTAN-ECG: An AUToencoder bAsed system for anomaly detectioN in ECG signals. Preprints 2023
    [Google Scholar]
  17. Roy T.S. Roy J.K. Mandal N. Classifier identification using deep learning and machine learning algorithms for the detection of valvular heart diseases. Biomed. Eng. Adv. 2022 3 100035 10.1016/j.bea.2022.100035
    [Google Scholar]
  18. García-Ordás M.T. Bayón-Gutiérrez M. Benavides C. Aveleira-Mata J. Benítez-Andrades J.A. Heart disease risk prediction using deep learning techniques with feature augmentation. Multimedia Tools Appl. 2023 82 20 31759 31773 10.1007/s11042‑023‑14817‑z
    [Google Scholar]
  19. Nancy A.A. Ravindran D. Raj Vincent P.M.D. Srinivasan K. Gutierrez Reina D. Iot-cloud-based smart healthcare monitoring system for heart disease prediction via deep learning. Electronics 2022 11 15 2292 10.3390/electronics11152292
    [Google Scholar]
  20. Secinaro S. Calandra D. Secinaro A. Muthurangu V. Biancone P. The role of artificial intelligence in healthcare: a structured literature review. BMC Med. Inform. Decis. Mak. 2021 21 1 125 10.1186/s12911‑021‑01488‑9 33836752
    [Google Scholar]
  21. Fosso Wamba S. Queiroz M.M. Responsible artificial intelligence as a secret ingredient for digital health: Bibliometric analysis, insights, and research directions. Inf. Syst. Front. 2021 ••• 1 16 34025210
    [Google Scholar]
  22. Soni T. Uppal M. Gupta D. Gupta G. Efficient machine learning model for cardiac disease prediction. 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN) 2023 10.1109/ViTECoN58111.2023.10157382
    [Google Scholar]
  23. Davenport T. Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019 6 2 94 98 10.7861/futurehosp.6‑2‑94 31363513
    [Google Scholar]
  24. Tran B.X. Latkin C.A. Vu G.T. Nguyen H.L.T. Nghiem S. Tan M.X. Lim Z.K. Ho C.S.H. Ho R.C.M. The current research landscape of the application of artificial intelligence in managing cerebrovascular and heart diseases: A bibliometric and content analysis. Int. J. Environ. Res. Public Health 2019 16 15 2699 10.3390/ijerph16152699 31362340
    [Google Scholar]
  25. Jiang F. Jiang Y. Zhi H. Dong Y. Li H. Ma S. Wang Y. Dong Q. Shen H. Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 2017 2 4 230 243 10.1136/svn‑2017‑000101 29507784
    [Google Scholar]
  26. Uppal M. Gupta D. Juneja S. Sulaiman A. Rajab K. Rajab A. Elmagzoub M.A. Shaikh A. Cloud-based fault prediction for real-time monitoring of sensor data in hospital environment using machine learning. Sustainability 2022 14 18 11667 10.3390/su141811667
    [Google Scholar]
  27. Aggarwal S. Gupta S. Kannan R. Ahuja R. Gupta D. Juneja S. Belhaouari S.B. A convolutional neural network-based framework for classification of protein localization using confocal microscopy images. IEEE Access 2022 10 83591 83611 10.1109/ACCESS.2022.3197189
    [Google Scholar]
  28. Chawla P. Juneja A. Juneja S. Anand R. Artificial intelligent systems in smart medical healthcare: Current trends. Int. J. Adv. Sci. Technol 2020 29 10 1476 1484
    [Google Scholar]
  29. Soni T. Gupta D. Uppal M. Mapping AI’s Influence on Cardiac Healthcare: A Bibliometric Analysis (2014-2023). 2024 International Conference on E-mobility, Power Control and Smart Systems (ICEMPS) 2024, pp. 1-5. 10.1109/ICEMPS60684.2024.10559292
    [Google Scholar]
  30. Yaseliani M. Khedmati M. Prediction of heart diseases using logistic regression and likelihood ratios. IJIEPR 2023 34 1 1 15
    [Google Scholar]
  31. Gangadhar M.S. Sai K.V.S. Kumar S.H.S. Kumar K.A. Kavitha M. Aravinth S.S. Machine learning and deep learning techniques on accurate risk prediction of coronary heart disease. 2023 7th International Conference on Computing Methodologies and Communication (ICCMC) 2023 10.1109/ICCMC56507.2023.10083756
    [Google Scholar]
  32. Chandrasekhar N. Peddakrishna S. Enhancing heart disease prediction accuracy through machine learning techniques and optimization. Processes 2023 11 4 1210 10.3390/pr11041210
    [Google Scholar]
  33. Arumugam K. Naved M. Shinde P.P. Leiva-Chauca O. Huaman-Osorio A. Gonzales-Yanac T. Multiple disease prediction using Machine learning algorithms. Mater. Today Proc. 2023 80 3682 3685 10.1016/j.matpr.2021.07.361
    [Google Scholar]
  34. Jang J.H. Kim T.Y. Lim H.S. Yoon D. Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder. PLoS One 2021 16 12 e0260612 10.1371/journal.pone.0260612 34852002
    [Google Scholar]
  35. Oluwasanmi A. Aftab M.U. Baagyere E. Qin Z. Ahmad M. Mazzara M. Attention autoencoder for generative latent representational learning in anomaly detection. Sensors 2021 22 1 123 10.3390/s22010123 35009666
    [Google Scholar]
  36. Karpinski M. Khoma V. Dudvkevych V. Khoma Y. Sabodashko D. Autoencoder neural networks for outlier correction in ECG-based biometric identification. 2018 IEEE 4th international symposium on wireless systems within the international conferences on intelligent data acquisition and advanced computing systems (IDAACS-SWS) 2018, pp.210-215.
    [Google Scholar]
  37. Shan L. Li Y. Jiang H. Zhou P. Niu J. Liu R. Wei Y. Peng J. Yu H. Sha X. Chang S. Abnormal ECG detection based on an adversarial autoencoder. Front. Physiol. 2022 13 961724 10.3389/fphys.2022.961724 36117713
    [Google Scholar]
  38. Hossain M.M. Ali M.S. Ahmed M.M. Rakib M.R.H. Kona M.A. Afrin S. Islam M.K. Ahsan M.M. Raj S.M.R.H. Rahman M.H. Cardiovascular disease identification using a hybrid CNN-LSTM model with explainable AI. Inform. Med. 2023 42 101370 10.1016/j.imu.2023.101370
    [Google Scholar]
  39. Strodthoff N. Mehari T. Nagel C. Aston P.J. Sundar A. Graff C. Kanters J.K. Haverkamp W. Dössel O. Loewe A. Bär M. Schaeffter T. PTB-XL+, a comprehensive electrocardiographic feature dataset. Sci. Data 2023 10 1 279 10.1038/s41597‑023‑02153‑8 37179420
    [Google Scholar]
  40. Zavadjil M. A decision tree classifier algorithm for the automated analysis of electrocardiogram signals to identify heart arrythmias. Journal of High School Science 2024 8 1 74 86
    [Google Scholar]
  41. Saravana Ram R. Akilandeswari J. Vinoth Kumar M. HybDeepNet: a hybrid deep learning model for detecting cardiac arrhythmia from ECG signals. Inf. Technol. Control 2023 52 2 433 444 10.5755/j01.itc.52.2.32993
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558346126241222214404
Loading
/content/journals/rascs/10.2174/0126662558346126241222214404
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test