Skip to content
2000
image of Revealing the Antidiabetic Potential of Herbal Nanoparticles

Abstract

Diabetes is a chronic metabolic disorder that is characterized by high postprandial blood sugar levels and increased fasting, which disrupts physiological balance and causes organ damage. Owing to the global health risk of type 2 diabetes, natural remedies have shown promise as viable alternatives because of their outstanding antidiabetic properties. Nevertheless, the therapeutic use of these compounds is rather restricted due to their inadequate solubility, instability in the gastrointestinal tract, low absorption, and other related factors. Currently, the development of nanoscale systems is a notable approach to enhancing the delivery of phytochemicals. This study aims to investigate the advancements in drug delivery techniques using nanoparticles, with a particular focus on enhancing the effectiveness of herbal remedies in the treatment of diabetes. This study aims to enrich our understanding of nanotechnology's potential in enlightening drug delivery systems by employing database repositories like PubMed, Scopus, Google Scholar, and Web of Science. Based on their categorization and structure, nano-systems are classified into liposomes, nanostructured lipid carriers, phytosomes, niosomes, solid lipid nanoparticles, self-nano emulsifying drug delivery systems, and inorganic nano-carriers. This study intricately describes the formulation process, selection criteria, and mechanism of herb-loaded nanoparticles using an example of the pharmacokinetic and pharmacodynamic properties of antidiabetic herbal drugs. Researchers have proven that nano-formulations of herb-loaded antidiabetic drugs improve compliance and therapeutic efficacy by resolving pharmacokinetic and biopharmaceutical issues. We could expect the creation of nano-formulations to be a viable method for optimizing the therapeutic effectiveness of plant-produced antidiabetic compounds.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385357690250214072827
2025-01-21
2025-05-31
Loading full text...

Full text loading...

References

  1. Ramachandran A. Snehalatha C. Viswanathan V. Burden of type 2 diabetes and its complications – The Indian scenario. Curr. Sci. 2002 83 1471 1476
    [Google Scholar]
  2. Safavi M. Foroumadi A. Abdollahi M. The importance of synthetic drugs for type 2 diabetes drug discovery. Expert Opin. Drug Discov. 2013 8 11 1339 1363 10.1517/17460441.2013.837883 24050217
    [Google Scholar]
  3. Osadebe P. Odoh E. Uzor P. Natural products as potential sources of antidiabetic drugs. Br. J. Pharm. Res. 2014 4 17 2075 2095 10.9734/BJPR/2014/8382
    [Google Scholar]
  4. Covington M.B. Traditional chinese medicine in the treatment of diabetes. Diabetes Spectr. 2001 14 3 154 159 10.2337/diaspect.14.3.154
    [Google Scholar]
  5. Bairwa N. Sethiya N. Mishra S.H. Protective effect of stem bark of Ceiba pentandra linn. against paracetamol-induced hepatotoxicity in rats. Pharmacognosy Res. 2010 2 1 26 30 10.4103/0974‑8490.60584 21808535
    [Google Scholar]
  6. Teja P.K. Mithiya J. Kate A.S. Bairwa K. Chauthe S.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine 2022 96 153890 10.1016/j.phymed.2021.153890 35026510
    [Google Scholar]
  7. Holmannova D. Borsky P. Svadlakova T. Borska L. Fiala Z. Carbon nanoparticles and their biomedical applications. Appl. Sci. 2022 12 15 7865 10.3390/app12157865
    [Google Scholar]
  8. Altammar K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023 14 1155622 10.3389/fmicb.2023.1155622 37180257
    [Google Scholar]
  9. Akbarzadeh A. Sadabady R.R. Davaran S. Joo S.W. Zarghami N. Hanifehpour Y. Samiei M. Kouhi M. Koshki N.K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  10. Chis A.A. Dobrea C. Morgovan C. Arseniu A.M. Rus L.L. Butuca A. Juncan A.M. Totan M. Tincu V.A.L. Cormos G. Muntean A.C. Muresan M.L. Gligor F.G. Frum A. Applications and limitations of dendrimers in biomedicine. Molecules 2020 25 17 3982 10.3390/molecules25173982 32882920
    [Google Scholar]
  11. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  12. Thomas D. KurienThomas K. Latha M.S. Preparation and evaluation of alginate nanoparticles prepared by green method for drug delivery applications. Int. J. Biol. Macromol. 2020 154 888 895 10.1016/j.ijbiomac.2020.03.167 32209372
    [Google Scholar]
  13. Arms L. Smith D.W. Flynn J. Palmer W. Martin A. Woldu A. Hua S. Advantages and limitations of current techniques for analyzing the biodistribution of nanoparticles. Front. Pharmacol. 2018 9 802 10.3389/fphar.2018.00802 30154715
    [Google Scholar]
  14. Shen Z. Li W. Ma J. Zhang X. Zhang X. Zhang X. Theoretical predictions of size-dependent Young’s and shear moduli of single-walled carbon nanotubes. Phys. B. Condens. Matter 2021 613 412994
    [Google Scholar]
  15. Yaari Z. Yang Y. Apfelbaum E. Cupo C. Settle A.H. Cullen Q. Cai W. Roche K.L. Levine D.A. Fleisher M. Ramanathan L. Zheng M. Jagota A. Heller D.A. A perception-based nanosensor platform to detect cancer biomarkers. Sci. Adv. 2021 7 47 eabj0852 10.1126/sciadv.abj0852 34797711
    [Google Scholar]
  16. Nasrollahzadeh M. Sajadi S.M. Sajjadi M. Issaabadi Z. An introduction to nanotechnology. Interface Sci. Technol 2019 1 27
    [Google Scholar]
  17. Gaur M. Misra C. Yadav A.B. Swaroop S. Maolmhuaidh F.Ó. Bechelany M. Barhoum A. Biomedical applications of carbon nanomaterials: Fullerenes, quantum dots, nanotubes, nanofibers, and graphene. Materials 2021 14 20 5978 10.3390/ma14205978 34683568
    [Google Scholar]
  18. Dreaden E.C. Alkilany A.M. Huang X. Murphy C.J. Sayed E.M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012 41 7 2740 2779 10.1039/C1CS15237H 22109657
    [Google Scholar]
  19. Klębowski B. Depciuch J. Parlińska-Wojtan M. Baran J. Applications of noble metal-based nanoparticles in medicine. Int. J. Mol. Sci. 2018 19 12 4031 10.3390/ijms19124031 30551592
    [Google Scholar]
  20. Yamanaka M. Hara K. Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 2005 71 11 7589 7593 10.1128/AEM.71.11.7589‑7593.2005 16269810
    [Google Scholar]
  21. Thomas S. Harshita B.S.P. Mishra P. Talegaonkar S. Ceramic nanoparticles: Fabrication methods and applications in drug delivery. Curr. Pharm. Des. 2015 21 42 6165 6188 10.2174/1381612821666151027153246
    [Google Scholar]
  22. Ali S. Khan I. Khan S.A. Sohail M. Ahmed R. Rehman A. Ansari M.S. Morsy M.A. Electrocatalytic performance of Ni@Pt core–shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction. J. Electroanal. Chem. 2017 795 17 25 10.1016/j.jelechem.2017.04.040
    [Google Scholar]
  23. Khan I. Abdalla A. Qurashi A. Synthesis of hierarchical WO3 and Bi2O3/WO3 nanocomposite for solar-driven water splitting applications. Int. J. Hydrogen Energy 2017 42 5 3431 3439 10.1016/j.ijhydene.2016.11.105
    [Google Scholar]
  24. Sun S. Murray C.B. Weller D. Folks L. Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000 287 5460 1989 1992 10.1126/science.287.5460.1989 10720318
    [Google Scholar]
  25. Rao J.P. Geckeler K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011 36 7 887 913 10.1016/j.progpolymsci.2011.01.001
    [Google Scholar]
  26. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Torres R.M.P. Torres A.L.S. Torres D.L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  27. Moraru C. Mincea M.M. Frandes M. Timar B. Ostafe V. A meta-analysis on randomised controlled clinical trials evaluating the effect of the dietary supplement chitosan on weight loss, lipid parameters and blood pressure. Medicina 2018 54 6 109 10.3390/medicina54060109 30545156
    [Google Scholar]
  28. Pramanik S. Sali V. Connecting the dots in drug delivery: A tour d’horizon of chitosan-based nanocarriers system. Int. J. Biol. Macromol. 2021 169 103 121 10.1016/j.ijbiomac.2020.12.083 33338522
    [Google Scholar]
  29. Ładniak A. Jurak M. Palusińska-Szysz M. Wiącek A.E. The Influence of Polysaccharides/TiO2 on the Model Membranes of Dipalmitoylphosphatidylglycerol and Bacterial Lipids. Molecules 2022 27 2 343 10.3390/molecules27020343 35056656
    [Google Scholar]
  30. Shafai E.N.M. Masoud M.S. Ibrahim M.M. Ramadan M.S. Mersal G.A.M. Mehasseb E.I.M. Drug delivery of sofosbuvir drug capsulated with the β-cyclodextrin basket loaded on chitosan nanoparticle surface for anti-hepatitis C virus (HCV). Int. J. Biol. Macromol. 2022 207 402 413 10.1016/j.ijbiomac.2022.03.026 35278509
    [Google Scholar]
  31. Sosnik A. Alginate particles as platform for drug delivery by the oral route: State-of-the-art. ISRN Pharm. 2014 2014 1 17 10.1155/2014/926157 25101184
    [Google Scholar]
  32. Lee K.Y. Mooney D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012 37 1 106 126 10.1016/j.progpolymsci.2011.06.003 22125349
    [Google Scholar]
  33. He L. Shang Z. Liu H. Yuan Z. Alginate-based platforms for cancer-targeted drug delivery. BioMed Res. Int. 2020 2020 1 17 10.1155/2020/1487259
    [Google Scholar]
  34. Costa J.R. Silva N.C. Sarmento B. Pintado M. Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur. J. Clin. Microbiol. Infect. Dis. 2015 34 6 1255 1262 10.1007/s10096‑015‑2344‑7 25754770
    [Google Scholar]
  35. Goswami S. Naik S. Natural gums and its pharmaceutical application. Journal of Scientific and Innovative Research 2014 3 1 112 121 10.31254/jsir.2014.3118
    [Google Scholar]
  36. Laffleur F. Michalek M. Modified xanthan gum for buccal delivery—A promising approach in treating sialorrhea. Int. J. Biol. Macromol. 2017 102 1250 1256 10.1016/j.ijbiomac.2017.04.123 28487193
    [Google Scholar]
  37. Bozzuto G. Molinari A. Liposomes as nanomedical devices. Int. J. Nanomedicine 2015 10 975 999 10.2147/IJN.S68861 25678787
    [Google Scholar]
  38. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 286 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  39. Musielak E. Guzik F.A. Nowak I. Synthesis and potential applications of lipid nanoparticles in medicine. Materials 2022 15 2 682 10.3390/ma15020682 35057398
    [Google Scholar]
  40. Szoka F. Jr Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl. Acad. Sci. USA 1978 75 9 4194 4198 10.1073/pnas.75.9.4194 279908
    [Google Scholar]
  41. Abbasi E. Aval S.F. Akbarzadeh A. Milani M. Nasrabadi H.T. Joo S.W. Hanifehpour Y. Koshki N.K. Asl P.R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014 9 1 247 10.1186/1556‑276X‑9‑247 24994950
    [Google Scholar]
  42. Tomalia D.A. Fréchet J.M.J. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J. Polym. Sci. A Polym. Chem. 2002 40 16 2719 2728 10.1002/pola.10301
    [Google Scholar]
  43. Pravinkumar P. Dendrimer Applications: A review. Int. J. Pharm. Bio Sci. 2013 4 454
    [Google Scholar]
  44. Kesharwani P. Jain K. Jain N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014 39 2 268 307 10.1016/j.progpolymsci.2013.07.005
    [Google Scholar]
  45. Junyaprasert V.B. Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J. Pharm. Sci. 2015 10 1 13 23 10.1016/j.ajps.2014.08.005
    [Google Scholar]
  46. Ni R. Zhao J. Liu Q. Liang Z. Muenster U. Mao S. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. Eur. J. Pharm. Sci. 2017 99 137 146 10.1016/j.ejps.2016.12.013 27988327
    [Google Scholar]
  47. Ochekpe N.A. Olorunfemi P.O. Ngwuluka N.C. Nanotechnology and drug delivery part 1: Background and applications. Trop. J. Pharm. Res. 2009 8 3 265 274 10.4314/tjpr.v8i3.44546
    [Google Scholar]
  48. Duan X. Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 2013 9 9-10 1521 1532 10.1002/smll.201201390 23019091
    [Google Scholar]
  49. Cooley M. Sarode A. Hoore M. Fedosov D.A. Mitragotri S. Gupta S.A. Influence of particle size and shape on their margination and wall-adhesion: Implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale 2018 10 32 15350 15364 10.1039/C8NR04042G 30080212
    [Google Scholar]
  50. Champion J.A. Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 2009 26 1 244 249 10.1007/s11095‑008‑9626‑z 18548338
    [Google Scholar]
  51. Zellnitz S. Zellnitz L. Müller M.T. Meindl C. Schröttner H. Fröhlich E. Impact of drug particle shape on permeability and cellular uptake in the lung. Eur. J. Pharm. Sci. 2019 139 105065 10.1016/j.ejps.2019.105065 31493448
    [Google Scholar]
  52. Gratton S.E.A. Ropp P.A. Pohlhaus P.D. Luft J.C. Madden V.J. Napier M.E. DeSimone J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 2008 105 33 11613 11618 10.1073/pnas.0801763105 18697944
    [Google Scholar]
  53. Alexis F. Pridgen E. Molnar L.K. Farokhzad O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 2008 5 4 505 515 10.1021/mp800051m 18672949
    [Google Scholar]
  54. Alshawwa S.Z. Kassem A.A. Farid R.M. Mostafa S.K. Labib G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics 2022 14 4 883 10.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  55. Honary S. Zahir F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 2). Trop. J. Pharm. Res. 2013 12 265 273
    [Google Scholar]
  56. Jahanshahi M. Babaei Z. Protein nanoparticle: A unique system as drug delivery vehicles. Afr. J. Biotechnol. 2008 7 4926 4934
    [Google Scholar]
  57. Joye I.J. McClements D.J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr. Opin. Colloid Interface Sci. 2014 19 5 417 427 10.1016/j.cocis.2014.07.002
    [Google Scholar]
  58. Scholes P.D. Coombes A.G.A. Illum L. Davis S.S. Watts J.F. Ustariz C. Vert M. Davies M.C. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J. Control. Release 1999 59 3 261 278 10.1016/S0168‑3659(98)00138‑2 10332059
    [Google Scholar]
  59. Baig N. Kammakakam I. Falath W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021 2 6 1821 1871 10.1039/D0MA00807A
    [Google Scholar]
  60. Xie P. Cao X. Lin Z. Javanmard M. Top-down fabrication meets bottom-up synthesis for nanoelectronic barcoding of microparticles. Lab Chip 2017 17 11 1939 1947 10.1039/C7LC00035A 28470316
    [Google Scholar]
  61. Gherbi B. Laouini S.E. Meneceur S. Bouafia A. Hemmami H. Tedjani M.L. Thiripuranathar G. Barhoum A. Menaa F. Effect of ph value on the bandgap energy and particles size for biosynthesis of zno nanoparticles: Efficiency for photocatalytic adsorption of methyl orange. Sustainability 2022 14 18 11300 10.3390/su141811300
    [Google Scholar]
  62. Harish V. Ansari M.M. Tewari D. Gaur M. Yadav A.B. Betancourt G.M.L. Haleem A.F.M. Bechelany M. Barhoum A. Nanoparticle and nanostructure synthesis and controlled growth methods. Nanomaterials 2022 12 18 3226 10.3390/nano12183226 36145012
    [Google Scholar]
  63. Marcelo G.A. Lodeiro C. Capelo J.L. Lorenzo J. Oliveira E. Magnetic, fluorescent and hybrid nanoparticles: From synthesis to application in biosystems. Mater. Sci. Eng. C 2020 106 110104 10.1016/j.msec.2019.110104 31753374
    [Google Scholar]
  64. Barhoum A. Jeevanandam J. Rastogi A. Samyn P. Boluk Y. Dufresne A. Danquah M.K. Bechelany M. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale 2020 12 45 22845 22890 10.1039/D0NR04795C 33185217
    [Google Scholar]
  65. Tulinski M. Jurczyk M. Nanomaterials Synthesis Methods. Metrology and Standardization of Nanotechnology. John Wiley & Sons, Ltd 2017 75 98 10.1002/9783527800308.ch4
    [Google Scholar]
  66. Kruis F.E. Fissan H. Rellinghaus B. Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater. Sci. Eng. B 2000 69-70 329 334 10.1016/S0921‑5107(99)00298‑6
    [Google Scholar]
  67. Luna D.M.M. Karandikar P. Gupta M. Synthesis of inorganic/organic hybrid materials via vapor deposition onto liquid surfaces. ACS Appl. Nano Mater. 2018 1 12 6575 6579 10.1021/acsanm.8b01888
    [Google Scholar]
  68. Krishnia L. Thakur P. Thakur A. Synthesis of Nanoparticles by Physical Route. Synthesis and Applications of Nanoparticles Singapore Springer Nature 2022 45 59
    [Google Scholar]
  69. Eslamian M. Shekarriz M. Recent advances in nanoparticle preparation by spray and micro-emulsion methods. Recent Pat. Nanotechnol. 2009 3 2 99 115 10.2174/187221009788490068 19519594
    [Google Scholar]
  70. Malamatari M. Charisi A. Malamataris S. Kachrimanis K. Nikolakakis I. Spray drying for the preparation of nanoparticle-based drug formulations as dry powders for inhalation. Processes 2020 8 7 788 10.3390/pr8070788
    [Google Scholar]
  71. Abdelwahed W. Degobert G. Stainmesse S. Fessi H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev. 2006 58 15 1688 1713 10.1016/j.addr.2006.09.017 17118485
    [Google Scholar]
  72. Rasouli R. Barhoum A. Bechelany M. Dufresne A. Nanofibers for biomedical and healthcare applications. Macromol. Biosci. 2019 19 2 1800256 10.1002/mabi.201800256 30485660
    [Google Scholar]
  73. Khan F.A. Synthesis of nanomaterials: Methods & technology. applications of nanomaterials in human health. Singapore Springer 2020 15 21 10.1007/978‑981‑15‑4802‑4_2
    [Google Scholar]
  74. Nashar E.R.M. Ghani A.N.T. Gohary E.N.A. Barhoum A. Madbouly A. Molecularly imprinted polymers based biomimetic sensors for mosapride citrate detection in biological fluids. Mater. Sci. Eng. C 2017 76 123 129 10.1016/j.msec.2017.03.087 28482490
    [Google Scholar]
  75. Dhand C. Dwivedi N. Loh X.J. Ying J.A.N. Verma N.K. Beuerman R.W. Lakshminarayanan R. Ramakrishna S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Advances 2015 5 127 105003 105037 10.1039/C5RA19388E
    [Google Scholar]
  76. Lu L. Sevonkaev I. Kumar A. Goia D.V. Strategies for tailoring the properties of chemically precipitated metal powders. Powder Technol. 2014 261 87 97 10.1016/j.powtec.2014.04.015
    [Google Scholar]
  77. Xu R. Modern Inorganic Synthetic Chemistry. New York Elsevier 2017 2 1 7
    [Google Scholar]
  78. Mustapha T. Misni N. Ithnin N.R. Daskum A.M. Unyah N.Z. A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. Int. J. Environ. Res. Public Health 2022 19 2 674 10.3390/ijerph19020674 35055505
    [Google Scholar]
  79. Vijayaram S. Razafindralambo H. Sun Y.Z. Vasantharaj S. Ghafarifarsani H. Hoseinifar S.H. Raeeszadeh M. Applications of green synthesized metal nanoparticles — a review. Biol. Trace Elem. Res. 2024 202 1 360 386 10.1007/s12011‑023‑03645‑9 37046039
    [Google Scholar]
  80. Ealia S.A.M. Saravanakumar M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP conference series: Materials science and engineering Bristol, England IOP Publishing 2017 263 3 032019
    [Google Scholar]
  81. Marsalek R. Particle size and zeta potential of zno. APCBEE Procedia 2014 9 13 17 10.1016/j.apcbee.2014.01.003
    [Google Scholar]
  82. Khan I. Saeed K. Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019 12 7 908 931 10.1016/j.arabjc.2017.05.011
    [Google Scholar]
  83. Saldarriaga J.F. Aguado R. Pablos A. Amutio M. Olazar M. Bilbao J. Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel 2015 140 744 751 10.1016/j.fuel.2014.10.024
    [Google Scholar]
  84. Liu L. Liu J. Zhao L. Yang Z. Lv C. Xue J. Tang A. Synthesis and characterization of magnetic Fe3O4@CaSiO3 composites and evaluation of their adsorption characteristics for heavy metal ions. Environ. Sci. Pollut. Res. Int. 2019 26 9 8721 8736 10.1007/s11356‑019‑04352‑6 30710330
    [Google Scholar]
  85. Zahid M. Nadeem N. Hanif M.A. Bhatti I.A. Bhatti H.N. Mustafa G. Metal ferrites and their graphene-based nanocomposites: Synthesis, characterization, and applications in wastewater treatment. nanotechnology in the life sciences magnetic nanostructures. Springer International Publishing 2019 181 212
    [Google Scholar]
  86. Nkele A.C. Ezema F.I. Nkele A.C. Ezema F.I. Diverse Synthesis and Characterization Techniques of Nanoparticles. Thin Films. London Intech Open 2020 94453
    [Google Scholar]
  87. Yu Z.B. Xie Y.P. Liu G. Lu G.Q.M. Ma X.L. Cheng H-M. Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A Mater. Energy Sustain. 2013 1 8 2773 2776 10.1039/c3ta01476b
    [Google Scholar]
  88. Organization WH WHO Global Report on Traditional and Complementary Medicine. World Health Organization. Geneva, Switzerland 2019
    [Google Scholar]
  89. Chawla R. Thakur P. Chowdhry A. Jaiswal S. Sharma A. Goel R. Sharma J. Priyadarshi S.S. Kumar V. Sharma R.K. Arora R. Evidence based herbal drug standardization approach in coping with challenges of holistic management of diabetes: A dreadful lifestyle disorder of 21st century. J. Diabetes Metab. Disord. 2013 12 1 35 10.1186/2251‑6581‑12‑35 23822656
    [Google Scholar]
  90. Governa P. Baini G. Borgonetti V. Cettolin G. Giachetti D. Magnano A. Miraldi E. Biagi M. Phytotherapy in the Management of Diabetes: A Review. Molecules 2018 23 1 105 10.3390/molecules23010105 29300317
    [Google Scholar]
  91. Gao Y. Zhang Y. Zhu J. Li B. Li Z. Zhu W. Shi J. Jia Q. Li Y. Recent progress in natural products as DPP-4 inhibitors. Future Med. Chem. 2015 7 8 1079 1089 10.4155/fmc.15.49 26062402
    [Google Scholar]
  92. Dewanjee S. Chakraborty P. Mukherjee B. Feo D.V. Plant based antidiabetic nanoformulations: The emerging paradigm for effective therapy. Int. J. Mol. Sci. 2020 21 6 2217 10.3390/ijms21062217 32210082
    [Google Scholar]
  93. Tundis R. Loizzo M.R. Menichini F. Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev. Med. Chem. 2010 10 4 315 331 10.2174/138955710791331007 20470247
    [Google Scholar]
  94. Kambale E.K. Leclercq Q.J. Memvanga P.B. Beloqui A. An overview of herbal-based antidiabetic drug delivery systems: Focus on lipid- and inorganic-based nanoformulations. Pharmaceutics 2022 14 10 2135 10.3390/pharmaceutics14102135 36297570
    [Google Scholar]
  95. Singh L.S. Developing nanocarrier-based formulations of antidiabetic drugs derived from medicinal plants: A systemic review. Pharmacolog. Res. - Natu. Prod. 2024 2 100004 10.1016/j.prenap.2023.100004
    [Google Scholar]
  96. Kyriakoudi A. Spanidi E. Mourtzinos I. Gardikis K. Innovative delivery systems loaded with plant bioactive ingredients: Formulation approaches and applications. Plants 2021 10 6 1238 10.3390/plants10061238 34207139
    [Google Scholar]
  97. Clifford T. Constantinou C.M. Keane K.M. West D.J. Howatson G. Stevenson E.J. The plasma bioavailability of nitrate and betanin from Beta vulgaris rubra in humans. Eur. J. Nutr. 2017 56 3 1245 1254 10.1007/s00394‑016‑1173‑5 26873098
    [Google Scholar]
  98. Amjadi S. Abbasi M.M. Shokouhi B. Ghorbani M. Hamishehkar H. Enhancement of therapeutic efficacy of betanin for diabetes treatment by liposomal nanocarriers. J. Funct. Foods 2019 59 119 128 10.1016/j.jff.2019.05.015
    [Google Scholar]
  99. Han Y.J. Kang B. Yang E.J. Choi M.K. Song I.S. Simultaneous determination and pharmacokinetic characterization of glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin in rat plasma following oral administration of glycyrrhizae radix extract. Molecules 2019 24 9 1816 10.3390/molecules24091816 31083444
    [Google Scholar]
  100. Wang Q. Wei C. Weng W. Bao R. Frimpong A.M. Toreniyazov E. Ji H. Xu X.M. Yu J. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. Int. J. Pharm. 2021 592 120036 10.1016/j.ijpharm.2020.120036 33152478
    [Google Scholar]
  101. Yu F. Li Y. Chen Q. He Y. Wang H. Yang L. Guo S. Meng Z. Cui J. Xue M. Chen X.D. Monodisperse microparticles loaded with the self-assembled berberine-phospholipid complex-based phytosomes for improving oral bioavailability and enhancing hypoglycemic efficiency. Eur. J. Pharm. Biopharm. 2016 103 136 148 10.1016/j.ejpb.2016.03.019 27020531
    [Google Scholar]
  102. Sharma P. Albert J. Chalamaiah M. Balasubramaniam A. Anti-diabetic activity of lycopene niosomes. Experi. Obser.. J. Pharm. Drug Dev. 2017 4 103
    [Google Scholar]
  103. Leh H.E. Lee L.K. Lycopene: A potent antioxidant for the amelioration of type II diabetes mellitus. Molecules 2022 27 7 2335 10.3390/molecules27072335 35408734
    [Google Scholar]
  104. Ahangarpour A. Oroojan A.A. Khorsandi L. Kouchak M. Badavi M. Solid lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin‐nicotinamide‐induced diabetic model and myotube cell of male mouse. Oxid. Med. Cell. Longev. 2018 2018 1 7496936 10.1155/2018/7496936 30116491
    [Google Scholar]
  105. Park K.S. Chong Y. Kim M.K. Myricetin: Biological activity related to human health. Appl. Biol. Chem. 2016 59 2 259 269 10.1007/s13765‑016‑0150‑2
    [Google Scholar]
  106. Xu X. Shi F. Wei Z. Zhao Y. Nanostructured lipid carriers loaded with baicalin: An efficient carrier for enhanced antidiabetic effects. Pharmacogn. Mag. 2016 12 47 198 202 10.4103/0973‑1296.186347 27601850
    [Google Scholar]
  107. Huang T. Liu Y. Zhang C. Pharmacokinetics and Bioavailability Enhancement of Baicalin: A Review. Eur. J. Drug Metab. Pharmacokinet. 2019 44 2 159 168 10.1007/s13318‑018‑0509‑3 30209794
    [Google Scholar]
  108. Marton L.T. Pescinini-e-Salzedas L.M. Camargo M.E.C. Barbalho S.M. Haber J.F.S. Sinatora R.V. Detregiachi C.R.P. Girio R.J.S. Buchaim D.V. Cincotto dos Santos Bueno P. The effects of curcumin on diabetes mellitus: A systematic review. Front. Endocrinol. 2021 12 669448 10.3389/fendo.2021.669448 34012421
    [Google Scholar]
  109. Joshi V Yashaswini G Acharya A Formulation and evaluation of semisolid dosage forms of an anti-inflammatory drug. 3 Biotech. 2019 9 7 248
    [Google Scholar]
  110. Li S. Zhang Y. Sun Y. Zhang G. Bai J. Guo J. Su X. Du H. Cao X. Yang J. Wang T. Naringenin improves insulin sensitivity in gestational diabetes mellitus mice through AMPK. Nutr. Diabetes 2019 9 1 28 10.1038/s41387‑019‑0095‑8 31591391
    [Google Scholar]
  111. Balata G. Eassa E. Shamrool H. Zidan S. Rehab A.M. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des. Devel. Ther. 2016 10 117 128 10.2147/DDDT.S95905 26792979
    [Google Scholar]
  112. Singh J. Dutta T. Kim K.H. Rawat M. Samddar P. Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology 2018 16 1 84 10.1186/s12951‑018‑0408‑4 30373622
    [Google Scholar]
  113. Kambale E.K. Nkanga C.I. Mutonkole B.P.I. Bapolisi A.M. Tassa D.O. Liesse J.M.I. Krause R.W.M. Memvanga P.B. Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea). Heliyon 2020 6 8 e04493 10.1016/j.heliyon.2020.e04493 32793824
    [Google Scholar]
  114. Levina A. Lay P.A. Metal-based anti-diabetic drugs: Advances and challenges. Dalton Trans. 2011 40 44 11675 11686 10.1039/c1dt10380f 21750828
    [Google Scholar]
  115. Anbazhagan P. Murugan K. Jaganathan A. Sujitha V. Samidoss C.M. Jayashanthani S. Amuthavalli P. Higuchi A. Kumar S. Wei H. Nicoletti M. Canale A. Benelli G. Mosquitocidal, antimalarial and antidiabetic potential of musa paradisiaca-synthesized silver nanoparticles: in vivo and in vitro approaches. J. Cluster Sci. 2017 28 1 91 107 10.1007/s10876‑016‑1047‑2
    [Google Scholar]
  116. Balan K. Qing W. Wang Y. Liu X. Palvannan T. Wang Y. Ma F. Zhang Y. Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Advances 2016 6 46 40162 40168 10.1039/C5RA24391B
    [Google Scholar]
  117. Govindappa M. Hemashekhar B. Arthikala M.K. Rai R.V. Ramachandra Y.L. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys. 2018 9 400 408 10.1016/j.rinp.2018.02.049
    [Google Scholar]
  118. Rehana D. Mahendiran D. Kumar R.S. Rahiman A.K. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst. Eng. 2017 40 6 943 957 10.1007/s00449‑017‑1758‑2 28361361
    [Google Scholar]
  119. Bayrami A. Parvinroo S. Yangjeh H.A. Pouran R.S. Bio-extract-mediated ZnO nanoparticles: Microwave-assisted synthesis, characterization and antidiabetic activity evaluation. Artif. Cells Nanomed. Biotechnol. 2018 46 4 730 739 10.1080/21691401.2017.1337025 28617629
    [Google Scholar]
  120. Dhas T.S. Kumar V.G. Karthick V. Vasanth K. Singaravelu G. Govindaraju K. Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. Enzyme Microb. Technol. 2016 95 100 106 10.1016/j.enzmictec.2016.09.003 27866603
    [Google Scholar]
  121. Daisy P. Saipriya K. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int. J. Nanomedicine 2012 7 1189 1202 10.2147/IJN.S26650 22419867
    [Google Scholar]
  122. Vijayakumar S. Vinayagam R. Anand M.A.V. Venkatachalam K. Saravanakumar K. Wang M.H. C c.S. Km G. David E. Green synthesis of gold nanoparticle using Eclipta alba and its antidiabetic activities through regulation of Bcl-2 expression in pancreatic cell line. J. Drug Deliv. Sci. Technol. 2020 58 101786 10.1016/j.jddst.2020.101786
    [Google Scholar]
  123. Global Burden of Disease (GBD) 2021 Available from: https://www.healthdata.org/research-analysis/gbd
    [Google Scholar]
  124. Singh A.K. Srivastava O.N. Singh K. Shape and Size-Dependent Magnetic Properties of Fe3O4 Nanoparticles Synthesized Using Piperidine. Nanoscale Res. Lett. 2017 12 1 298 10.1186/s11671‑017‑2039‑3 28449538
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385357690250214072827
Loading
/content/journals/pnt/10.2174/0122117385357690250214072827
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test