Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

Circular antenna arrays are widely used in 5G, IoT, and beamforming applications of next-generation communications, however attaining the subsidiary lobes along with directivity is still a challenge. The array parameters could be estimated in real-time using a variety of standard approaches, but these methods would tends to lag in maintaining appropriate directivity and even a low side lobe level.

Methods

To suppress the subsidiary lobe, achieve the required primary lobe direction, and enhance directivity, an optimization problem is applied in this study. Also with the circular antenna array problem, an artificial hummingbird algorithm (AHA) is used to accurately determine the regulating parameters.

Results

Simulations are performed, and the outcomes are analyzed with those achieved using other accepted techniques. The results indicated that the artificial hummingbird technique significantly reduces side lobes while preserving acceptable directivity.

Conclusion

In this work based on the dimensional analysis, it is also possible to achieve high directivity values alongside low side lobe levels using reduced antenna elements.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/2352096516666230816091004
2024-07-25
2025-05-09
Loading full text...

Full text loading...

References

  1. RoyG.G. DasS. ChakrabortyP. SuganthanP.N. Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm.IEEE Trans. Antenn. Propag.201159111011810.1109/TAP.2010.2090477
    [Google Scholar]
  2. LiangS. FengT. SunG. Sidelobe‐level suppression for linear and circular antenna arrays via the cuckoo search–chicken swarm optimisation algorithm.IET Microw. Antennas Propag.201711220921810.1049/iet‑map.2016.0083
    [Google Scholar]
  3. SunG. LiuY. ChenZ. LiangS. WangA. ZhangY. Radiation beam pattern synthesis of concentric circular antenna arrays using hybrid approach based on cuckoo search.IEEE Trans. Antenn. Propag.20186694563457610.1109/TAP.2018.2846771
    [Google Scholar]
  4. IoannidesP. BalanisC.A. Uniform circular and rectangular arrays for adaptive beamforming applications.IEEE Antennas Wirel. Propag. Lett.20054135135410.1109/LAWP.2005.857039
    [Google Scholar]
  5. SinghH. MittalN. SinghU. SalgotraR. Synthesis of non-uniform circular antenna array for low side lobe level and high directivity using self-adaptive cuckoo search algorithm.Arab. J. Sci. Eng.20224733105311810.1007/s13369‑021‑06059‑8
    [Google Scholar]
  6. KumarS. SinghH. A comprehensive review of metamaterials/metasurface-based MIMO antenna array for 5g millimeter-wave applications.J. Supercond. Nov. Magn.202235113025304910.1007/s10948‑022‑06408‑0
    [Google Scholar]
  7. YangG. ZhangY. ZhangS. Wide-band and wide-angle scanning phased array antenna for mobile communication system.IEEE Open J. Antennas Propag.2021220321210.1109/OJAP.2021.3057062
    [Google Scholar]
  8. ChettriL. BeraR. A comprehensive survey on internet of things (IoT) toward 5G wireless systems.IEEE Internet Things J.202071163210.1109/JIOT.2019.2948888
    [Google Scholar]
  9. KoretzA. RafaelyB. Dolph–chebyshev beampattern design for spherical arrays.IEEE Trans. Signal Process.20095762417242010.1109/TSP.2009.2015120
    [Google Scholar]
  10. ZinkaS.R. KimJ.P. On the generalization of taylor and bayliss n-bar array distributionsIEEE Trans. Antennas Propag2012602 Part 21152115710.1109/TAP.2011.2173146
    [Google Scholar]
  11. SinghH. SinghS. GuptaA. SinghH. GehlotA. KaurJ. Design and synthesis of circular antenna array using artificial hummingbird optimization algorithm.J. Comput. Electron.20222161293130510.1007/s10825‑022‑01921‑w
    [Google Scholar]
  12. WangR.Q. JiaoY.C. Synthesis of wideband rotationally symmetric sparse circular arrays with multiple constraints.IEEE Antennas Wirel. Propag. Lett.201918582182510.1109/LAWP.2019.2902565
    [Google Scholar]
  13. DuppalaV.R. MisraI.S. SanyalS.K. Design of digital signal processor based adaptive beamformer using hybrid residual least mean square algorithm for improved performance.Int. J. RF Microw. Comput.-Aided Eng.2020303e2207310.1002/mmce.22073
    [Google Scholar]
  14. AbeysingheD.C. NelsonR.L. RuiG. ZhanQ. ChenW. Hybrid spiral plasmonic lens: Towards an efficient miniature circular polarization analyzer.Opt. Express20122024262992630710.1364/OE.20.026299
    [Google Scholar]
  15. LiH. JiangY. DingY. TanJ. ZhouJ. Low-sidelobe pattern synthesis for sparse conformal arrays based on PSO-SOCP optimization.IEEE Access20186774297743910.1109/ACCESS.2018.2883042
    [Google Scholar]
  16. LiX. LukK.M. The grey wolf optimizer and its applications in electromagnetics.IEEE Trans. Antenn. Propag.20206832186219710.1109/TAP.2019.2938703
    [Google Scholar]
  17. MirjaliliS. SCA: A sine cosine algorithm for solving optimization problems.Knowl. Base. Syst.20169612013310.1016/j.knosys.2015.12.022
    [Google Scholar]
  18. SinghH. AbouhawwashM. MittalN. SalgotraR. MahajanS. Kant PanditA. Performance evaluation of Non-Uniform circular antenna array using integrated harmony search with Differential Evolution based Naked Mole Rat algorithm.Expert Syst. Appl.202218911614610.1016/j.eswa.2021.116146
    [Google Scholar]
  19. LiuB. AliakbarianH. MaZ. VandenboschG.A.E. GielenG. ExcellP. An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques.IEEE Trans. Antenn. Propag.201462171810.1109/TAP.2013.2283605
    [Google Scholar]
  20. ChiuP.C. SelamatA. KrejcarO. KuokK.K. BujangS.D.A. FujitaH. Missing value imputation designs and methods of nature-inspired metaheuristic techniques: A systematic review.IEEE Access202210615446156610.1109/ACCESS.2022.3172319
    [Google Scholar]
  21. MuazuA.A. HashimA.S. SarlanA. Review of nature inspired metaheuristic algorithm selection for combinatorial t-way testing.IEEE Access202210274042743110.1109/ACCESS.2022.3157400
    [Google Scholar]
  22. YanKeen-Keong LuYilong Sidelobe reduction in array-pattern synthesis using genetic algorithm.IEEE Trans. Antenn. Propag.19974571117112210.1109/8.596902
    [Google Scholar]
  23. ZhaoW. WangL. MirjaliliS. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications.Comput. Methods Appl. Mech. Eng.202238811419410.1016/j.cma.2021.114194
    [Google Scholar]
  24. SunG. LiuY. LiangS. ChenZ. WangA. JuQ. ZhangY. A sidelobe and energy optimization array node selection algorithm for collaborative beamforming in wireless sensor networks.IEEE Access201862515253010.1109/ACCESS.2017.2783969
    [Google Scholar]
  25. AlnaggarL.M. Abd-ElnabyM.M. HusseinA.H. A new beamforming technique for the synthesis of uniform circular antenna arrays using reduced number of antenna elements.IEEE Access20219903069031810.1109/ACCESS.2021.3091439
    [Google Scholar]
  26. OwoolaE.O. XiaK. WangT. UmarA. AkindeleR.G. Pattern synthesis of uniform and sparse linear antenna array using mayfly algorithm.IEEE Access20219779547797510.1109/ACCESS.2021.3083487
    [Google Scholar]
  27. ChakravortyP. MandalD. Grating Lobe Suppression With Discrete Dipole Element Antenna Arrays20161512341237
    [Google Scholar]
  28. LiangS. FangZ. SunG. LiuY. QuG. ZhangY. Sidelobe reductions of antenna arrays via an improved chicken swarm optimization approach.IEEE Access20208376643768310.1109/ACCESS.2020.2976127
    [Google Scholar]
  29. DarvishA. EbrahimzadehA. Improved fruit-fly optimization algorithm and its applications in antenna arrays synthesis.IEEE Trans. Antenn. Propag.20186641756176610.1109/TAP.2018.2800695
    [Google Scholar]
/content/journals/raeeng/10.2174/2352096516666230816091004
Loading
/content/journals/raeeng/10.2174/2352096516666230816091004
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 5G; AHA; array factor; CAA; CCAA; metaheuristic algorithms (MHA); SLL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test