Skip to content
2000
image of Optimizing Cloud Traffic Offloading and Cloudlet Resource Usage in Cloud-Integrated WOBAN (CIW)

Abstract

Background

Integration of cloud components in a wireless mesh network of Wireless-Optical Broadband Access Network (WOBAN) contributes to enhancing network performance.

Aim

This study aims to deploy the minimum cloudlets at the optimum location and to offload excess traffic from overloaded cloudlets to underloaded ones.

Objective

The objective of this study is to optimize cloudlet positioning and traffic offloading for cost-effective deployment, better resource utilization, reduced blocking probability, and lower delays.

Method

The proposed methodology introduces a Cluster-Based Heuristic Approach (CBHA) for efficient cloudlet placement along with a traffic offloading mechanism using a Customized Donkey-Smuggler Optimization (CDSO) to enhance the overall network performance.

Result

Simulations show the effectiveness of the proposed approach for resource utilization, blocking probability, delay, and cost.

Conclusion

The problem in position optimization of the cloudlet, along with traffic offloading, is solved using the proposed approaches to get better network performance in a cost-efficient manner.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965335968241120092223
2025-01-06
2025-06-24
Loading full text...

Full text loading...

References

  1. Ghazisaidi N. Maier M. Fiber-wireless (FiWi) access networks: Challenges and opportunities. Netwrk. Mag. of Global Internetwkg 2011 36 42
    [Google Scholar]
  2. Sarkar S. Dixit S. Mukherjee B. Hybrid wireless-optical broadband-access network (WOBAN): A review of relevant challenges. J. Lightwave Technol. 2007 25 11 3329 3340 10.1109/JLT.2007.906804
    [Google Scholar]
  3. Maier M. Fiber-wireless (FiWi) Broadband access networks in an age of convergence: Past, present, and future. Adv. Optics 2014 2014 1 23 10.1155/2014/945364
    [Google Scholar]
  4. Mohammadani K.H. Butt R.A. Memon K.A. Pirzado A.A. Faheem M. Abro A. Ali B. Ain N. A QoS provisioning architecture of fiber wireless network based on XGPON and IEEE 802.11ac. J. Opt. Commun. 2024 44 s1 s1017 s1022 10.1515/joc‑2020‑0230
    [Google Scholar]
  5. Chouhan N. Bhatt U.R. Upadhyay R. An optimization framework for FiWi access network: Comprehensive solution for green and survivable deployment. Opt. Fiber Technol. 2019 53 102002 10.1016/j.yofte.2019.102002
    [Google Scholar]
  6. Chouhan N. Bhatt U. Upadhyay R. Performance evaluation of fiber wireless (FiWi) access network using position optimization of ONUs Int. J. Sensors Wirel. Commun. Control 2020 10 10.2174/2210327910666200304131411
    [Google Scholar]
  7. Chouhan N. Rathore Bhatt U. Upadhyay R. Bhat V. FiWi network planning for WiFi enabled gram panchayats of India: A frame work using component placement optimization. Opt. Fiber Technol. 2023 76 103242 10.1016/j.yofte.2023.103242
    [Google Scholar]
  8. Emami H. Pashazadeh S. Positioning multiple optical network units in fiber-wireless networks: An efficient hybrid K -harmonic means clustering approach. Opt. Fiber Technol. 2024 84 103759 10.1016/j.yofte.2024.103759
    [Google Scholar]
  9. Emami H. Pashazadeh S. Balafar M.A. A novel fuzzy-based algorithm for ONU placement in FiWi broadband access network. Opt. Fiber Technol. 2023 80 103414 10.1016/j.yofte.2023.103414
    [Google Scholar]
  10. Lim C. Tian Y. Ranaweera C. Nirmalathas T.A. Wong E. Lee K.L. Evolution of radio-over-fiber technology. J. Lightwave Technol. 2019 37 6 1647 1656 10.1109/JLT.2018.2876722
    [Google Scholar]
  11. Bhatt U.R. Chouhan N. Upadhyay R. Hybrid algorithm: A cost efficient solution for ONU placement in Fiber-Wireless (FiWi) network. Opt. Fiber Technol. 2015 22 76 83 10.1016/j.yofte.2015.01.010
    [Google Scholar]
  12. Bhatt U.R. Chouhan N. ONU placement in Fiber-Wireless (FiWi) Networks 2013 Nirma University International Conference on Engineering (NUiCONE) Ahmedabad, India, 28-30 November 2013, 1 6 10.1109/NUiCONE.2013.6780115
    [Google Scholar]
  13. Barbera M.V. Kosta S. Mei A. Stefa J. To offload or not to offload? The bandwidth and energy costs of mobile cloud computing. Italy IEEE INFOCOM Turin 2013 1285 1293 10.1109/INFCOM.2013.6566921
    [Google Scholar]
  14. Muñoz O. Pascual-Iserte A. Vidal J. Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading. IEEE Trans. Vehicular Technol. 2015 64 10 4738 4755 10.1109/TVT.2014.2372852
    [Google Scholar]
  15. Verma M. Bhatt U.R. Upadhyay R. Building a cloud-integrated WOBAN with optimal coverage and deployment cost Advances in Computing and Network Communications. Springer 2021 119 131 Singapore 10.1007/978‑981‑33‑6977‑1_10
    [Google Scholar]
  16. Clinch S. Harkes J. Friday A. Davies N. Satyanarayanan M. How close is close enough? Understanding the role of cloudlets in supporting display appropriation by mobile users 2012 IEEE International Conference on Pervasive Computing and Communications Lugano, Switzerland, 19-23 March 2012 122 127 10.1109/PerCom.2012.6199858
    [Google Scholar]
  17. Satyanarayanan M. Bahl P. Caceres R. Davies N. The case for VM-Based Cloudlets in mobile computing. IEEE Pervasive Comput. 2009 8 4 14 23 10.1109/MPRV.2009.82
    [Google Scholar]
  18. Verbelen T. Simoens P. De Turck F. Dhoedt B. Cloudlets: Bringing the cloud to the mobile user Third ACM Workshop on Mobile Cloud Computing and Services New York NY, USA 29 36 10.1145/2307849.2307858
    [Google Scholar]
  19. Verbelen T. Simoens P. De Turck F. Dhoedt B. Leveraging cloudlets for immersive collaborative applications. IEEE Pervasive Comput. 2013 12 4 30 38 10.1109/MPRV.2013.66
    [Google Scholar]
  20. Ceselli A. Premoli M. Secci S. Mobile edge cloud network design optimization. IEEE/ACM Trans. Netw. 2017 25 3 1818 1831 10.1109/TNET.2017.2652850
    [Google Scholar]
  21. Reaz A. Ramamurthi V. Tornatore M. Mukherjee B. Green provisioning of cloud services over wireless-optical broadband access networks IEEE Global Telecommunications Conference - GLOBECOM Houston, TX, USA, 2011 1 5 10.1109/GLOCOM.2011.6134394
    [Google Scholar]
  22. Verma M. Bhatt U.R. Upadhyay R. Bhat V. Priority based task scheduling in cloud integrated WOBAN network Conference on Electrical, Electronics and Computer Science (SCEECS) Bhopal, India, 18-19 February 2023 1 4 10.1109/SCEECS57921.2023.10063047
    [Google Scholar]
  23. Bao B. Yang H. Yao Q. Guan L. Zhang J. Cheriet M. Resource allocation with edge-cloud collaborative traffic prediction in integrated radio and optical networks. IEEE Access 2023 11 7067 7077 10.1109/ACCESS.2023.3237257
    [Google Scholar]
  24. Li Z. Zhao Y. Li Y. Liu M. Zeng Z. Xin X. Wang F. Li X. Zhang J. Self-optimizing optical network with cloud-edge collaboration: Architecture and application. IEEE Open J. Comput. Soc. 2020 1 220 229 10.1109/OJCS.2020.3030957
    [Google Scholar]
  25. Pelle I. Paolucci F. Sonkoly B. Cugini F. Latency-sensitive edge/cloud serverless dynamic deployment over telemetry-based packet-optical network. IEEE J. Sel. Areas Comm. 2021 39 9 2849 2863 10.1109/JSAC.2021.3064655
    [Google Scholar]
  26. Rimal B.P. Van D.P. Maier M. Mobile edge computing empowered fiber-wireless access networks in the 5G Era. IEEE Commun. Mag. 2017 55 2 192 200 10.1109/MCOM.2017.1600156CM
    [Google Scholar]
  27. Reaz A.S. Ramamurthi V. Tornatore M. Mukherjee B. Cloud-integrated WOBAN: An offloading-enabled architecture for service-oriented access networks. Comput. Netw. 2014 68 5 19 10.1016/j.comnet.2013.12.003
    [Google Scholar]
  28. Xu Z. Liang W. Xu W. Jia M. Guo S. Capacitated cloudlet placements in wireless metropolitan area networks IEEE 40th Conference on Local Computer Networks (LCN), Clearwater Beach, FL, USA, 26-29 October 2015, 570 578 10.1109/LCN.2015.7366372
    [Google Scholar]
  29. Xu Z. Liang W. Xu W. Jia M. Guo S. Efficient algorithms for capacitated cloudlet placements. IEEE Trans. Parallel Distrib. Syst. 2016 27 10 2866 2880 10.1109/TPDS.2015.2510638
    [Google Scholar]
  30. Chen L. Wu J. Zhou G. Ma L. QUICK: QoS-guaranteed efficient cloudlet placement in wireless metropolitan area networks. J. Supercomput. 2018 74 8 4037 4059 10.1007/s11227‑018‑2412‑8
    [Google Scholar]
  31. Mondal S. Das G. Wong E. CCOMPASSION: A hybrid cloudlet placement framework over passive optical access networks IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Honolulu, HI, USA, 16-19 April 2018 216 224 10.1109/INFOCOM.2018.8485846>
    [Google Scholar]
  32. Mondal S. Das G. Wong E. Efficient cost-optimization frameworks for hybrid cloudlet placement over fiber-wireless networks. J. Opt. Commun. Netw. 2019 11 8 437 451 10.1364/JOCN.11.000437
    [Google Scholar]
  33. Sun X. Ansari N. Latency aware workload offloading in the cloudlet network. IEEE Commun. Lett. 2017 21 7 1481 1484 10.1109/LCOMM.2017.2690678
    [Google Scholar]
  34. Wang Z. Gao F. Jin X. Optimal deployment of cloudlets based on cost and latency in internet of things networks. Wirel. Netw. 2020 26 8 6077 6093 10.1007/s11276‑020‑02418‑9
    [Google Scholar]
  35. Mahesar A.R. Lakhan A. Sajnani D.K. Jamali I.A. Hybrid delay optimization and workload assignment in mobile edge cloud networks. OAlib 2018 5 9 1 12 10.4236/oalib.1104854
    [Google Scholar]
  36. Rimal B.P. Pham Van D. Maier M. Cloudlet enhanced fiber-wireless access networks for mobile-edge computing. IEEE Trans. Wirel. Commun. 2017 16 6 3601 3618 10.1109/TWC.2017.2685578
    [Google Scholar]
  37. Guo H. Liu J. Collaborative computation offloading for multiaccess edge computing over fiber-wireless networks. IEEE Trans. Vehicular Technol. 2018 67 5 4514 4526 10.1109/TVT.2018.2790421
    [Google Scholar]
  38. Li H. Liu L. Duan X. Li H. Zheng P. Tang L. Energy-efficient offloading based on hybrid bio-inspired algorithm for edge–cloud integrated computation. Sustain. Comput. 2024 42 100972 10.1016/j.suscom.2024.100972
    [Google Scholar]
  39. Jia M. Liang W. Xu Z. Huang M. Ma Y. QoS-aware cloudlet load balancing in wireless metropolitan area networks. IEEE Trans. Cloud Comput. 2020 8 2 623 634 10.1109/TCC.2017.2786738
    [Google Scholar]
  40. Jia M. Cao J. Liang W. Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks. IEEE Trans. Cloud Comput. 2017 5 4 725 737 10.1109/TCC.2015.2449834
    [Google Scholar]
  41. Mondal S. Das G. Wong E. Computation offloading in optical access cloudlet networks: A game-theoretic approach. IEEE Commun. Lett. 2018 22 8 1564 1567 10.1109/LCOMM.2018.2843327
    [Google Scholar]
  42. Dai Q. Qian J. Qin G. Li J. Zhao J. A latency-aware offloading strategy over fiber-wireless (FiWi) infrastructures for tactile internet services. Appl. Sci. 2022 12 13 6417 10.3390/app12136417
    [Google Scholar]
  43. Chen B. Liu L. Fan Y. Shao W. Gao M. Chen H. Ju W. Ho P-H. Jue J.P. Shen G. Low-latency partial resource offloading in cloud-edge elastic optical networks. J. Opt. Commun. Netw. 2024 16 2 142 158 10.1364/JOCN.500117
    [Google Scholar]
  44. Maqsood T. S.K. uz Zaman, A. Qayyum, F. Rehman, S. Mustafa, and J. Shuja, “Adaptive thresholds for improved load balancing in mobile edge computing using K-means clustering”. Telecomm. Syst. 2024 86 3 519 532 10.1007/s11235‑024‑01134‑5
    [Google Scholar]
  45. Jiang W. Graph-based deep learning for communication networks: A survey. Comput. Commun. 2022 185 40 54 10.1016/j.comcom.2021.12.015
    [Google Scholar]
  46. Jianping W. Guangqiu Q. Chunming W. Weiwei J. Jiahe J. Federated learning for network attack detection using attention-based graph neural networks. Sci. Rep. 2024 14 1 19088 10.1038/s41598‑024‑70032‑2 39154072
    [Google Scholar]
  47. Fesehaye D. Gao Y. Nahrstedt K. Wang G. Impact of cloudlets on interactive mobile cloud applications EEE 16th International Enterprise Distributed Object Computing Conference Beijing, China, 10-14 September 2012 123 132 10.1109/EDOC.2012.23
    [Google Scholar]
  48. Ng C.H. Boon-Hee S. Queueing Modelling Fundamentals: With Applications in Communication Networks. Wiley 2008 10.1002/9780470994672
    [Google Scholar]
  49. Shamsaldin A.S. Rashid T.A. Al-Rashid Agha R.A. Al-Salihi N.K. Mohammadi M. Donkey and smuggler optimization algorithm: A collaborative working approach to path finding. J. Comput. Des. Eng. 2019 6 4 562 583 10.1016/j.jcde.2019.04.004
    [Google Scholar]
  50. Sai Kalyan C.N. Srikanth Goud B. Kishan H. Ramineni P. Kumar B.P. Anil Kumar T. Donkey and smuggler optimization algorithm-based degree of freedom controller for stability of two area power system with AC-DC Links IEEE 7th International Conference on Recent Advances and Innovations in Engineering (ICRAIE) MANGALORE, India, 01-03 December 2022 461 466 10.1109/ICRAIE56454.2022.10054318
    [Google Scholar]
  51. Hasan N.M. Rashid T.A. Alsadoon A. Qosaeri A.S. Abualigah L. Yaseen Z.M. An enhanced donkey and smuggler optimization algorithm for choosing the precise job applicant. Iran J. Comput. Sci. 2023 6 3 233 243 10.1007/s42044‑023‑00135‑y
    [Google Scholar]
  52. Rajeswari G. Arthi R. Murugan K. Nature-inspired donkey and smuggler algorithm for optimal data gathering in partitioned wireless sensor networks for restoring network connectivity. Computing 2024 106 3 759 787 10.1007/s00607‑023‑01251‑0
    [Google Scholar]
  53. Anitha N. Priya D. Baskar C. Devisurya V. An effective logistics network design using donkey-smugglers optimization (DSO) algorithm 14th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2022) 2023 616 623 10.1007/978‑3‑031‑27524‑1_59
    [Google Scholar]
  54. Behura A. Optimized data transmission scheme based on proper channel coordination used in vehicular ad hoc networks. Int. J. Inf. Technol. 2022 14 2 1107 1116 10.1007/s41870‑021‑00634‑w
    [Google Scholar]
  55. Almekhlafi M. Prabu P. Venkatachalam K. Alluhaidan A.S. Radwa M. Covid-19 CT lung image segmentation using adaptive donkey and smuggler optimization algorithm. Comput. Mater. Continua 2022 71 1133 1152 10.32604/cmc.2022.020919
    [Google Scholar]
  56. Bhatt U.R. Chouhan N. Marmat A.B. Upadhyay R. Deployment of cost-efficient cloud integrated WOBAN: A cluster- based approach. Int. J. Sensors Wirel. Commun. Control 2021 11 3 314 323 10.2174/2210327910666200224114030
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965335968241120092223
Loading
/content/journals/raeeng/10.2174/0123520965335968241120092223
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test