Skip to content
2000
Volume 14, Issue 1
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background: Mass movement trajectory data with real scenarios has been evolved with big data mining to solve the data redundancy problem. Methods: This paper proposes a parallel path based on the Map Reduce compression method, using two kinds of piecewise point mutual crisscross, the classified method of trajectory, and then segment trajectory distribution to multiple nodes to parallelize the compression. Results: Finally, the results based on both compression methods have been simulated for the different real-time data by merging both techniques. Conclusion: The performance test results show that the parallel trajectory compression method proposed in this paper can greatly improve the compression efficiency and completely eliminate the error caused by the failure of the correlation between the segments.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/2352096513999200720165146
2021-02-01
2025-06-19
Loading full text...

Full text loading...

/content/journals/raeeng/10.2174/2352096513999200720165146
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test