Skip to content
2000
image of CNN-Based Integrated Framework for Enhanced Diabetic Retinopathy Detection

Abstract

Diabetic retinopathy (DR) is an ocular condition that adversely affects the retinal region of the eye. Without early detection, this disease can progress to irreversible blindness, particularly in individuals with diabetes. The manifestation of DR correlates with the stage of diabetes, categorized into five distinct stages: 0, 1, 2, 3, and 4. Noteworthy, symptoms characterize each stage during DR analysis. Machine Learning (ML) serves as a crucial tool for identifying intricate patterns within dataset inputs. Given its complexity and time-intensive nature, ML approaches have become integral in existing processes. In this study, diverse filtering techniques are applied to facilitate image filtration. Leveraging a Convolutional Neural Network (CNN), the detection of DR is executed based on its stages, with a specific focus on highlighting the regions affected by infection. The experimentation involves DR fundus color images, constituting a dataset of 1000 color fundus images. To enhance the proposed approach's performance, a Gabor filtering technique is incorporated, resulting in notably superior outcomes in terms of performance metrics.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558293742240925044450
2024-10-16
2025-01-13
Loading full text...

Full text loading...

References

  1. Kassani S.H. Kassani P.H. Wesolowski M.J. Schneider K.A. Deters R. Breast cancer diagnosis with transfer learning and global pooling. Preprint arXiv 2019 10.1109/ICTC46691.2019.8939878
    [Google Scholar]
  2. Kassani S.H. Kassani P.H. Wesolowski M.J. Schneider K.A. Deters R. A hybrid deep learning architecture for leukemic blymphoblast classification. Preprint arXiv 2019
    [Google Scholar]
  3. Kassani S.H. Kassani P.H. Wesolowski M.J. Schneider K.A. Deters R. Classification of histopathological biopsy images using ensemble of deep learning networks. Preprint arXiv 2019
    [Google Scholar]
  4. Zhou X. Li C. Rahaman M.M. Yao Y. Ai S. Sun C. Wang Q. Zhang Y. Li M. Li X. Jiang T. Xue D. Qi S. Teng Y. A comprehensive review for breast histopathology image analysis using classical and deep neural networks. IEEE Access 2020 8 90931 90956 10.1109/ACCESS.2020.2993788
    [Google Scholar]
  5. Besenczi R. Tóth J. Hajdu A. A review on automatic analysis techniques for color fundus photographs. Comput. Struct. Biotechnol. J. 2016 14 371 384 10.1016/j.csbj.2016.10.001 27800125
    [Google Scholar]
  6. Asad A.H. Hassaanien A.E. Retinal blood vessels segmentation based on bio-inspired algorithm. Applications of Intelligent Optimization in Biology and Medicine. Intelligent Systems Reference Library. Hassanien A.E. Grosan C. Fahmy Tolba M. Cham Springer 2016 96 10.1007/978‑3‑319‑21212‑8_8
    [Google Scholar]
  7. Almotiri J. Elleithy K. Elleithy A. Retinal vessels segmentation techniques and algorithms: A survey. Appl. Sci. 2018 8 2 155 10.3390/app8020155
    [Google Scholar]
  8. Gulshan V. Peng L. Coram M. Stumpe M.C. Wu D. Narayanaswamy A. Venugopalan S. Widner K. Madams T. Cuadros J. Kim R. Raman R. Nelson P.C. Mega J.L. Webster D.R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016 316 22 2402 2410 10.1001/jama.2016.17216 27898976
    [Google Scholar]
  9. Xu Kele Feng Dawei Mi Haibo Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 2017 22 12 2054 10.3390/molecules22122054
    [Google Scholar]
  10. Qiao L. Zhu Y. Zhou H. Diabetic retinopathy detection using prognosis of microaneurysm and early diagnosis system for non-proliferative diabetic retinopathy based on deep learning algorithms. IEEE Access 2020 8 104292 104302 10.1109/ACCESS.2020.2993937
    [Google Scholar]
  11. Khan Z. Khan F.G. Khan A. Rehman Z.U. Shah S. Qummar S. Ali F. Pack S. Diabetic retinopathy detection using VGG-NIN a deep learning architecture. IEEE Access 2021 9 61408 61416 10.1109/ACCESS.2021.3074422
    [Google Scholar]
  12. Gao Z. Li J. Guo J. Chen Y. Yi Z. Zhong J. Diagnosis of diabetic retinopathy using deep neural networks. IEEE Access 2019 7 3360 3370 10.1109/ACCESS.2018.2888639
    [Google Scholar]
  13. Sarki R. Ahmed K. Wang H. Zhang Y. Automatic detection of diabetic eye disease through deep learning using fundus images: A survey. IEEE Access 2020 8 151133 151149 10.1109/ACCESS.2020.3015258
    [Google Scholar]
  14. Al-Rawi M. Karajeh H. Genetic algorithm matched filter optimization for automated detection of blood vessels from digital retinal images. Comput. Methods Programs Biomed. 2007 87 3 248 253 10.1016/j.cmpb.2007.05.012 17610985
    [Google Scholar]
  15. Selçuk T. Alkan A. Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy. Med. Hypotheses 2019 129 109242 10.1016/j.mehy.2019.109242 31371092
    [Google Scholar]
  16. Bajčeta M. Sekulić P. Djukanović S. Popovic T. Popović-Bugarin V. Retinal blood vessels segmentation using ant colony optimization. 2016 13th Symposium on Neural Networks and Applications (NEUREL), Belgrade, Serbia, 22-24 November 2016, pp. 1-6. 10.1109/NEUREL.2016.7800141
    [Google Scholar]
  17. Wang H. Wang W. Zhou X. Sun H. Zhao J. Yu X. Cui Z. Firefly algorithm with neighborhood attraction. Inf. Sci. 2017 382-383 374 387 10.1016/j.ins.2016.12.024
    [Google Scholar]
  18. Sathananthavathi V. Indumathi G. BAT algorithm inspired retinal blood vessel segmentation. IET Image Process 2018 12 11 2075 2083 10.1049/iet‑ipr.2017.1266
    [Google Scholar]
  19. Aiello L.P. The potential role of PKC β in diabetic retinopathy and macular edema. Surv. Ophthalmol. 2002 47 Suppl. 2 S263 S269 10.1016/S0039‑6257(02)00391‑0 12507628
    [Google Scholar]
  20. Pruthi J. Arora S. Khanna K. Metaheuristic techniques for detection of optic disc in retinal fundus images. 3D Res 2018 9 4 47
    [Google Scholar]
  21. P N. P D. Mansour R.F. Almazroa A. Artificial flora algorithm-based feature selection with gradient boosted tree model for diabetes classification. Diabetes Metab. Syndr. Obes. 2021 14 2789 2806 10.2147/DMSO.S312787 34188504
    [Google Scholar]
  22. Wu Y. Xia Y. Song Y. Zhang Y. Cai W. NFN+: A novel network followed network for retinal vessel segmentation. Neural Netw. 2020 126 153 162 10.1016/j.neunet.2020.02.018 32222424
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558293742240925044450
Loading
/content/journals/rascs/10.2174/0126662558293742240925044450
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test