Skip to content
2000
image of A Survey on the Communication of UAVs with Charging and Control Stations

Abstract

Unmanned Aerial Vehicles (UAVs) have a history of over a century of deployment, but in recent decades, they have progressed at a staggering rate. Nowadays, UAVs are used by a large number of civil and military applications. The communication functionality of a UAV with external systems for control and charging is strongly connected with evolving technologies and services. This leads to an increased number of alternatives when designing UAV communications. This review presents the information needed for choosing an efficient communication system between UAVs and two important elements, the Ground Control Station (GCS) and the Charging Station (CS). GCS is responsible for monitoring and controlling the UAV’s units, while CS is used for the formal charging of the UAV. This study aimed at collecting, classifying, and evaluating all of the necessary information in order to obtain the final decision about the kind of communication that is most efficient for a target UAV application. The features of the telemetry open-source protocols are presented for the UAV-GCS communication and evaluated according to the needs of the most significant application domains. Communication between UAVs and CSs is classified depending on the existence of an intermediate server and analyzed considering telemetry protocols and application domains. Communication algorithms are evaluated in terms of time and energy efficiency. Lastly, for the most significant application domains, the most suitable algorithms are matched.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558322348241119080528
2024-12-09
2025-01-12
Loading full text...

Full text loading...

References

  1. Khan N.A. Chapter Three - Emerging use of UAV’s: Secure communication protocol issues and challenges. Drones in Smart-Cities. Elsevier 2020 37 55 10.1016/B978‑0‑12‑819972‑5.00003‑3
    [Google Scholar]
  2. Silva M.R. Souza E.S. Alsina P.J. Leite D.L. Morais M.R. Pereira D.S. Nascimento L.B.P. Medeiros A.A.D. Junior F.H.C. Nogueira M.B. Albuquerque G.L.A. Dantas J.B.D. Performance evaluation of multi-UAV network applied to scanning rocket impact area. Sensors 2019 19 22 4895 4895 10.3390/s19224895 31717563
    [Google Scholar]
  3. Ertürk M.A. Aydın M.A. Büyükakkaşlar M.T. Evirgen H. A survey on LoRaWAN architecture, protocol and technologies. Future Internet 2019 11 10 216 10.3390/fi11100216
    [Google Scholar]
  4. Quincozes S. Emilio T. Kazienko J. MQTT protocol: Fundamentals, tools and future directions. Rev. IEEE Am. Lat. 2019 17 9 1439 1448 10.1109/TLA.2019.8931137
    [Google Scholar]
  5. Zheng Q. Du H. Li J. Zhang W. Li Q. Open LTE: An Open LTE simulator for mobile video streaming. IEEE International Conference on Multimedia and Expo Workshops (ICMEW) Chengdu, China, 14-18 July 2014, pp. 1-2. 10.1109/ICMEW.2014.6890630
    [Google Scholar]
  6. Hayat S. Yanmaz E. Muzaffar R. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Commun. Surv. Tutor. 2016 18 4 2624 2661 10.1109/COMST.2016.2560343
    [Google Scholar]
  7. Hentati A.I. Fourati L.C. Comprehensive survey of UAVs communication networks. Comput. Stand. Interfaces 2020 72 103451 10.1016/j.csi.2020.103451
    [Google Scholar]
  8. Alsamhi S.H. Ma O. Ansari M.S. Almalki F.A. Survey on collaborative smart drones and internet of things for improving smartness of smart cities. IEEE Access 2019 7 128125 128152 10.1109/ACCESS.2019.2934998
    [Google Scholar]
  9. Guo D. Xu W. Ding W. Yao Y. Wang X. Pedrycz W. Qian Y. Concept-cognitive learning survey: Mining and fusing knowledge from data. Inf. Fusion 2024 109 102426 10.1016/j.inffus.2024.102426
    [Google Scholar]
  10. Guo D. Xu W. Qian Y. Ding W. M-FCCL: Memory-based concept-cognitive learning for dynamic fuzzy data classification and knowledge fusion. Inf. Fusion 2023 100 101962 101962 10.1016/j.inffus.2023.101962
    [Google Scholar]
  11. Guo D. Xu W. Qian Y. Ding W. Fuzzy-granular concept-cognitive learning via three-way decision: Performance evaluation on dynamic knowledge discovery. IEEE Trans. Fuzzy Syst. 2023 3 3 1 12 10.1109/TFUZZ.2023.3325952
    [Google Scholar]
  12. Yuan K. Miao D. Yao Y. Zhang H. Zhao X. Feature selection using zentropy-based uncertainty measure. IEEE Trans. Fuzzy Syst. 2024 32 4 2246 2260 10.1109/TFUZZ.2023.3347757
    [Google Scholar]
  13. Yuan K. Miao D. Pedrycz W. Ding W. Zhang H. Ze-HFS: Zentropy-based uncertainty measure for heterogeneous feature selection and knowledge discovery. IEEE Trans. Knowl. Data Eng. 2024 36 11 7326 7339 10.1109/TKDE.2024.3419215
    [Google Scholar]
  14. Sharma A. Vanjani P. Paliwal N. Basnayaka C.M.W. Jayakody D.N.K. Wang H-C. Muthuchidambaranathan P. Communication and networking technologies for UAVs: A survey. J. Netw. Comput. Appl. 2020 168 102739 10.1016/j.jnca.2020.102739
    [Google Scholar]
  15. Song Q. Zeng Y. Xu J. Jin S. A survey of prototype and experiment for UAV communications. Sci. China Inf. Sci. 2021 64 4 140301 10.1007/s11432‑020‑3030‑2
    [Google Scholar]
  16. Alsamhi S.H. Shvetsov A.V. Kumar S. Hassan J. Alhartomi M.A. Shvetsova S.V. Sahal R. Hawbani A. Computing in the sky: A survey on intelligent ubiquitous computing for UAV-assisted 6G networks and industry 4.0/5.0. Drones (Basel) 2022 6 7 177 10.3390/drones6070177
    [Google Scholar]
  17. Mozaffari M. Saad W. Bennis M. Nam Y.H. Debbah M. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 2019 21 3 2334 2360 10.1109/COMST.2019.2902862
    [Google Scholar]
  18. Koubaa A. Allouch A. Alajlan M. Javed Y. Belghith A. Khalgui M. Micro air vehicle link (MAVlink) in a nutshell: A survey. IEEE Access 2019 7 87658 87680 10.1109/ACCESS.2019.2924410
    [Google Scholar]
  19. Górski T. Integration flows modeling in the context of architectural views. IEEE Access 2023 11 35220 35231 10.1109/ACCESS.2023.3265210
    [Google Scholar]
  20. Alobaidy H.A.H. Mandeep J.S. Nordin R. Abdullah N.F. A review on ZigBee based WSNs: Concepts, infrastructure, applications, and challenges. Int. J. Electr. Electron. Eng. Telecommun. 2020 9 3 189 198 10.18178/ijeetc.9.3.189‑198
    [Google Scholar]
  21. Gupta M. Singh S. A survey on the zigbee protocol, it’s security in Internet of Things (IoT) and comparison of zigbee with bluetooth and Wi-Fi. Applications of Artificial Intelligence in Engineering Kumar R. Srivastava S. Soni B.P. Springer Singapore 2021 473 482 10.1007/978‑981‑33‑4604‑8_38
    [Google Scholar]
  22. Haxhibeqiri J. De Poorter E. Moerman I. Hoebeke J. A survey of LoRaWAN for IoT: From technology to application. Sensors (Basel) 2018 18 11 3995 10.3390/s18113995 30453524
    [Google Scholar]
  23. Akshatha P.S. Dilip Kumar S.M. Venugopal K.R. MQTT implementations, open issues, and challenges: A detailed comparison and survey. Int. J. Sensors Wirel. Commun. Control 2022 12 8 553 576 10.2174/2210327913666221216152446
    [Google Scholar]
  24. Yassein M.B. Shatnawi M.Q. Aljwarneh S. Al-Hatmi R. Internet of Things: Survey and open issues of MQTT protocol. International Conference on Engineering & MIS (ICEMIS) Monastir, Tunisia, 08-10 May 2017, pp. 1-6. 10.1109/ICEMIS.2017.8273112
    [Google Scholar]
  25. Araniti G. Campolo C. Condoluci M. Iera A. Molinaro A. LTE for vehicular networking: A survey. IEEE Commun. Mag. 2013 51 5 148 157 10.1109/MCOM.2013.6515060
    [Google Scholar]
  26. Elmeseiry N. Alshaer N. Ismail T. A detailed survey and future directions of unmanned aerial vehicles (UAVs) with potential applications. Aerospace (Basel) 2021 8 12 363 10.3390/aerospace8120363
    [Google Scholar]
  27. Alsamhi S.H. Afghah F. Sahal R. Hawbani A. Al-qaness M.A.A. Lee B. Guizani M. Green internet of things using UAVs in B5G networks: A review of applications and strategies. Ad Hoc Netw. 2021 117 102505 10.1016/j.adhoc.2021.102505
    [Google Scholar]
  28. Alsamhi S. Curry E. Hawbani A. Kumar S. DataSpace in the sky: A novel decentralized framework to secure drones data sharing in B5G for industry 4.0 toward industry 5.0. 2023 Preprints 10.20944/preprints202305.0529.v1
    [Google Scholar]
  29. Alsamhi S.H. Shvetsov A.V. Kumar S. Shvetsova S.V. Alhartomi M.A. Hawbani A. Rajput N.S. Srivastava S. Saif A. Nyangaresi V.O. UAV computing-assisted search and rescue mission framework for disaster and harsh environment mitigation. Drones (Basel) 2022 6 7 154 10.3390/drones6070154
    [Google Scholar]
  30. Grlj C.G. Krznar N. Pranjić M. A decade of UAV docking stations: A brief overview of mobile and fixed landing platforms. Drones (Basel) 2022 6 1 17 10.3390/drones6010017
    [Google Scholar]
  31. Raivi A.M. Huda S.M.A. Alam M.M. Moh S. Drone routing for drone-based delivery systems: A review of trajectory planning, charging, and security. Sensors (Basel) 2023 23 3 1463 10.3390/s23031463 36772502
    [Google Scholar]
  32. Luo J. Wang Z. Xia M. Wu L. Tian Y. Chen Y. Path planning for UAV communication networks: Related technologies, solutions, and opportunities. ACM Comput. Surv. 2023 55 9 1 37 10.1145/3560261
    [Google Scholar]
  33. Liu S. Jiang C. A novel prediction approach based on three-way decision for cloud datacenters. Appl. Intell. 2023 53 17 20239 20255 10.1007/s10489‑023‑04505‑8
    [Google Scholar]
  34. Erdos D. Erdos A. Watkins S.E. An experimental UAV system for search and rescue challenge. IEEE Aerosp. Electron. Syst. Mag. 2013 28 5 32 37 10.1109/MAES.2013.6516147
    [Google Scholar]
  35. DJI Lightbridge Specs. 2014 Available from:https://www.dji.com/gr/dji-lightbridge(Accessed on: 8-10-2024)
  36. Kwon Y.M. Yu J. Cho B.M. Eun Y. Park K.J. Empirical analysis of MAVLink protocol vulnerability for attacking unmanned aerial vehicles. IEEE Access 2018 6 43203 43212 10.1109/ACCESS.2018.2863237
    [Google Scholar]
  37. Allouch A. Cheikhrouhou O. Koubâa A. Khalgui M. Abbes T. MAVSec: Securing the MAVlink protocol for ardupilot/PX4 unmanned aerial systems. 15th International Wireless Communications & Mobile Computing Conference. Tangier, Morocco, 24-28 June 2019, pp. 621-628. 10.1109/IWCMC.2019.8766667
    [Google Scholar]
  38. Campion M. Ranganathan P. Faruque S. UAV swarm communication and control architectures: A review. J. Unmanned Veh. Syst. 2019 7 2 93 106 10.1139/juvs‑2018‑0009
    [Google Scholar]
  39. Mushtaq Z. Shairani L. Sani S.S. Mazhar A. Asim S.M. Aftab N. Innovative conceptualization of fly-by-sensors (FBS) flight control systems using ZigBee wireless sensors networks. IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE) Orlando, FL, USA, 14-16 Dec. 2015, pp. 1-4. 10.1109/WiSEE.2015.7393103
    [Google Scholar]
  40. Kuzminykh I. Snihurov A. Carlsson A. Testing of communication range in ZigBee technology. 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM) Lviv, Ukraine, 2017, 21-25 Feb pp. 133-136. 10.1109/CADSM.2017.7916102
    [Google Scholar]
  41. Zhou Q. Wang L. Yu P. Huang T. Zhou M. Unmanned patrol system based on kalman filter and zigbee positioning technology. J. Phys. Conf. Ser. 2019 1168 3 032063 10.1088/1742‑6596/1168/3/032063
    [Google Scholar]
  42. Fan B. Analysis on the security architecture of ZigBee based on IEEE 802.15.4. IEEE 13th International Symposium on Autonomous Decentralized System (ISADS) Bangkok, Thailand, 22-24 March 2017, pp. 241-246. 10.1109/ISADS.2017.23
    [Google Scholar]
  43. Floissac N. L’Hyver Y. From AES-128 to AES-192 and AES-256, How to adapt differential fault analysis attacks on key expansion. 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography Nara, Japan, 28-28 Sept. 2011, pp. 43-53. 10.1109/FDTC.2011.15
    [Google Scholar]
  44. Capkun S. Cagalj M. Rengaswamy R. Tsigkogiannis I. Hubaux J.P. Srivastava M. Integrity codes: Message integrity protection and authentication over insecure channels. IEEE Trans. Depend. Secure Comput. 2008 5 4 208 223 10.1109/TDSC.2008.11
    [Google Scholar]
  45. Rahmadhani A. Richard R. LoRaWAN as secondary telemetry communication system for drone delivery. 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS) 01-03 Nov, 2018, Bali, Indonesia, pp. 116-122.
    [Google Scholar]
  46. Zourmand A. Internet of Things (IoT) using LoRa technology. 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS) 29 Jun, 2019, Selangor, Malaysia, pp. 324-330.
    [Google Scholar]
  47. Shenzheng Z. Encheng W. A novel ISM band antenna with frequency selective surface structure. IEEE International Conference of Online Analysis and Computing Science (ICOACS) Chongqing, China, 2016, 28-29 May pp. 277-280. 10.1109/ICOACS.2016.7563096
    [Google Scholar]
  48. Iqbal M. Abdullah M. Shabnam F. An application based comparative study of LPWAN technologies for IoT environment. IEEE Region 10 Symposium (TENSYMP) Dhaka, Bangladesh, 05-07 June 2020, pp. 1857-1860. 10.1109/TENSYMP50017.2020.9230597
    [Google Scholar]
  49. Sharma V. You I. Pau G. Collotta M. Lim J. Kim J. LoRaWAN-based energy-efficient surveillance by drones for intelligent transportation systems. Energies 2018 11 3 573 10.3390/en11030573
    [Google Scholar]
  50. Mason F. Chiariotti F. Capuzzo M. Magrin D. Zanella A. Zorzi M. Combining LoRaWAN and a new 3D motion model for remote UAV tracking. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) Toronto, ON, Canada, 06-09 July 2020, pp. 412-417. 10.1109/INFOCOMWKSHPS50562.2020.9162730
    [Google Scholar]
  51. LoRaWAN® is secure (but implementation matters). 2022 Available from:https://lora-alliance.org/resource_hub/lorawan-is-secure-but-implementation-matters(accessed on 8-10-2024)
  52. Mishra B. Kertesz A. The use of MQTT in M2M and IoT systems: A survey. IEEE Access 2020 8 201071 201086 10.1109/ACCESS.2020.3035849
    [Google Scholar]
  53. Misal S.R. Prajwal S.R. Niveditha H.M. Vinayaka H.M. Veena S. Indoor Positioning system (IPS) using ESP32, MQTT and bluetooth. Fourth International Conference on Computing Methodologies and Communication (ICCMC) Erode, India, 11-13 March 2020, pp. 79-82. 10.1109/ICCMC48092.2020.ICCMC‑00015
    [Google Scholar]
  54. Lopez M.A. Baddeley M. Lunardi W.T. Pandey A. Giacalone J.P. Towards secure wireless mesh networks for UAV swarm connectivity: Current threats, research, and opportunities. 2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS) 14-16 Jul, 2021, Pafos, Cyprus, pp. 319-326. 10.1109/DCOSS52077.2021.00059
    [Google Scholar]
  55. Jimaa S. Kok Keong Chai Y. LTE-A an overview and future research areas. 7th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) Shanghai, China, 10-12 Oct. 2011, pp. 395-399. 10.1109/WiMOB.2011.6085370
    [Google Scholar]
  56. Li L. Rong M. Zhang G. An Internet of things QoS estimate approach based on multidimension QoS. 9th International Conference on Computer Science & Education Vancouver, BC, Canada, 22-24 Aug. 2014, pp. 998-1002. 10.1109/ICCSE.2014.6926613
    [Google Scholar]
  57. Favraud R. Nikaein N. Wireless mesh backhauling for LTE/LTE-A networks. MILCOM 2015 - 2015 IEEE Military Communications Conference 26-28 Oct, 2015, Tampa, FL, USA, pp. 695-700. 10.1109/MILCOM.2015.7357525
    [Google Scholar]
  58. Roivainen A. Ylitalo J. Kyröläinen J. Juntti M. Performance of terrestrial network with the presence of overlay satellite network. IEEE International Conference on Communications (ICC) Budapest, Hungary, 09-13 June 2013, pp. 5089-5093. 10.1109/ICC.2013.6655389
    [Google Scholar]
  59. Zeng Y. Wu Q. Zhang R. Accessing from the sky: A tutorial on UAV communications for 5G and beyond. Proc. IEEE 2019 107 12 2327 2375 10.1109/JPROC.2019.2952892
    [Google Scholar]
  60. Raza M.T. Kim D. Kim K.H. Lu S. Gerla M. Rethinking LTE network functions virtualization. IEEE 25th International Conference on Network Protocols (ICNP) Toronto, ON, Canada, 10-13 Oct. 2017, pp. 1-10. 10.1109/ICNP.2017.8117554
    [Google Scholar]
  61. Mohsan S.A.H. Khan M.A. Noor F. Ullah I. Alsharif M.H. Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones (Basel) 2022 6 6 147 10.3390/drones6060147
    [Google Scholar]
  62. Mourgelas C. Kokkinos S. Milidonis A. Voyiatzis I. Autonomous drone charging stations: A survey. PCI ’20: 24th Pan-Hellenic Conference on Informatics 2021 Athens, Greece, Nov. 20-22, 2020, pp. 233-236. 10.1145/3437120.3437314
    [Google Scholar]
  63. Mohsan S.A.H. Othman N.Q.H. Khan M.A. Amjad H. Żywiołek J. A comprehensive review of micro UAV charging techniques. Micromachines (Basel) 2022 13 6 977 10.3390/mi13060977 35744592
    [Google Scholar]
  64. Liu W. Zhang S. Ansari N. Joint laser charging and DBS placement for drone-assisted edge computing. IEEE Trans. Vehicular Technol. 2022 71 1 780 789 10.1109/TVT.2021.3126710
    [Google Scholar]
  65. Jawad A.M. Jawad H.M. Nordin R. Gharghan S.K. Abdullah N.F. Abu-Alshaeer M.J. Wireless power transfer with magnetic resonator coupling and sleep/active strategy for a drone charging station in smart agriculture. IEEE Access 2019 7 139839 139851 10.1109/ACCESS.2019.2943120
    [Google Scholar]
  66. Pereira D.S. De Morais M.R. Nascimento L.B.P. Alsina P.J. Santos V.G. Fernandes D.H.S. Silva M.R. Zigbee protocol-based communication network for multi-unmanned aerial vehicle networks. IEEE Access 2020 8 57762 57771 10.1109/ACCESS.2020.2982402
    [Google Scholar]
  67. Chittoor P.K. Bharatiraja C. Solar integrated wireless drone charging system for smart city applications. IEEE 6th International Conference on Computing, Communication and Automation (ICCCA) Arad, Romania, 17-19 Dec. 2021, pp. 407-412. 10.1109/ICCCA52192.2021.9666263
    [Google Scholar]
  68. Bláha L. Severa O. Goubej M. Myslivec T. Reitinger J. Automated drone battery management system-droneport: Technical overview. Drones (Basel) 2023 7 4 234 10.3390/drones7040234
    [Google Scholar]
  69. Mulgaonkar Y. Kumar V. Autonomous charging to enable long-endurance missions for small aerial robots. Proceedings of SPIE - The International Society for Optical Engineering Baltimore, MD, United States, 4 June 2014, 90831S. 10.1117/12.2051111
    [Google Scholar]
  70. Faiq Hatta M.I. Satya Widodo N. Robot Operating System (ROS) in quadcopter flying robot using telemetry system. Int. J. Robot. Contr. Sys. 2021 1 1 54 65 10.31763/ijrcs.v1i1.247
    [Google Scholar]
  71. Girma A. IoT-enabled autonomous system collaboration for disaster-area management. IEEE/CAA J. Automatica Sinica 2020 7 5 1249 1262 10.1109/JAS.2020.1003291
    [Google Scholar]
  72. Rahatal V. More P. Salunke M. Makeshwar S. Joshi R.D. IoT based communication system for autonomous electric vehicles. 7th International Conference on Signal Processing and Communication (ICSC) Noida, India, 25-27 Nov. 2021, pp. 66-72. 10.1109/ICSC53193.2021.9673164
    [Google Scholar]
  73. Kim J. Kim S. Jeong J. Kim H. Park J.S. Kim T. CBDN: Cloud-based drone navigation for efficient battery charging in drone networks. IEEE Trans. Intell. Transp. Syst. 2019 20 11 4174 4191 10.1109/TITS.2018.2883058
    [Google Scholar]
  74. Junaid A.B. Lee Y. Kim Y. Design and implementation of autonomous wireless charging station for rotary-wing UAVs. Aerosp. Sci. Technol. 2016 54 253 266 10.1016/j.ast.2016.04.023
    [Google Scholar]
  75. Huang Z. Zhang T. Liu P. Lu X. Outdoor independent charging platform system for power patrol UAV. 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) Nanjing, China, 20-23 Sept 2020, pp. 1-5. 2020 10.1109/APPEEC48164.2020.9220518
    [Google Scholar]
  76. Erdelj M. Saif O. Natalizio E. Fantoni I. UAVs that fly forever: Uninterrupted structural inspection through automatic UAV replacement. Ad Hoc Netw. 2019 94 101612 10.1016/j.adhoc.2017.11.012
    [Google Scholar]
  77. Mohsan S.A.H. Othman N.Q.H. Li Y. Alsharif M.H. Khan M.A. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intell. Serv. Robot. 2023 16 1 109 137 10.1007/s11370‑022‑00452‑4 36687780
    [Google Scholar]
  78. Herdel V. Yamin L.J. Cauchard J.R. Above and beyond: A scoping review of domains and applications for human-drone interaction. CHI ’22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems New Orleans, LA, USA, Apr. 29 - May 5, 2022 pp. 1-22. 10.1145/3491102.3501881
    [Google Scholar]
  79. Datta S.K. Dugelay J.L. Bonnet C. IoT based UAV platform for emergency services. International Conference on Information and Communication Technology Convergence (ICTC) Jeju, Korea (South), 17-19 Oct. 2018, pp. 144-147. 10.1109/ICTC.2018.8539671
    [Google Scholar]
  80. Quaritsch M. Kruggl K. Wischounig-Strucl D. Bhattacharya S. Shah M. Rinner B. Networked UAVs as aerial sensor network for disaster management applications. Elektrotech. Inftech. 2010 127 56 63 10.1007/s00502‑010‑0717‑2
    [Google Scholar]
  81. Hayat S. Yanmaz E. Bettstetter C. Brown T.X. Multi-objective drone path planning for search and rescue with quality-of-service requirements. Auton. Robots 2020 44 7 1183 1198 10.1007/s10514‑020‑09926‑9
    [Google Scholar]
  82. Real F. Castano A.R. Torres-Gonzalez A. Capitan J. Sanchez-Cuevas P.J. Fernandez M.J. Villar M. Ollero A. Experimental evaluation of a team of multiple unmanned aerial vehicles for cooperative construction. IEEE Access 2021 9 6817 6835 10.1109/ACCESS.2021.3049433
    [Google Scholar]
  83. Teja C.B. Sharma H. Enhancement of UAV performance through xbee based telemetry system design. International Conference on Communication and Electronics Systems (ICCES) Coimbatore, India, 17-19 July 2019, pp. 1762-1765. 10.1109/ICCES45898.2019.9002179
    [Google Scholar]
  84. Gupta L. Jain R. Vaszkun G. Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 2016 18 2 1123 1152 10.1109/COMST.2015.2495297
    [Google Scholar]
  85. Ozmen M.O. Yavuz A.A. Dronecrypt-An efficient cryptographic framework for small aerial drones. IEEE Military Communications Conference (MILCOM) 29-31 Oct, 2018, Los Angeles, CA, USA, pp. 1-6. 10.1109/MILCOM.2018.8599784
    [Google Scholar]
  86. Knysh B. Building a model of the goods delivery system that uses unmanned aerial vehicles based on priority. Eastern-Euro. J. Enterprise Technol. 2023 2 3 54 63 10.15587/1729‑4061.2023.275836
    [Google Scholar]
  87. Ren H. Zhao Y. Xiao W. Hu Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. Coal Sci. Technol. 2019 6 3 320 333 10.1007/s40789‑019‑00264‑5
    [Google Scholar]
  88. Mukherjee A. Dey N. De D. EdgeDrone: QoS aware MQTT middleware for mobile edge computing in opportunistic internet of drone things. Comput. Commun. 2020 152 93 108 10.1016/j.comcom.2020.01.039
    [Google Scholar]
  89. Zhang J. Chen T. Shi Z. A real-time visual tracking for unmanned aerial vehicles with dynamic window. China Semiconductor Technology International Conference (CSTIC) 26 Jun,- 17 Jul, 2020, Shanghai, China, pp. 1-3. 10.1109/CSTIC49141.2020.9282552
    [Google Scholar]
  90. N. T. H I. Siregar, and M. Yasir, “UAV telemetry communications using ZigBee protocol,”. J. Phys. Conf. Ser. 2017 914 1 012001 10.1088/17426596/914/1/012001
    [Google Scholar]
  91. Koumaras H. Makropoulos G. Batistatos M. Kolometsos S. Gogos A. Xilouris G. Sarlas A. Kourtis M-A. 5G-enabled UAVs with command and control software component at the edge for supporting energy efficient opportunistic networks. Energies 2021 14 5 1480 10.3390/en14051480
    [Google Scholar]
  92. Mishra D. Natalizio E. A survey on cellular-connected UAVs: Design challenges, enabling 5G/B5G innovations, and experimental advancements. Comput. Netw. 2020 182 107451 10.1016/j.comnet.2020.107451
    [Google Scholar]
  93. Acevedo J.J. Arrue B.C. Maza I. Ollero A. Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. J. Intell. Robot. Syst. 2013 70 1-4 329 345 10.1007/s10846‑012‑9716‑3
    [Google Scholar]
  94. Park S. Zhang L. Chakraborty S. Battery assignment and scheduling for drone delivery businesses. IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED) Taipei, Taiwan, 24-26 July 2017, pp. 1-6. 10.1109/ISLPED.2017.8009165
    [Google Scholar]
  95. Arnold R.D. Yamaguchi H. Tanaka T. Search and rescue with autonomous flying robots through behavior-based cooperative intelligence. J. Int. Humanit. Action 2018 3 1 18 10.1186/s41018‑018‑0045‑4
    [Google Scholar]
  96. Fendji J.L.E.K. Bayaola I.K. Thron C. Fendji M.D. Förster A. Cost-effective placement of recharging stations in drone path planning for surveillance missions on large farms. Symmetry (Basel) 2020 12 10 1661 10.3390/sym12101661
    [Google Scholar]
  97. Awerbuch B. Bar-Noy A. Gopal M. Approximate distributed Bellman-Ford algorithms. IEEE Trans. Commun. 1994 42 8 2515 2517 10.1109/26.310604
    [Google Scholar]
  98. Helsgaun K. General k-opt submoves for the Lin–Kernighan TSP heuristic. Math. Program. Comput. 2009 1 2-3 119 163 10.1007/s12532‑009‑0004‑6
    [Google Scholar]
  99. van Laarhoven P.J.M. Aarts E.H.L. Simulated annealing. Simulated Annealing: Theory and Applications Dordrecht Springer 1987 7 15 10.1007/978‑94‑015‑7744‑1_2
    [Google Scholar]
  100. Mittal V. Demarest J.B. Gilliam K.S. Page R.L. Models of models: The symbiotic relationship between models and wargames. Proceedings of the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2017) July 26-28, 2017, Madrid Spain, pp. 215-223. 10.5220/0006401502150223
    [Google Scholar]
  101. Ribeiro R.G. Junior J.R.C. Cota L.P. Euzebio T.A.M. Guimaraes F.G. Unmanned aerial vehicle location routing problem with charging stations for belt conveyor inspection system in the mining industry. IEEE Trans. Intell. Transp. Syst. 2020 21 10 4186 4195 10.1109/TITS.2019.2939094
    [Google Scholar]
  102. Huang H. Savkin A.V. A method of optimized deployment of charging stations for drone delivery. IEEE Trans. Transp. Electrif. 2020 6 2 510 518 10.1109/TTE.2020.2988149
    [Google Scholar]
  103. Qin Y. Kishk M.A. Alouini M.S. Drone charging stations deployment in rural areas for better wireless coverage: Challenges and solutions. IEEE Internet Things Mag. 2022 5 1 148 153 10.1109/IOTM.001.2100083
    [Google Scholar]
  104. Bacanli S.S. Elgeldawi E. Turgut D. Charging station placement in unmanned aerial vehicle aided opportunistic networks. 2021 IEEE International Conference on Communications Montreal, QC, Canada, 14-23 June 2021, pp. 1-5. 10.1109/ICC42927.2021.9500848
    [Google Scholar]
  105. Xie J. Jiang S. Xie W. Gao X. An efficient global K-means clustering algorithm. J. Comput. (Taipei) 2011 6 2 10.4304/jcp.6.2.271‑279
    [Google Scholar]
  106. Hassija V. Chamola V. Krishna D.N.G. Guizani M. A distributed framework for energy trading between UAVs and charging stations for critical applications. IEEE Trans. Vehicular Technol. 2020 69 5 5391 5402 10.1109/TVT.2020.2977036
    [Google Scholar]
  107. Bu G. Hana W. Potop-Butucaru M. EIOTA: An efficient and fast metamorphism for IOTA. 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS) Paris, France, 2020, 28-30 Sept. pp. 9-16. 10.1109/BRAINS49436.2020.9223294
    [Google Scholar]
  108. Luo R. Yang Z. Stackelberg game-based distributed power allocation algorithm in cognitive radios. Dianzi Yu Xinxi Xuebao 2011 32 12 2964 2969 10.3724/SP.J.1146.2010.00374
    [Google Scholar]
  109. Lv L. Zheng C. Zhang L. Shan C. Tian Z. Du X. Guizani M. Contract and lyapunov optimization-based load scheduling and energy management for UAV charging stations. IEEE Trans. Green Commun. Netw. 2021 5 3 1381 1394 10.1109/TGCN.2021.3085561
    [Google Scholar]
  110. Fu S. Tang Y. Wu Y. Zhang N. Gu H. Chen C. Liu M. Energy-efficient UAV-Enabled data collection via wireless charging: A reinforcement learning approach. IEEE Internet Things J. 2021 8 12 10209 10219 10.1109/JIOT.2021.3051370
    [Google Scholar]
  111. Jung S. Yun W.J. Shin M.J. Kim J. Kim J-H. Orchestrated scheduling and multi-agent deep reinforcement learning for cloud-assisted multi-UAV charging systems. IEEE Trans. Vehicular Technol. 2021 70 6 5362 5377 10.1109/TVT.2021.3062418
    [Google Scholar]
  112. Torabbeigi M. Lim G.J. Kim S.J. Drone delivery scheduling optimization considering payload-induced battery consumption Rates. J. Intell. Robot. Syst. 2020 97 3-4 471 487 10.1007/s10846‑019‑01034‑w
    [Google Scholar]
  113. Vargas P.G.D. Kappel K.S. Marins J.L. Patrolling strategy for multiple UAVs with recharging stations in unknown environments. Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE) Rio Grande, Brazil, 23-25 Oct. 2019, pp. 346-351. 10.1109/LARS‑SBR‑WRE48964.2019.00067.
    [Google Scholar]
  114. Saha A. Marshall J.A.R. Reina A. Memory and communication efficient algorithm for decentralized counting of nodes in networks. PLoS One 2021 16 11 e0259736 10.1371/journal.pone.0259736 34807921
    [Google Scholar]
  115. Shokirov R. Abdujabarov N. Jonibek T. Saytov K. Bobomurodov S. Prospects of the development of unmanned aerial vehicles (UAVs). Tech. Sci. Innov. 2020 2020 3 0069 10.51346/tstu‑01.20.3‑77‑0069
    [Google Scholar]
  116. Sdoukou E. Milidonis A. Psilias D. Efstathiou K. Voyiatzis I. Hardware selection approach for custom UAVs. PCI ’22: Proceedings of the 26th Pan-Hellenic Conference on Informatics Athens, Greece, Nov. 25-27, 2022, pp. 133-138. 10.1145/3575879.3575978
    [Google Scholar]
  117. Arnold K.P. The UAV ground control station: Types, components, safety, redundancy, and future applications. International Journal of Unmanned Systems Engineering 2016 4 1 37 50 10.14323/ijuseng.2016.4
    [Google Scholar]
  118. Gómez A.M. Píriz J.M. Fuertes J. Osorio J.F. A novel charging station on overhead power lines for autonomous unmanned drones. Appl. Sci. 2023 13 18 10175 10.3390/app131810175
    [Google Scholar]
  119. Tahir A. Böling J. Haghbayan M.H. Toivonen H.T. Plosila J. Swarms of unmanned aerial vehicles — A survey. J. Ind. Inf. Integr. 2019 16 100106 10.1016/j.jii.2019.100106
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558322348241119080528
Loading
/content/journals/rascs/10.2174/0126662558322348241119080528
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test