Skip to content
2000
image of (XAI-AGUWEM) Explainable Artificial Intelligence-based Attention Guided Uncertainty Weighting Ensemble Model for the Classification of COVID-19 and Pneumonia in X-ray Medical Images

Abstract

Introduction

The medical field can utilize radiological images with deep learning techniques to diagnose disease more accurately, enabling the diagnosis and classification of a variety of illnesses. In the domain of learning and machine vision, identifying COVID-19 from X-ray images is a developing area. Since the onset of COVID-19, significant work has been performed, yet some issues remain in this field.

Method

Firstly, there are limited X-ray scans readily available that are classified as COVID-19 positive, resulting in an unbalanced dataset. Secondly, there is no single set of data, classes, or evaluation protocols for all the work performed. This study proposes a three-class balanced dataset based on two validated publicly available datasets. Deep Convolutional neural networks have the potential to operate with both wide breadth and wide depth, which could raise computing complexity. Additionally, to deal with this issue, an attention-guided ensemble model (AGEM) is proposed to classify normal, pneumonia, and COVID-19 images. First, we propose an Attention Guided-Convolutional Neural Network (AG-CNN) architecture based on transfer learning. We used three pre-trained models , InceptionV3, DenseNet121, and MobileNetV2, as the basis for the proposed AG-CNN, resulting in three attention-guided network architectures , AG-InceptionV3, AG-DenseNet121, and AG-MobileNetV2. Then, we used entropy computation and an uncertainty-based weighting ensemble to classify the images into three classes.

Result

The performance was evaluated and compared with existing works and 7 pre-trained models , ResNet50, InceptionV3, VGG-16, VGG-19, Densenet-201, Xception, MobileNetV2, on our three-class dataset. An accuracy of 97.35%, recall of 97.35%, specificity of 98.67%, precision of 97.35%, and F1-score of 97.35% demonstrate the superiority of our proposed attention-guided ensemble model over pre-trained models and other existing studies.

Conclusion

It is noteworthy that for additional analysis, we utilized Grad-CAM or gradient-weighted Class Activation Mapping.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965334135241115064754
2025-01-06
2025-07-10
Loading full text...

Full text loading...

References

  1. Tay M.Z. Poh C.M. Rénia L. MacAry P.A. Ng L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 2020 20 6 363 374 10.1038/s41577‑020‑0311‑8 32346093
    [Google Scholar]
  2. Lauer S.A. Grantz K.H. Bi Q. Jones F.K. Zheng Q. Meredith H.R. Azman A.S. Reich N.G. Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern. Med. 2020 172 9 577 582 10.7326/M20‑0504 32150748
    [Google Scholar]
  3. Alimadadi A. Aryal S. Manandhar I. Munroe P.B. Joe B. Cheng X. Artificial intelligence and machine learning to fight COVID-19. Physiol. Genomics 2020 52 4 200 202 10.1152/physiolgenomics.00029.2020 32216577
    [Google Scholar]
  4. Sanches J.M. Laine A.F. Suri J.S. Ultrasound Imaging. Cham, Switzerland Springer 2012 10.1007/978‑1‑4614‑1180‑2
    [Google Scholar]
  5. Dale B.M. Brown M.A. Semelka R.C. MRI: Basic Principles and Applications. Hoboken, NJ, USA John Wiley & Sons 2015 10.1002/9781119013068
    [Google Scholar]
  6. Saba L. Suri J.S. Multi-Detector CT Imaging: Abdomen, Pelvis, and CAD Applications. Boca Raton, FL, USA CRC Press 2013
    [Google Scholar]
  7. Bickelhaupt S. Laun F.B. Tesdorff J. Lederer W. Daniel H. Stieber A. Delorme S. Schlemmer H.P. Fast and Noninvasive Characterization of Suspicious Lesions Detected at Breast Cancer X-Ray Screening: Capability of Diffusion-weighted MR Imaging with MIPs. Radiology 2016 278 3 689 697 10.1148/radiol.2015150425 26418516
    [Google Scholar]
  8. Self W.H. Courtney D.M. McNaughton C.D. Wunderink R.G. Kline J.A. High discordance of chest x-ray and computed tomography for detection of pulmonary opacities in ED patients: implications for diagnosing pneumonia. Am. J. Emerg. Med. 2013 31 2 401 405 10.1016/j.ajem.2012.08.041 23083885
    [Google Scholar]
  9. Saba L. Biswas M. Kuppili V. Cuadrado Godia E. Suri H.S. Edla D.R. Omerzu T. Laird J.R. Khanna N.N. Mavrogeni S. Protogerou A. Sfikakis P.P. Viswanathan V. Kitas G.D. Nicolaides A. Gupta A. Suri J.S. The present and future of deep learning in radiology. Eur. J. Radiol. 2019 114 14 24 10.1016/j.ejrad.2019.02.038 31005165
    [Google Scholar]
  10. Biswas M. Kuppili V. Saba L. Edla D.R. Suri H.S. Cuadrado-Godia E. Laird J.R. Marinhoe R.T. Sanches J. Nicolaides A. State-of-the-art review on deep learning in medical imaging. Front. Biosci.-. Landmark 2019 24 380 406
    [Google Scholar]
  11. Kaissis G.A. Makowski M.R. Rückert D. Braren R.F. Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2020 2 6 305 311 10.1038/s42256‑020‑0186‑1
    [Google Scholar]
  12. Lundervold A.S. Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2019 29 2 102 127 10.1016/j.zemedi.2018.11.002 30553609
    [Google Scholar]
  13. Biswas M. Kuppili V. Araki T. Edla D.R. Godia E.C. Saba L. Suri H.S. Omerzu T. Laird J.R. Khanna N.N. Nicolaides A. Suri J.S. Deep learning strategy for accurate carotid intima-media thickness measurement: An ultrasound study on Japanese diabetic cohort. Comput. Biol. Med. 2018 98 100 117 10.1016/j.compbiomed.2018.05.014 29778925
    [Google Scholar]
  14. Tandel G.S. Biswas M. Kakde O.G. Tiwari A. Suri H.S. Turk M. Laird J. Asare C. Ankrah A.A. Khanna N.N. Madhusudhan B.K. Saba L. Suri J.S. A Review on a Deep Learning Perspective in Brain Cancer Classification. Cancers (Basel) 2019 11 1 111 10.3390/cancers11010111 30669406
    [Google Scholar]
  15. Suri J.S. Rangayyan R.M. Breast Imaging, Mammography, and Computer-Aided Diagnosis of Breast Cancer. Bellingham, WA, USA SPIE 2006 10.1117/3.651880
    [Google Scholar]
  16. Setarehdan S.K. Singh S. Advanced Algorithmic Approaches to Medical Image Segmentation: State-of-the-Art Applications in Cardiology, Neurology, Mammography and Pathology. Berlin, Germany Springer Science & Business Media 2001
    [Google Scholar]
  17. Agarwal M. Saba L. Gupta S.K. Carriero A. Falaschi Z. Paschè A. Danna P. El-Baz A. Naidu S. Suri J.S. A novel bloc imaging technique using nine artificial intelligence models for COVID-19 disease classification, characterization and severity measurement in lung computed tomography scans on an Italian cohort. J. Med. Syst. 2021 45 3 28 10.1007/s10916‑021‑01707‑w 33496876
    [Google Scholar]
  18. Saba L. Agarwal M. Patrick A. Puvvula A. Gupta S.K. Carriero A. Laird J.R. Kitas G.D. Johri A.M. Balestrieri A. Falaschi Z. Paschè A. Viswanathan V. El-Baz A. Alam I. Jain A. Naidu S. Oberleitner R. Khanna N.N. Bit A. Fatemi M. Alizad A. Suri J.S. Six artificial intelligence paradigms for tissue characterisation and classification of non-COVID-19 pneumonia against COVID-19 pneumonia in computed tomography lungs. Int. J. CARS 2021 16 3 423 434 10.1007/s11548‑021‑02317‑0 33532975
    [Google Scholar]
  19. Khan A.I. Shah J.L. Bhat M.M. CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Programs Biomed. 2020 196 105581 10.1016/j.cmpb.2020.105581 32534344
    [Google Scholar]
  20. Hussain E. Hasan M. Rahman M.A. Lee I. Tamanna T. Parvez M.Z. CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images. Chaos Solitons Fractals 2021 142 110495 10.1016/j.chaos.2020.110495 33250589
    [Google Scholar]
  21. Jain R. Gupta M. Taneja S. Hemanth D.J. Deep learning based detection and analysis of COVID-19 on chest X-ray images. Appl. Intell. 2021 51 3 1690 1700 10.1007/s10489‑020‑01902‑1 34764553
    [Google Scholar]
  22. Nayak S.R. Nayak D.R. Sinha U. Arora V. Pachori R.B. Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study. Biomed. Signal Process. Control 2021 64 102365 10.1016/j.bspc.2020.102365 33230398
    [Google Scholar]
  23. Alom M.Z. Rahman M.M. Nasrin M.S. Taha T.M. Asari V.K. COVID_MTNet: COVID-19 detection with multi-task deep learning approaches. arXiv:2004.03747 2020
    [Google Scholar]
  24. Wehbe R.M. Sheng J. Dutta S. Chai S. Dravid A. Barutcu S. Wu Y. Cantrell D.R. Xiao N. Allen B.D. MacNealy G.A. Savas H. Agrawal R. Parekh N. Katsaggelos A.K. DeepCOVIDXR: An artificial intelligence algorithm to detect COVID-19 on chest radiographs trained and tested on a large US clinical data set. Radiology 2021 299 1 E167 E176 10.1148/radiol.2020203511 33231531
    [Google Scholar]
  25. Suri J. Agarwal S. Chabert G. Carriero A. Paschè A. Danna P. Saba L. Mehmedović A. Faa G. Singh I. Turk M. Chadha P. Johri A. Khanna N. Mavrogeni S. Laird J. Pareek G. Miner M. Sobel D. Balestrieri A. Sfikakis P. Tsoulfas G. Protogerou A. Misra D. Agarwal V. Kitas G. Teji J. Al-Maini M. Dhanjil S. Nicolaides A. Sharma A. Rathore V. Fatemi M. Alizad A. Krishnan P. Nagy F. Ruzsa Z. Fouda M. Naidu S. Viskovic K. Kalra M. COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans. Diagnostics (Basel) 2022 12 6 1482 10.3390/diagnostics12061482 35741292
    [Google Scholar]
  26. Shrivastava V.K. Londhe N.D. Sonawane R.S. Suri J.S. A novel and robust Bayesian approach for segmentation of psoriasis lesions and its risk stratification. Comput. Methods Programs Biomed. 2017 150 9 22 10.1016/j.cmpb.2017.07.011 28859832
    [Google Scholar]
  27. Shi F. Wang J. Shi J. Wu Z. Wang Q. Tang Z. He K. Shi Y. Shen D. Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19. IEEE Rev. Biomed. Eng. 2021 14 4 15 10.1109/RBME.2020.2987975 32305937
    [Google Scholar]
  28. Islam M.M. Karray F. Alhajj R. Zeng J. A review on deep learning techniques for the diagnosis of novel coronavirus (COVID-19). IEEE Access 2021 9 30551 30572 10.1109/ACCESS.2021.3058537 34976571
    [Google Scholar]
  29. Bhattacharya S. Reddy Maddikunta P.K. Pham Q.V. Gadekallu T.R. Krishnan S S.R. Chowdhary C.L. Alazab M. Jalil Piran M. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey. Sustain Cities Soc. 2021 65 102589 10.1016/j.scs.2020.102589 33169099
    [Google Scholar]
  30. Garcia Santa Cruz B. Bossa M.N. Sölter J. Husch A.D. Public Covid-19 X-ray datasets and their impact on model bias – A systematic review of a significant problem. Med. Image Anal. 2021 74 102225 10.1016/j.media.2021.102225 34597937
    [Google Scholar]
  31. Roberts M. Driggs D. Thorpe M. Gilbey J. Yeung M. Ursprung S. Aviles-Rivero A.I. Etmann C. McCague C. Beer L. Weir-McCall J.R. Teng Z. Gkrania-Klotsas E. Ruggiero A. Korhonen A. Jefferson E. Ako E. Langs G. Gozaliasl G. Yang G. Prosch H. Preller J. Stanczuk J. Tang J. Hofmanninger J. Babar J. Sánchez L.E. Thillai M. Gonzalez P.M. Teare P. Zhu X. Patel M. Cafolla C. Azadbakht H. Jacob J. Lowe J. Zhang K. Bradley K. Wassin M. Holzer M. Ji K. Ortet M.D. Ai T. Walton N. Lio P. Stranks S. Shadbahr T. Lin W. Zha Y. Niu Z. Rudd J.H.F. Sala E. Schönlieb C-B. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 2021 3 3 199 217 10.1038/s42256‑021‑00307‑0
    [Google Scholar]
  32. Brunese L. Mercaldo F. Reginelli A. Santone A. Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput. Methods Programs Biomed. 2020 196 105608 10.1016/j.cmpb.2020.105608 32599338
    [Google Scholar]
  33. Rahman T. Khandakar A. Qiblawey Y. Tahir A. Kiranyaz S. Abul Kashem S.B. Islam M.T. Al Maadeed S. Zughaier S.M. Khan M.S. Chowdhury M.E.H. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput. Biol. Med. 2021 132 104319 10.1016/j.compbiomed.2021.104319 33799220
    [Google Scholar]
  34. Konar D. Panigrahi B.K. Bhattacharyya S. Dey N. Jiang R. Auto-diagnosis of COVID-19 using lung CT images with semi-supervised shallow learning network. IEEE Access 2021 9 28716 28728 10.1109/ACCESS.2021.3058854
    [Google Scholar]
  35. Vaid S. Kalantar R. Bhandari M. Deep learning COVID-19 detection bias: accuracy through artificial intelligence. Int. Orthop. 2020 44 8 1539 1542 10.1007/s00264‑020‑04609‑7 32462314
    [Google Scholar]
  36. Ozturk T. Talo M. Yildirim E.A. Baloglu U.B. Yildirim O. Acharya U.R. Automated detection of COVID-19 cases using deep neural networks with Xray images. Comput Biol Med. 2020 121 103792
    [Google Scholar]
  37. Panwar H. Gupta P.K. Siddiqui M.K. Morales-Menendez R. Singh V. Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos Solitons Fractals 2020 138 109944 10.1016/j.chaos.2020.109944 32536759
    [Google Scholar]
  38. Ahuja S. Panigrahi B.K. Dey N. Rajinikanth V. Gandhi T.K. Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices. Appl. Intell. 2021 51 1 571 585 10.1007/s10489‑020‑01826‑w 34764547
    [Google Scholar]
  39. Sharifrazi D. Alizadehsani R. Roshanzamir M. Joloudari J.H. Shoeibi A. Jafari M. Hussain S. Sani Z.A. Hasanzadeh F. Khozeimeh F. Khosravi A. Nahavandi S. Panahiazar M. Zare A. Islam S.M.S. Acharya U.R. Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images. Biomed. Signal Process. Control 2021 68 102622 10.1016/j.bspc.2021.102622 33846685
    [Google Scholar]
  40. Khozeimeh F. Sharifrazi D. Izadi N.H. Joloudari J.H. Shoeibi A. Alizadehsani R. Gorriz J.M. Hussain S. Sani Z.A. Moosaei H. Khosravi A. Nahavandi S. Islam S.M.S. Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients. Sci. Rep. 2021 11 1 15343 10.1038/s41598‑021‑93543‑8 34321491
    [Google Scholar]
  41. Al Rahhal M.M. Bazi Y. Jomaa R.M. AlShibli A. Alajlan N. Mekhalfi M.L. Melgani F. Covid-19 detection in ct/x-ray imagery using vision transformers. J. Pers. Med. 2022 12 2 310 10.3390/jpm12020310 35207797
    [Google Scholar]
  42. Mondal A.K. Bhattacharjee A. Singla P. Prathosh A.P. xViTCOS: explainable vision transformer based COVID-19 screening using radiography. IEEE J. Transl. Eng. Health Med. 2022 10 1 10 10.1109/JTEHM.2021.3134096 34956741
    [Google Scholar]
  43. Krishnan K.S. Krishnan K.S. Vision transformer based COVID-19 detection using chest X-rays. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC) 07-09 Oct, 2021, Solan, India, 2021, pp. 644-648. 10.1109/ISPCC53510.2021.9609375
    [Google Scholar]
  44. Kumar A. Tripathi A.R. Satapathy S.C. Zhang Y.D. SARS-Net: COVID-19 detection from chest x-rays by combining graph convolutional network and convolutional neural network. Pattern Recognit. 2022 122 108255 10.1016/j.patcog.2021.108255 34456369
    [Google Scholar]
  45. Esmi N. Golshan Y. Asadi S. Shahbahrami A. Gaydadjiev G. A fuzzy fine-tuned model for COVID-19 diagnosis. Comput. Biol. Med. 2023 153 106483 10.1016/j.compbiomed.2022.106483 36621192
    [Google Scholar]
  46. Narin A. Kaya C. Pamuk Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Anal. Appl. 2021 24 3 1207 1220 10.1007/s10044‑021‑00984‑y 33994847
    [Google Scholar]
  47. Sethy P.K. Behera S.K. Ratha P.K. Biswas P. Detection of coronavirus disease (COVID-19) based on deep features and support vector machine. International Journal of Mathematical. Int. J. Mathemat. Engin. Manag.Sci. 2020 5 4 643 651 10.33889/IJMEMS.2020.5.4.052
    [Google Scholar]
  48. Hemdan E.E.D. Shouman M.A. Karar M.E. Covidx-net: A framework of deep learning classifiers to diagnose COVID-19 in x-ray images. Arvix abs/2003.11055 2020
    [Google Scholar]
  49. Kumar R. Accurate prediction of COVID-19 using chest X-Ray images through deep feature learning model with SMOTE and machine learning classifiers. MedRxiv 2020.04.13.20063461 2020 10.1101/2020.04.13.20063461
    [Google Scholar]
  50. Yoo S.H. Geng H. Chiu T.L. Yu S.K. Cho D.C. Heo J. Choi M.S. Choi I.H. Cung Van C. Nhung N.V. Min B.J. Lee H. Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imaging. Front. Med. (Lausanne) 2020 7 427 10.3389/fmed.2020.00427 32760732
    [Google Scholar]
  51. Albahli S. A deep neural network to distinguish COVID-19 from other chest diseases using x-ray images. Curr. Med. Imaging Rev. 2021 17 1 109 119 10.2174/1573405616666200604163954 32496988
    [Google Scholar]
  52. Civit-Masot J. Luna-Perejón F. Domínguez Morales M. Civit A. Deep learning system for COVID-19 diagnosis aid using X-ray pulmonary images. Appl. Sci. (Basel) 2020 10 13 4640 10.3390/app10134640
    [Google Scholar]
  53. Sarker L. Islam M.M. Hannan T. Ahmed Z. COVID-DenseNet: A deep learning architecture to detect COVID-19 from chest radiology images. Preprints 2020050151 2020
    [Google Scholar]
  54. Wang S. Zha Y. Li W. Wu Q. Li X. Niu M. Wang M. Qiu X. Li H. Yu H. Gong W. Bai Y. Li L. Zhu Y. Wang L. Tian J. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur. Respir. J. 2020 56 2 2000775 10.1183/13993003.00775‑2020 32444412
    [Google Scholar]
  55. Apostolopoulos I.D. Aznaouridis S.I. Tzani M.A. Extracting possibly representative COVID-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases. J. Med. Biol. Eng. 2020 40 3 462 469 10.1007/s40846‑020‑00529‑4 32412551
    [Google Scholar]
  56. Vantaggiato E. Paladini E. Bougourzi F. Distante C. Hadid A. Taleb-Ahmed A. Covid-19 recognition using ensemble-cnns in two new chest x-ray databases. Sensors (Basel) 2021 21 5 1742 10.3390/s21051742 33802428
    [Google Scholar]
  57. Covid-19 image dataset. Available from:https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset/data(accessed on 8-10-2024)
  58. Szegedy C. Liu W. Jia Y. Sermanet P. Reed S. Anguelov D. Erhan D. Vanhoucke V. Rabinovich A. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition Boston, MA, USA, 2015 pp. 1-9.
    [Google Scholar]
  59. Szegedy C. Vanhoucke V. Ioffe S. Shlens J. Wojna Z. Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition 27-30 Jun, 2016, Las Vegas, NV, USA, 2016, pp. 2818-2826. 10.1109/CVPR.2016.308
    [Google Scholar]
  60. Huang G. Liu Z. Van Der Maaten L. Weinberger K.Q. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Honolulu, HI, USA, 2014, pp. 4700-4708.
    [Google Scholar]
  61. Krizhevsky A. Sutskever I. Hinton G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017 60 6 84 90 10.1145/3065386
    [Google Scholar]
  62. Sandler M. Howard A. Zhu M. Zhmoginov A. Chen L.C. 2018 Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE conference on computer vision and pattern recognition 18-23 June 2018, Salt Lake City, UT, USA, 2018, pp. 4510-4520.
    [Google Scholar]
  63. Howard A.G. Zhu M. Chen B. Kalenichenko D. Wang W. Weyand T. Andreetto M. Adam H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 2017
    [Google Scholar]
  64. Bahdanau D. Cho K. Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473 2014
    [Google Scholar]
  65. Vaswani A. Shazeer N. Parmar N. Uszkoreit J. Jones L. Gomez A.N. Kaiser Ł. Polosukhin I. Attention is all you need. Proceedings of the Advances in Neural Information Processing Systems 04 Dec, 2017, Long Beach, CA, USA, pp. 5998-6008.
    [Google Scholar]
  66. Tao H. Smoke Recognition in Satellite Imagery via an Attention Pyramid Network With Bidirectional Multi-Level Multi-Granularity Feature Aggregation and Gated Fusion. IEEE Internet Things J. 2023
    [Google Scholar]
  67. Tao H. A label-relevance multi-direction interaction network with enhanced deformable convolution for forest smoke recognition. Expert Syst. Appl. 2024 236 121383 10.1016/j.eswa.2023.121383
    [Google Scholar]
  68. Tao H. Duan Q. Hierarchical attention network with progressive feature fusion for facial expression recognition. Neural Netw. 2024 170 337 348 10.1016/j.neunet.2023.11.033 38006736
    [Google Scholar]
  69. Zhang H. Lv Z. Liu S. Sang Z. Zhang Z. Cn2a-capsnet: a capsule network and CNN-attention based method for COVID-19 chest X-ray image diagnosis. Discover Applied Sciences 2024 6 4 190 10.1007/s42452‑024‑05796‑3
    [Google Scholar]
  70. Das A.K. Ghosh S. Thunder S. Dutta R. Agarwal S. Chakrabarti A. Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network. Pattern Anal. Appl. 2021 24 3 1111 1124 10.1007/s10044‑021‑00970‑4
    [Google Scholar]
  71. gifani P. Shalbaf A. Vafaeezadeh M. Automated detection of COVID-19 using ensemble of transfer learning with deep convolutional neural network based on CT scans. Int. J. CARS 2021 16 1 115 123 10.1007/s11548‑020‑02286‑w 33191476
    [Google Scholar]
  72. Türk F. Covid-19 Diagnosis Using a Deep Learning Ensemble Model with Chest X-Ray Images. Comput. Syst. Sci. Eng. 2023 45 2
    [Google Scholar]
  73. Yang Y. Zhang L. Du M. Bo J. Liu H. Ren L. Li X. Deen M.J. A comparative analysis of eleven neural networks architectures for small datasets of lung images of COVID-19 patients toward improved clinical decisions. Comput. Biol. Med. 2021 139 104887 10.1016/j.compbiomed.2021.104887 34688974
    [Google Scholar]
  74. Gillman A.G. Lunardo F. Prinable J. Belous G. Nicolson A. Min H. Terhorst A. Dowling J.A. Automated COVID-19 diagnosis and prognosis with medical imaging and who is publishing: A systematic review. Phys. Eng. Sci. Med. 2021 45 1 13 29
    [Google Scholar]
  75. Toraman S. Alakus T.B. Turkoglu I. Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks. Chaos Solitons Fractals 2020 140 110122 10.1016/j.chaos.2020.110122 32834634
    [Google Scholar]
  76. Zhang K Liu X Shen J Li Z Sang Y Wu X Zha Y Liang W Wang C Clinically applicable ai system for accurate diagnosis, quantitative measurements, and prognosis of covid-19 pneumonia using computed tomography. Cell 2021 181 6 1423 1433
    [Google Scholar]
  77. Wang Z. Xiao Y. Automatically discriminating and localizing covid-19 from community-acquired pneumonia on chest x-rays. Pattern Recognit. 2021 110 107613
    [Google Scholar]
  78. Karakanis S. Leontidis G. Lightweight deep learning models for detecting COVID-19 from chest X-ray images. Comput. Biol. Med. 2021 130 104181 10.1016/j.compbiomed.2020.104181 33360271
    [Google Scholar]
  79. Ibrahim A.U. Ozsoz M. Serte S. Al-Turjman F. Yakoi P.S. Pneumonia classification using deep learning from chest x-ray images during covid-19. Cognit. Comput. 2021 1 13 33425044
    [Google Scholar]
  80. Londono J.D. Garcia J.A. Velazquez L. Llorente J.I. Artificial intelligence applied to chest X-ray images for the automatic detection of COVID-19. A thoughtful evaluation approach. IEEE Access 2020 8 226811 226827 10.1109/ACCESS.2020.3044858
    [Google Scholar]
  81. Ghaffar Z. Shah P.M. Khan H. Comparative analysis of state-of-the-art deep learning models for detecting COVID-19 lung infection from chest X-ray images. techrxiv.20032715 2022
    [Google Scholar]
  82. Taresh M.M. Zhu N. Ali T.A.A. Hameed A.S. Mutar M.L. Transfer learning to detect COVID-19 automatically from X-ray images using convolutional neural networks. Int. J. Biomed. Imaging 2021 2021 1 9 10.1155/2021/8828404 34194484
    [Google Scholar]
  83. El Asnaoui K. Chawki Y. Using X-ray images and deep learning for automated detection of coronavirus disease. J. Biomol. Struct. Dyn. 2021 39 10 3615 3626 10.1080/07391102.2020.1767212 32397844
    [Google Scholar]
  84. Oh Y. Park S. Ye J.C. Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans. Med. Imaging 2020 39 8 2688 2700 10.1109/TMI.2020.2993291 32396075
    [Google Scholar]
  85. Hammoudi K. Benhabiles H. Melkemi M. Dornaika F. Arganda-Carreras I. Collard D. Scherpereel A. Deep learning on chest X-ray images to detect and evaluate pneumonia cases at the era of COVID-19. J. Med. Syst. 2021 45 7 75 10.1007/s10916‑021‑01745‑4 34101042
    [Google Scholar]
  86. Shah P.M. Ullah F. Shah D. Deep GRU-CNN model for COVID-19 detection from chest X-rays data. IEEE Access 2022 10 35094 35105 10.1109/ACCESS.2021.3077592
    [Google Scholar]
  87. Agrawal T. Choudhary P. FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images. Evol. Syst. 2022 13 4 519 533 10.1007/s12530‑021‑09385‑2 38624806
    [Google Scholar]
  88. Thuseethan S. Wimalasooriya C. Vasanthapriyan S. Deep COVID-19 recognition using chest X-ray images: A comparative analysis. Proceedings of the 2021 5th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI) October 13, 2024, Colombo, Sri Lanka, pp. 1-5. 10.1109/SLAAI‑ICAI54477.2021.9664727
    [Google Scholar]
  89. Giełczyk A. Marciniak A. Tarczewska M. Lutowski Z. Pre-processing methods in chest X-ray image classification. PLoS One 2022 17 4 e0265949 10.1371/journal.pone.0265949 35381050
    [Google Scholar]
  90. Abdulahi A.T. Ogundokun R.O. Adenike A.R. Shah M.A. Ahmed Y.K. PulmoNet: a novel deep learning based pulmonary diseases detection model. BMC Med. Imaging 2024 24 1 51 10.1186/s12880‑024‑01227‑2 38418987
    [Google Scholar]
  91. Tekerek A. Al-Rawe I.A.M. A novel approach for prediction of lung disease using chest x-ray images based on DenseNet and MobileNet. Wirel. Pers. Commun. 2023 ••• 1 15 10.1007/s11277‑023‑10489‑y 37360137
    [Google Scholar]
  92. Sharma P. Arya R. Verma R. Verma B. Conv-CapsNet: capsule based network for COVID-19 detection through X-Ray scans. Multimedia Tools Appl. 2023 82 18 28521 28545 10.1007/s11042‑023‑14353‑w 36846527
    [Google Scholar]
  93. Chowdhury N.K. Kabir M.A. Rahman M.M. Rezoana N. ECOVNet: a highly effective ensemble based deep learning model for detecting COVID-19. PeerJ Comput. Sci. 2021 7 e551 10.7717/peerj‑cs.551 34141883
    [Google Scholar]
  94. Paul A. Basu A. Mahmud M. Kaiser M.S. Sarkar R. Inverted bell-curve-based ensemble of deep learning models for detection of COVID-19 from chest X-rays. Neural Comput. Appl. 2022 35 22 1 15 35013650
    [Google Scholar]
  95. Deb S.D. Jha R.K. Jha K. Tripathi P.S. A multi model ensemble based deep convolution neural network structure for detection of COVID19. Biomed. Signal Process. Control 2022 71 103126 10.1016/j.bspc.2021.103126 34493940
    [Google Scholar]
  96. Miyazaki A. Ikejima K. Nishio M. Yabuta M. Matsuo H. Onoue K. Matsunaga T. Nishioka E. Kono A. Yamada D. Oba K. Ishikura R. Murakami T. Computer-aided diagnosis of chest X-ray for COVID-19 diagnosis in external validation study by radiologists with and without deep learning system. Sci. Rep. 2023 13 1 17533 10.1038/s41598‑023‑44818‑9 37845348
    [Google Scholar]
  97. Hussain A. Amin S.U. Lee H. Khan A. Khan N.F. Seo S. An Automated Chest X-Ray Image Analysis for Covid-19 and Pneumonia Diagnosis Using Deep Ensemble Strategy. IEEE Access 2023 11 97207 97220 10.1109/ACCESS.2023.3312533
    [Google Scholar]
  98. Tang S. Wang C. Nie J. Kumar N. Zhang Y. Xiong Z. Barnawi A. EDL-COVID: Ensemble deep learning for COVID-19 case detection from chest X-ray images. IEEE Trans. Industr. Inform. 2021 17 9 6539 6549 10.1109/TII.2021.3057683 37981915
    [Google Scholar]
  99. Pramanik R. Dey S. Malakar S. Mirjalili S. Sarkar R. TOPSIS aided ensemble of CNN models for screening COVID-19 in chest X-ray images. Sci. Rep. 2022 12 1 15409 10.1038/s41598‑022‑18463‑7 36104401
    [Google Scholar]
  100. Nishio M. Kobayashi D. Nishioka E. Matsuo H. Urase Y. Onoue K. Ishikura R. Kitamura Y. Sakai E. Tomita M. Hamanaka A. Murakami T. Deep learning model for the automatic classification of COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy: a multi-center retrospective study. Sci. Rep. 2022 12 1 8214 10.1038/s41598‑022‑11990‑3 35581272
    [Google Scholar]
  101. Asif S. Zhao M. Tang F. Zhu Y. LWSE: a lightweight stacked ensemble model for accurate detection of multiple chest infectious diseases including COVID-19. Multimedia Tools Appl. 2023 83 8 23967 24003 10.1007/s11042‑023‑16432‑4
    [Google Scholar]
  102. Meddage D.P.P. Ekanayake I.U. Herath S. Gobirahavan R. Muttil N. Rathnayake U. Predicting bulk average velocity with rigid vegetation in open channels using tree-based machine learning: a novel approach using explainable artificial intelligence. Sensors (Basel) 2022 22 12 4398 10.3390/s22124398 35746184
    [Google Scholar]
  103. Dharmarathne G. Jayasinghe T.N. Bogahawaththa M. Meddage D.P.P. Rathnayake U. A novel machine learning approach for diagnosing diabetes with a self-explainable interface. Healthcare Analytics 2024 5 100301 10.1016/j.health.2024.100301
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965334135241115064754
Loading
/content/journals/raeeng/10.2174/0123520965334135241115064754
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: uncertainty weighting ; CNN ; pneumonia ; ensemble ; entropy ; Attention mechanism ; transfer learning ; COVID-19
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test