Skip to content
2000
image of Jivamrit as a Sustainable Approach: A Review of Natural Farming and Future Agriculture

Abstract

Green Revolution aims to boost food production and feed millions of Indians, but it also has negative effects on agriculture and society's health. Natural manures like cow dung and cow urine can counteract the adverse effects of inorganic fertilizer on soil along with improving physicochemical qualities, maintaining the soil quality, and increasing crop output. Zero Budget Natural Farming (ZBNF) formulations like Jivamrit promote soil health and microbial activities and are an excellent source of macronutrients, other micronutrients needed for plant growth, plus adds beneficial microbes, nitrogen (N), phosphorus (P), potassium (K), and natural carbon (C). Further, conventional agricultural methods, like monocropping and heavy tillage, can damage soil bacteria which contributes to sustainable agriculture through nitrogen fixation, siderophore synthesis and nutrient absorption. A sustainable agricultural system is resource-efficient, socially and commercially competitive, ecologically sound, and supportive of society. Jivamrit, a natural organic manure, is gaining interest due to concerns about the sustainability of input-intensive agriculture systems. It promotes crop growth, quality, and yield, enhances soil pH, population, and activity of beneficial microorganisms, and helps with nitrogen fixation, phosphate solubilization, and easy decomposition. Long-term use of Jivamrit, may disrupt soil microbial balance, may leading to overpopulation of certain species. The current review on the Jivamrit emphasizes on the biological and chemical characterization and its significance to the agriculture.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X332918240911033507
2024-10-22
2024-11-18
Loading full text...

Full text loading...

References

  1. Kakadia J. Bhavsar D. Vachhani U.D. Shah C.P. Patel D.M. Dhami P.D. In vitro Screening of Antibacterial Activity of Cow Urine against Pathogenic Human Bacterial Strains. Int. J. Curr. Pharm. Res. 2011 3 91 92
    [Google Scholar]
  2. Yadav J.P. Sustainable Agriculture Development through Organic Farming in India. SPAST Abstracts 2021 1 1 14919
    [Google Scholar]
  3. John D.A. Babu G.R. Lessons From the Aftermaths of Green Revolution on Food System and Health. Front. Sustain. Food Syst. 2021 5 644559 10.3389/fsufs.2021.644559 34212131
    [Google Scholar]
  4. Niemiec M. Chowaniak M. Sikora J. Szeląg-Sikora A. Gródek-Szostak Z. Komorowska M. Selected Properties of Soils for Long-Term Use in Organic Farming. Sustainability (Basel) 2020 12 6 2509 10.3390/su12062509
    [Google Scholar]
  5. Bharucha Z.P. Mitjans S.B. Pretty J. Towards redesign at scale through zero budget natural farming in Andhra Pradesh, India. Int. J. Agric. Sustain. 2020 18 1 1 20 10.1080/14735903.2019.1694465
    [Google Scholar]
  6. Ray P. Lakshmanan V. Labbé J.L. Craven K.D. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Front. Microbiol. 2020 11 622926 10.3389/fmicb.2020.622926 33408712
    [Google Scholar]
  7. Dhawale M.R. Wilson J.J. Khachatourians G.G. Ingledew W.M. Improved method for detection of starch hydrolysis. Appl. Environ. Microbiol. 1982 44 3 747 750 10.1128/aem.44.3.747‑750.1982 16346102
    [Google Scholar]
  8. Olutiola P.O. Famurewa O. Sonntag H.G. An Introduction to General Microbiology: A Practical Approach. Germany Heidelberger Verlagsanstalt Und Druckerei GmbH Heidelberg 1991 267
    [Google Scholar]
  9. Veeresh J. Narayana J.A. Silva N. Karmegam. Influence of Jeevamrutha (Biodynamic Formulation) on Agro-Industrial Waste Vermicomposting. Vermitechnol 2010 II 96 99
    [Google Scholar]
  10. Sutar R. Sujith G. Devakumar N. Growth and Yield of Cowpea [Vigna unguiculata (L.) Walp] as Influenced by Jeevamrutha and Panchagavya Application. Legume Res. Int. J. 2019 2019 824 842 10.18805/LR‑3932
    [Google Scholar]
  11. Gore N.S. Sreenivasa M. Influence of Liquid Organic Manures on Growth, Nutrient Content and Yield of Tomato (Lycopersicon esculentum Mill.) in the Sterilized Soil. Karnataka J. Agric. Sci. 2011 24 153 157
    [Google Scholar]
  12. Bhattacharyya C. Banerjee S. Acharya U. Mitra A. Mallick I. Haldar A. Haldar S. Ghosh A. Ghosh A. Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India. Sci. Rep. 2020 10 1 15536 10.1038/s41598‑020‑72439‑z
    [Google Scholar]
  13. Nitin Purohit D.H.S. Effect of different Jeevamrut based liquid organic formulations on biochemical properties of soil and on plant growth of blackgram [Vigna mungo (L.) Hepper] under pot culture conditions. Int. J. Chem. Stud. 2021 9 1 2280 2283 10.22271/chemi.2021.v9.i1af.11564
    [Google Scholar]
  14. Pathak H. Mishra J.P. Mohapatra T. Indian Agriculture after Independence. New Delhi Indian Council of Agricultural Research 2022 426
    [Google Scholar]
  15. Luginbuehl L.H. Menard G.N. Kurup S. Van Erp H. Radhakrishnan G.V. Breakspear A. Oldroyd G.E.D. Eastmond P.J. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 2017 356 6343 1175 1178 10.1126/science.aan0081 28596311
    [Google Scholar]
  16. Timsina J. Can organic sources of nutrients increase crop yields to match modern chemical fertilizers? a meta-analysis. Agric. Ecosyst. Environ. 2018 251 37 52
    [Google Scholar]
  17. Liu J. Wang D. Yan X. Jia L. Chen N. Liu J. Zhao P. Zhou L. Cao Q. Effect of nitrogen, phosphorus and potassium fertilization management on soil properties and leaf traits and yield of Sapindus mukorossi. Front. Plant Sci. 2024 15 1300683 10.3389/fpls.2024.1300683 38529062
    [Google Scholar]
  18. Boraiah B. Devakumar N. Shubha S. Palanna K.B. Effect of Panchagavya, Jeevamrutha and Cow Urine on Beneficial Microorganisms and Yield of Capsicum (Capsicum annuum L. var. grossum). Int. J. Curr. Microbiol. Appl. Sci. 2017 6 8 3226 3234 10.20546/ijcmas.2017.609.397
    [Google Scholar]
  19. Kumar R. Dev K. Effects of chemical fertilizers on human health and environment: a review. Adv. Res. J. Sci. Eng. Technol 2017 4 6 203 205
    [Google Scholar]
  20. Khadse A. Rosset P. Zero budget natural farming in india – from inception to institutionalization. Desenvolv. Meio Ambient. 2021 58 579 603 10.5380/dma.v58i0.81370
    [Google Scholar]
  21. Bharadwaj K. Influence of zbnf components on the growth and yield of wheat in combination with fym, biofertilizer and nitrogen. Int. J. Creat. Res. Thoughts 2021 9 5
    [Google Scholar]
  22. Zayed O. Hewedy O.A. Abdelmoteleb A. Ali M. Youssef M.S. Roumia A.F. Seymour D. Yuan Z.C. Nitrogen journey in plants: from uptake to metabolism, stress response, and microbe interaction. Biomolecules 2023 13 10 1443 10.3390/biom13101443 37892125
    [Google Scholar]
  23. Zhang X. Li J. Shao L. Qin F. Yang J. Gu H. Zhai P. Pan X. Effects of organic fertilizers on yield, soil physico-chemical property, soil microbial community diversity and structure of Brassica rapa var. Chinensis. Front. Microbiol. 2023 14 1132853 10.3389/fmicb.2023.1132853 37323918
    [Google Scholar]
  24. Xia W.J. Zhang L.F. Liu Z.B. Zhang W.X. Lan X.J. Liu X.M. Liu J. Liu G.R. Li Z.Z. Wang P. Effects of Long-Term Application of Chemical Fertilizers and Organic Fertilizers on Heavy Metals and Their Availability in Reddish Paddy Soil. Huan Jing Ke Xue 2021 42 5 2469 2479 33884818
    [Google Scholar]
  25. Sharma N. Singhvi R. Effects of chemical fertilizers and pesticides on human health and environment: a review. Int. J. Agric. Environ. Biotechnol. 2017 10 6 675 679 10.5958/2230‑732X.2017.00083.3
    [Google Scholar]
  26. Rani L. Thapa K. Kanojia N. Sharma N. Singh S. Grewal A.S. Kaushal J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2020 2020 124657
    [Google Scholar]
  27. Palekar S. Text Book on Shoonya Bandovalada Naisargika Krushi. Bangalore Swamy Anand, Agri Prakashana 2006
    [Google Scholar]
  28. Swain M.R. Ray R.C. Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora. Microbiol. Res. 2009 164 2 121 130 10.1016/j.micres.2006.10.009 17320363
    [Google Scholar]
  29. Félix Herrán J.A. Sañudo Torres R.R. Rojo Martínez G.E. Martínez Ruiz R. Olalde Portugal V. Importancia de los abonos orgánicos. Ra Ximhai 2008 4 57 68 10.35197/rx.04.01.2008.04.jf
    [Google Scholar]
  30. Papen H. Geβler A. Zumbusch E. Rennenberg H. Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input. Curr. Microbiol. 2002 44 1 56 60 10.1007/s00284‑001‑0074‑9 11727042
    [Google Scholar]
  31. Panpatte D. Microorganisms: a backbone of organic farming. Microbiology 2019 03 18 8 10
    [Google Scholar]
  32. Kumar R. Sharma V. Suresh S. Ramrao D.P. Veershetty A. Kumar S. Priscilla K. Hangargi B. Narasanna R. Pandey M.K. Naik G.R. Thomas S. Kumar A. Understanding omics driven plant improvement and de novo crop domestication: some examples. Front. Genet. 2021 12 637141 10.3389/fgene.2021.637141 33889179
    [Google Scholar]
  33. Van Emon J.M. The omics revolution in agricultural research. J. Agric. Food Chem. 2016 64 1 36 44 10.1021/acs.jafc.5b04515 26468989
    [Google Scholar]
  34. Overy D.P. Bell M.A. Habtewold J. Helgason B.L. Gregorich E.G. “Omics” technologies for the study of soil carbon stabilization: a review. Front. Environ. Sci. 2021 9 617952 10.3389/fenvs.2021.617952
    [Google Scholar]
  35. Li Q. Yan J. Sustainable agriculture in the era of omics: knowledge-driven crop breeding. Genome Biol. 2020 21 1 154 10.1186/s13059‑020‑02073‑5 32591012
    [Google Scholar]
  36. Patel J.S. Kumar G. Bajpai R. Teli B. Rashid M. Sarma B.K. PGPR Formulations and Application in the Management of Pulse Crop Health. Biofertilizers. Rakshit A. Meena V.S. Parihar M. Singh H.B. Singh A.K. New Delhi, India Woodhead Publishing 2021 10.1016/B978‑0‑12‑821667‑5.00012‑9
    [Google Scholar]
  37. Cortés A.J. Castillejo M.Á. Yockteng R. ‘Omics’ approaches for crop improvement. Agronomy (Basel) 2023 13 5 1401 10.3390/agronomy13051401
    [Google Scholar]
  38. Koner N. Laha A. Economics of zero budget natural farming in purulia district of west bengal: is it economically viable. Stud. Agric. Econ. (Bp.) 2020 122 1 22 28
    [Google Scholar]
  39. Gopal V. Gurusiddappa L.H. Influence of Jeevamrutha (fermented liquid manure) on growth and yield parameters of tomato ( Solanum Lycopersicum L.). World Journal of Environmental Biosciences 2022 11 3 1 7 10.51847/WFD516GS8o
    [Google Scholar]
  40. Sh A.L.K. Ma A. Wa A.S. Hs A.R. Evaluation of composted agricultural crop wastes application on growth, mineral content, yield, and fruit quality of tomato. J. Exp. Biol. Agric. Sci. 2018 6 1 159 167 10.18006/2018.6(1).159.167
    [Google Scholar]
  41. Duddigan S. Shaw L.J. Sizmur T. Gogu D. Hussain Z. Jirra K. Kaliki H. Sanka R. Sohail M. Soma R. Thallam V. Vattikuti H. Collins C.D. Natural farming improves crop yield in SE India when compared to conventional or organic systems by enhancing soil quality. Agron. Sustain. Dev. 2023 43 2 31 10.1007/s13593‑023‑00884‑x 36974061
    [Google Scholar]
  42. Zhang N. Wang D. Liu Y. Li S. Shen Q. Zhang R. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 2014 374 1-2 689 700 10.1007/s11104‑013‑1915‑6
    [Google Scholar]
  43. Adekiya A.O. Ejue W.S. Olayanju A. Dunsin O. Aboyeji C.M. Aremu C. Adegbite K. Akinpelu O. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Sci. Rep. 2020 10 1 16083 10.1038/s41598‑020‑73291‑x 32999383
    [Google Scholar]
  44. Bohra M. Nautiyal B.P. Sustainable production of tuberose through integrated nutrient management: a review. Curr. Hortic. 2019 7 1 12 17 10.5958/2455‑7560.2019.00002.5
    [Google Scholar]
  45. Shraddha Shukla Y.R. Thakur K. Vashishat R.K. Sharma S. Chandel R.S. Dhingra S. Alam T. Khargotra R. Jyoti K. Impact of fermented organic formulations combined with inorganic fertilizers on broccoli (Brassica oleracea L. var. italica Plenck) cv. Palam Samridhi. Heliyon 2023 9 9 e20321 10.1016/j.heliyon.2023.e20321 37809921
    [Google Scholar]
  46. Aayog N.I.T.I. Natural Farming Benefits Available from: https://naturalfarming.niti.gov.in/benefits/(accessed on 20-8-2024)
    [Google Scholar]
  47. Vishwakarma K. Kumar N. Shandilya C. Mohapatra S. Bhayana S. Varma A. Plant–Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture Revisiting Plant–Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review. Front. Microbiol. 2020 11 560406 10.3389/fmicb.2020.560406 33408698
    [Google Scholar]
  48. Pant H. Singh K. Singh M.K. Swaroop D. Emerging Trends in Agricultural, Environmental and Rural Developmental Challenges and Solution: An Overview. Society of Biological Sciences and Rural Development 2017 1 407
    [Google Scholar]
  49. Hartmann M. Frey B. Mayer J. Mäder P. Widmer F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015 9 5 1177 1194 10.1038/ismej.2014.210 25350160
    [Google Scholar]
  50. Yadav S.K. Soni R. Rajput A.S. Role of Microbes in Organic Farming for Sustainable Agro-Ecosystem. Microorganisms for Sustainability Springer 2018 10.1007/978‑981‑10‑7146‑1_12
    [Google Scholar]
  51. Louden B.C. Haarmann D. Lynne A.M. Use of Blue Agar CAS Assay for Siderophore Detection. J. Microbiol. Biol. Educ. 2011 12 1 51 53 10.1128/jmbe.v12i1.249 23653742
    [Google Scholar]
  52. Kiran K.S.P. Satyavani Y. Chandana Lakshmi M.V.V. Sridevi V. Production of Protease Enzyme Using Various Sources. Res. J. Biotechnol. 2002 7 250 258 [Review].
    [Google Scholar]
  53. Hussey M.A. Zayaitz A. Endospore Stain Protocol. Am. Soc. Microbiol. 2007 8 1 11
    [Google Scholar]
  54. Saharan B.S. Tyagi S. Kumar R. Vijay Om H. Mandal B.S. Duhan J.S. Application of Jeevamrit Improves Soil Properties in Zero Budget Natural Farming Fields. Agriculture 2023 13 1 196 10.3390/agriculture13010196
    [Google Scholar]
  55. Boraiah B. Devakumar N. Palanna K.B. Growth and Yield of Capsicum (Capsicum annuum L. Var. Grossum) as Influenced by Organic Liquid Formulations. Int. J. Appl. Pure Sci. Agric. 2017 2 114 117
    [Google Scholar]
  56. Aulakh C.S. Singh H. Walia S.S. Phutela R.P. Singh G. C.S. AULAKH HARGOPAL SINGH S.S. WALIA R.P. PHUTELA GURMINDER SINGH Evaluation of microbial culture (Jeevamrit) preparation and its effect on productivity of field crops. Indian J. Agron. 2001 58 2 182 186 10.59797/ija.v58i2.4191
    [Google Scholar]
  57. Sutar R. Sujith G.M. Devakumar N. Growth and yield of Cowpea [Vignaunguiculata (L.) Walp] as influenced by jeevamrutha and panchagavya application. Legume Res. 2018 42 00 824 828 10.18805/LR‑3932
    [Google Scholar]
  58. Basavaraj K. Devakumar N. Sheshadri T. Influence of Farm Yard Manure, Jeevamrutha, and Panchagavya on Growth and Yield of French Bean (Phaseolus vulgaris L.). Mysore J. Agric. Sci. 2016 50 279 283
    [Google Scholar]
  59. Vivanco L. Austin A.T. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia 2006 150 1 97 107 10.1007/s00442‑006‑0495‑z 16917779
    [Google Scholar]
  60. Wardle D. Yeates G. Barker G. Bonner K. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 2006 38 5 1052 1062 10.1016/j.soilbio.2005.09.003
    [Google Scholar]
  61. Ayres E. Steltzer H. Berg S. Wall D.H. Soil biota accelerate decomposition in high‐elevation forests by specializing in the breakdown of litter produced by the plant species above them. J. Ecol. 2009 97 5 901 912 10.1111/j.1365‑2745.2009.01539.x
    [Google Scholar]
  62. Bray S.R. Kitajima K. Mack M.C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol. Biochem. 2012 49 30 37 10.1016/j.soilbio.2012.02.009
    [Google Scholar]
  63. Hobbie S.E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 2015 30 6 357 363 10.1016/j.tree.2015.03.015 25900044
    [Google Scholar]
  64. Sofo A. Elshafie H.S. Camele I. Structural and Functional Organization of the Root System: A Comparative Study on Five Plant Species. Plants 2020 9 10 1338 10.3390/plants9101338 33050531
    [Google Scholar]
  65. Gurjar R.P.S. Bhati D. Singh S.K. Impact of Jeevamrut formulations and biofertilizers on soil microbial and chemical attributes during potato cultivation. J. Appl. Biol. Biotechnol. 2024 12 4 158 171 10.7324/JABB.2024.165084
    [Google Scholar]
  66. Reddy A.A. Melts I. Mohan G. Rani C.R. Pawar V. Singh V. Choubey M. Vashishtha T. Suresh A. Bhattarai M. Economic Impact of Organic Agriculture: Evidence from a Pan-India Survey. Sustainability (Basel) 2022 14 22 15057 10.3390/su142215057
    [Google Scholar]
  67. Somdutt; Karan, B.; Rathore, R. S.; Shekhawat, P. S. Jeevamrut and Panchagavya: Consequences on Growth, Quality, and Productivity of Organically Grown Crops: Review A. Agric. Rev. (Karnal) 2023 44 4 451 459 10.18805/ag.R‑2239
    [Google Scholar]
  68. Sreenivasa M.N. Naik N. Bhat S.N. Nekar M.M. Effect of Organic Liquid Manures on Growth, Yield, and Quality of Chilli (Capsicum annuum L.). Green Farming 2010 1 3 282 284
    [Google Scholar]
  69. Kannaiyan K. Biofertilisers – Key factors in organic farming. J. Phytol. 2000 2 10 42 54
    [Google Scholar]
  70. Nath T. Yadav J. Influence of Inorganic and Organic Nutrient Sources on Soil Enzyme Activities. J. Indian Soc. Soil Sci. 2011 59 1 54 59
    [Google Scholar]
  71. Ravindra U. Nayaka M.K. Revanna M.L. Microbial Quality Evaluation of Liquid Jaggery. Int. J. Appl. Pure Sci. Agric. 2016 2 6 114 117
    [Google Scholar]
  72. Kitamura R. Sugiyama C. Yasuda K. Nagatake A. Yuan Y. Du J. Yamaki N. Taira K. Kawai M. Hatano R. Effects of Three Types of Organic Fertilizers on Greenhouse Gas Emissions in a Grassland on Andosol in Southern Hokkaido, Japan. Front. Sustain. Food Syst. 2021 5 649613 10.3389/fsufs.2021.649613
    [Google Scholar]
  73. Li R. Pang Z. Zhou Y. Fallah N. Hu C. Lin W. Yuan Z. Metagenomic Analysis Exploring Taxonomic and Functional Diversity of Soil Microbial Communities in Sugarcane Fields Applied with Organic Fertilizer. BioMed Res. Int. 2020 2020 1 11 10.1155/2020/9381506 33145361
    [Google Scholar]
  74. Maougal R.T. Kechid M. Ladjabi C. Djekoun A. PGPR Characteristics ofRhizospheric Bacteria to Understand the Mechanisms of Faba Bean Growth. Proceedings 2020 66 27
    [Google Scholar]
  75. Kumar R. Kumar S. Yashavanth B.S. Meena P.C. Indoria A. Kundu S. Manjunath M. Adoption of Natural Farming and Its Effect on Crop Yield and Farmers’ Livelihood in India. New Delhi, India ICAR 2020
    [Google Scholar]
  76. Muenster D. Performing alternative agriculture: critique and recuperation in Zero Budget Natural Farming, South India. J. Polit. Ecol. 2018 25 1 748 764 10.2458/v25i1.22388
    [Google Scholar]
  77. Sharma S.B. Trend setting impacts of organic matter on soil physico-chemical properties in traditional vis -a- vis chemical-based amendment practices. PLOS Sustainability and Transformation 2022 1 3 e0000007 10.1371/journal.pstr.0000007
    [Google Scholar]
  78. Wang Q. Jiang X. Guan D. Wei D. Zhao B. Ma M. Chen S. Li L. Cao F. Li J. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols. Appl. Soil Ecol. 2018 125 88 96 10.1016/j.apsoil.2017.12.007
    [Google Scholar]
  79. Deluz C. Nussbaum M. Sauzet O. Gondret K. Boivin P. Evaluation of the Potential for Soil Organic Carbon Content Monitoring With Farmers. Front. Environ. Sci. 2020 8 113 10.3389/fenvs.2020.00113
    [Google Scholar]
  80. Dhawi F. Plant Growth Promoting Rhizobacteria (PGPR) Regulated Phyto and Microbial Beneficial Protein Interactions. Open Life Sci. 2020 15 1 68 78 10.1515/biol‑2020‑0008
    [Google Scholar]
  81. Ishaq S.L. Plant-microbial interactions in agriculture and the use of farming systems to improve diversity and productivity. AIMS Microbiol. 2017 3 2 335 353 10.3934/microbiol.2017.2.335 31294165
    [Google Scholar]
  82. Kopecky J. Kyselkova M. Omelka M. Cermak L. Novotna J. Grundmann G.L. Moënne-Loccoz Y. Sagova-Mareckova M. Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest. FEMS Microbiol. Ecol. 2011 78 2 386 394 10.1111/j.1574‑6941.2011.01173.x 22092176
    [Google Scholar]
  83. Bargaz A. Lyamlouli K. Chtouki M. Zeroual Y. Dhiba D. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front. Microbiol. 2018 9 1606 10.3389/fmicb.2018.01606 30108553
    [Google Scholar]
  84. Han S.H. An J.Y. Hwang J. Kim S.B. Park B.B. The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar ( Liriodendron tulipifera Lin.) in a nursery system. Forest Sci. Technol. 2016 12 3 137 143 10.1080/21580103.2015.1135827
    [Google Scholar]
  85. Adekiya A.O. Ogunboye O.I. Ewulo B.S. Olayanju A. Effects of Different Rates of Poultry Manure and Split Applications of Urea Fertilizer on Soil Chemical Properties, Growth, and Yield of Maize. ScientificWorldJournal 2020 2020 1 8 10.1155/2020/4610515 32831804
    [Google Scholar]
  86. Ma M. Zhou J. Ongena M. Liu W. Wei D. Zhao B. Guan D. Jiang X. Li J. Effect of long-term fertilization strategies on bacterial community composition in a 35-year field experiment of Chinese Mollisols. AMB Express 2018 8 1 20 10.1186/s13568‑018‑0549‑8 29442257
    [Google Scholar]
  87. Wen Y.C. Li H.Y. Lin Z.A. Zhao B.Q. Sun Z.B. Yuan L. Xu J.K. Li Y.Q. Long-term fertilization alters soil properties and fungal community composition in fluvo-aquic soil of the North China Plain. Sci. Rep. 2020 10 1 7198 10.1038/s41598‑020‑64227‑6 32350351
    [Google Scholar]
  88. Devakumar N. Shubha S. Gowder S.B. Rao G.G. Microbial Analytical Studies of Traditional Organic Preparations Beejamrutha and Jeevamrutha. Build. Org. Bridges 2014 2 639 642
    [Google Scholar]
  89. Kulkarni S.S. Gargelwar A.P. Production and Microbial Analysis of Jeevamrutham for Nitrogen Fixers and Phosphate Solubilizers in the Rural Area from Maharashtra. IOSR J. Agric. Vet. Sci. 2019 12 85 92
    [Google Scholar]
  90. Pandia S. Trivedi A. Sharma S.K. Yadav S. Evaluation of Jeevamrut and its Constituents against Alternaria Leaf spot of Mungbean in-vitro and under Cage House Condition in Rajasthan. Int. J. Curr. Microbiol. Appl. Sci. 2019 8 9 2240 2251 10.20546/ijcmas.2019.809.258
    [Google Scholar]
  91. Nawaz M.F. Bourrié G. Trolard F. Trolard F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013 33 2 291 309 10.1007/s13593‑011‑0071‑8
    [Google Scholar]
  92. Dinesh R. Anandaraj M. Kumar A. Srinivasan V. Bini Y.K. Subila K.P. Aravind R. Hamza S. Effects of Plant Growth-Promoting Rhizobacteria and NPK Fertilizers on Biochemical and Microbial Properties of Soils Under Ginger (Zingiber officinale) Cultivation. Agric. Res. 2013 2 4 346 353 10.1007/s40003‑013‑0080‑8
    [Google Scholar]
  93. Mohanty P. Singh P.K. Chakraborty D. Mishra S. Pattnaik R. Insight Into the Role of PGPR in Sustainable Agriculture and Environment. Front. Sustain. Food Syst. 2021 5 667150 10.3389/fsufs.2021.667150
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X332918240911033507
Loading
/content/journals/rafna/10.2174/012772574X332918240911033507
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: omics approach ; agriculture ; chemical fertilizers ; Jivamrit ; natural farming
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test