Skip to content
2000
Volume 14, Issue 3
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background: The day-ahead load forecasting is an essential guideline for power generating, and it is of considerable significance in power dispatch. Objective: Most of the existing load probability prediction methods use historical data to predict a single area, and rarely use the correlation of load time and space to improve the accuracy of load prediction. Methods: This paper presents a method for day-ahead load probability prediction based on spacetime correction. Firstly, the kernel density estimation (KDE) is employed to model the prediction error of the long short-term memory (LSTM) model, and the residual distribution is obtained. The correlation value is then used to modify the time and space dimensions of the test set's partial period prediction values. Results: The experiment selected three years of load data in 10 areas of a city in northern China. The MAPE of the two modified models on their respective test sets can be reduced by an average of 10.2% and 6.1% compared to previous results. The interval coverage of the probability prediction can be increased by an average of 4.2% and 1.8% than before. Conclusion: The test results show that the proposed correction schemes are feasible.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/2352096513666201208103431
2021-05-01
2025-05-24
Loading full text...

Full text loading...

/content/journals/raeeng/10.2174/2352096513666201208103431
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test