Skip to content
2000
Volume 13, Issue 8
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background: To preserve sharp edges and image details while removing noise, this paper presents a denoising method based on Support Vector Machine (SVM) ensemble for detecting noise. Methods: The proposed method ISVM can be divided into two stages: noise detection and noise recovery. In the first stage, local binary features and weighted difference features are extracted as input features vector of ISVM, and multiple sub-SVM classifiers are integrated to form the noise classification model of ISVM by iteratively updating the sample weight. The pixels are divided into noise points and signal points. In the noise recovery stage, according to the classification results of the previous stage, only the gray value of the noise point is replaced, and the replacement value is the weighted mean value with the reciprocal of the quadratic square of the distance as the weight. Results: Finally, the replacement value at the noise point and the original pixel value of the signal point are reconstructed to get the denoised image. Conclusion: The experiments demonstrate that ISVM can achieve a noise detection rate of up to 99.68%. ISVM is highly effective in the denoising task, produces a visually pleasing denoised image with clear edge information, and offers remarkable improvement compared to that of the BPDF and DAMF.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/2352096513999200408123456
2020-12-01
2025-05-29
Loading full text...

Full text loading...

/content/journals/raeeng/10.2174/2352096513999200408123456
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test