Skip to content
2000
image of Formulation, Development, and Optimization of Fast Dissolving Tablets Containing Tapentadol Hydrochloride

Abstract

Background

Tapentadol hydrochloride is a potent analgesic commonly used to manage moderate to severe pain. Rapidly dissolving tablets of Tapentadol offer a significant advantage in enhancing patient compliance by providing quick pain relief. The development of fast-dissolving tablets (FDTs) requires careful consideration of formulation parameters to achieve optimal disintegration and dissolution profiles. In this study, the aim was to fabricate Tapentadol FDTs by selecting suitable super disintegrating agents such as croscarmellose sodium and crospovidone, which serve as two independent variables. The direct compression method was employed to formulate nine different Tapentadol hydrochloride formulations (TH1 to TH9).

Materials and Methods

The study utilized Design-Expert® software version 13.0 and the Response Surface Methodology (RSM) for the optimization of Tapentadol FDTs. The formulations were prepared using the direct compression method with varying concentrations of the super disintegrants, croscarmellose sodium, and crospovidone. The primary response variables considered in this optimization study included disintegration time (Y1), percentage drug release at 15 minutes (Q15, Y2), and percentage drug release at 30 minutes (Q30, Y3). All pre-compressional and post-compressional parameters were evaluated for each formulation, along with dissolution studies. Furthermore, DD Solver, a statistical tool, was employed to determine the kinetics of drug release and the release order mechanism based on regression coefficient value (r2), Akaike Information Criterion (AIC), and Model Selection Criteria (MSC).

Results

The evaluation studies indicated that the TH5 formulation exhibited the most rapid disintegration time and the highest drug release percentage within the specified time frame. The super disintegrants used demonstrated a significant impact on the response variables, notably enhancing the solubility and dissolution rate of Tapentadol hydrochloride. Based on the exponent release (n) value, the study concluded that the TH5 formulation followed a first-order release kinetics and Fickian diffusion mechanism for drug release. Stability studies were performed following the International Council for Harmonization (ICH) guidelines to assess the shelf-life of the optimized formulation. The ANOVA data revealed that the p-value was greater than 0.05, indicating no significant differences during the storage period. Additionally, a similarity factor (f2) analysis was conducted to compare the optimized formulation with the marketed formulation (Tydol 100 mg).

Discussion

The findings highlight the crucial role of super disintegrants in fast-dissolving tablet formulation, significantly impacting disintegration time and dissolution profile. The TH5 formulation excelled in rapid disintegration and drug release, optimized using RSM and Design-Expert software, with statistical analysis confirming the Fickian diffusion mechanism for drug release.

Conclusion

The study successfully developed and optimized Tapentadol fast-dissolving tablets using direct compression and response surface methodology. The TH5 formulation showed rapid disintegration and optimal drug release, with stability confirmed under ICH conditions. This highlights the importance of super disintegrants in FDT formulation for rapid action and patient compliance.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385350217241122151638
2024-12-23
2025-01-19
Loading full text...

Full text loading...

References

  1. Sjuts H. Vargiu A.V. Kwasny S.M. Nguyen S.T. Kim H.S. Ding X. Ornik A.R. Ruggerone P. Bowlin T.L. Nikaido H. Pos K.M. Opperman T.J. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc. Natl. Acad. Sci. USA 2016 113 13 3509 3514 10.1073/pnas.1602472113 26976576
    [Google Scholar]
  2. Alam M.T. Parvez N. Sharma P.K. FDA-approved natural polymers for fast dissolving tablets. J. Pharm. 2014 2014 1 6 10.1155/2014/952970 26556207
    [Google Scholar]
  3. Bala R. Khanna S. Pawar P. Arora S. Orally dissolving strips: A new approach to oral drug delivery system. Int. J. Pharm. Investig. 2013 3 2 67 76 10.4103/2230‑973X.114897 24015378
    [Google Scholar]
  4. Parkash V. Maan S. Deepika Yadav S. Hemlata Jogpal V. Fast disintegrating tablets: Opportunity in drug delivery system. J. Adv. Pharm. Technol. Res. 2011 2 4 223 235 10.4103/2231‑4040.90877 22247889
    [Google Scholar]
  5. Goel H. Rai P. Rana V. Tiwary A. Orally disintegrating systems: Innovations in formulation and technology. Recent Pat. Drug Deliv. Formul. 2008 2 3 258 274 10.2174/187221108786241660 19075912
    [Google Scholar]
  6. Chaturvedi A. Srivastava P. Yadav S. Bansal M. Garg G. Kumar Sharma P. Sharma P. Fast dissolving films: A review. Curr. Drug Deliv. 2011 8 4 373 380 10.2174/156720111795768022 21453260
    [Google Scholar]
  7. Badgujar B. Mundada A. The technologies used for developing orally disintegrating tablets: A review. Acta Pharm. 2011 61 2 117 139 10.2478/v10007‑011‑0020‑8 21684842
    [Google Scholar]
  8. Sharma S. Singh K. Oral Disintegrating tablets–an updated patent perspective. Recent Pat. Drug Deliv. Formul. 2021 14 3 166 190 10.2174/1872211314999201123202930 33231150
    [Google Scholar]
  9. AlHusban F.A. El-Shaer A.M. Jones R.J. Mohammed A.R. Recent patents and trends in orally disintegrating tablets. Recent Pat. Drug Deliv. Formul. 2010 4 3 178 197 10.2174/187221110793237574 20626334
    [Google Scholar]
  10. Jin T. Solid dosage forms for rapid dissolution of poorly soluble drugs. US Patent 20040001888 A1
  11. Leuner C. Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 2000 50 1 47 60 10.1016/S0939‑6411(00)00076‑X 10840192
    [Google Scholar]
  12. Craig D.Q.M. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm. 2002 231 2 131 144 10.1016/S0378‑5173(01)00891‑2 11755266
    [Google Scholar]
  13. Chauhan H. Hui-Gu C. Atef E. Correlating the behavior of polymers in solution as precipitation inhibitor to its amorphous stabilization ability in solid dispersions. J. Pharm. Sci. 2013 102 6 1924 1935 10.1002/jps.23539 23580406
    [Google Scholar]
  14. Smikalla M.M. Urbanetz N.A. The influence of povidone K17 on the storage stability of solid dispersions of nimodipine and polyethylene glycol. Eur. J. Pharm. Biopharm. 2007 66 1 106 112 10.1016/j.ejpb.2006.08.018 17055711
    [Google Scholar]
  15. Trisopon K. Kittipongpatana N. Wattanaarsakit P. Kittipongpatana O.S. Formulation study of a co-processed, rice starch-based, all-in-one excipient for direct compression using the sedem-odt expert system. Pharmaceuticals 2021 14 10 1047 10.3390/ph14101047 34681271
    [Google Scholar]
  16. Sawatdee S. Atipairin A. Sae Yoon A. Srichana T. Changsan N. Suwandecha T. Formulation development of albendazole-loaded self-micro emulsifying chewable tablets to enhance dissolution and bioavailability. Pharmaceutics 2019 11 3 134 10.3390/pharmaceutics11030134 30897738
    [Google Scholar]
  17. Chandrashekar T. Vijayakumar B. Devanna N. Enhancement of Entacapone bioavailability by polymorphism. Int J Pharm Technol. 2013 5 3 5753 5760
    [Google Scholar]
  18. Thalluri C. Exploring adsorption phenomena in pharmaceutical formulation design: A systematic quality-by-design approach for agomelatine-loaded liquisolid compact tablets. Asian J. Pharm. 2024 18 1 205 217 [AJP]. 10.22377/ajp.v18i01.5281
    [Google Scholar]
  19. Thalluri C. Swain K. Pattnaik S. Rise of gold nanoparticles as carriers of therapeutic agents. Acta Chim. Slov. 2023 70 4 467 478 10.17344/acsi.2023.8216 38124649
    [Google Scholar]
  20. Çomoğlu T. Savaşer A. Ozkan Y. Gönül N. Baykara T. Enhancement of ketoprofen bioavailability by formation of microsponge tablets. Pharmazie 2007 62 1 51 54 10.1691/ph.2007.1.6016 17294814
    [Google Scholar]
  21. Valleri M. Mura P. Maestrelli F. Cirri M. Ballerini R. Development and evaluation of glyburide fast dissolving tablets using solid dispersion technique. Drug Dev. Ind. Pharm. 2004 30 5 525 534 10.1081/DDC‑120037483 15244088
    [Google Scholar]
  22. Hedenström H. Alm C. Kraft M. Grahnén A. Intragastric pH after oral administration of single doses of ranitidine effervescent tablets, omeprazole capsules and famotidine fast‐dissolving tablets to fasting healthy volunteers. Aliment. Pharmacol. Ther. 1997 11 6 1137 1141 10.1046/j.1365‑2036.1997.00264.x 9663842
    [Google Scholar]
  23. El-Shenawy A.A. Ahmed M.M. Mansour H.F. Abd El Rasoul S. Torsemide fast dissolving tablets: Development, optimization using box–bhenken design and response surface methodology, in vitro characterization, and pharmacokinetic assessment. AAPS PharmSciTech 2017 18 6 2168 2179 10.1208/s12249‑016‑0697‑6 28050711
    [Google Scholar]
  24. Yousef A.A. Alzeftawy A.E. The efficacy of oral piroxicam fast-dissolving tablets versus sublingual fentanyl in incident breakthrough pain due to bone metastases: A double-blinded randomized study. Support. Care Cancer 2019 27 6 2171 2177 10.1007/s00520‑018‑4469‑6 30306325
    [Google Scholar]
  25. Sharma S. Sharma N. Das Gupta G. Optimization of promethazine theoclate fast dissolving tablet using pore forming technology by 3-factor, 3-level response surface-full factorial design. Arch. Pharm. Res. 2010 33 8 1199 1207 10.1007/s12272‑010‑0810‑4 20803123
    [Google Scholar]
  26. Kavitha K. Sandeep D. Yadawad M. Formulation and evaluation of oral fast dissolving tablets of promethazine HCl by sublimation method. Int. J. Pharm. Tech. Res. 2011 3 2 659 663
    [Google Scholar]
  27. Singh D. Nag K. Shetti A. Krishnaveni N. Tapentadol hydrochloride: A novel analgesic. Saudi J. Anaesth. 2013 7 3 322 326 10.4103/1658‑354X.115319 24015138
    [Google Scholar]
  28. Polati E. Canonico P.L. Schweiger V. Collino M. Tapentadol: An overview of the safety profile. J. Pain Res. 2019 12 1569 1576 10.2147/JPR.S190154 31190968
    [Google Scholar]
  29. Freo U. Romualdi P. Kress H.G. Tapentadol for neuropathic pain: A review of clinical studies. J. Pain Res. 2019 12 1537 1551 10.2147/JPR.S190162 31190965
    [Google Scholar]
  30. Elsayed M.M.A. Aboelez M.O. Elsadek B.E.M. Sarhan H.A. Khaled K.A. Belal A. Khames A. Hassan Y.A. Abdel-Rheem A.A. Elkaeed E.B. Raafat M. Elsadek M.E.M. Tolmetin sodium fast dissolving tablets for rheumatoid arthritis treatment: Preparation and optimization using box-behnken design and response surface methodology. Pharmaceutics 2022 14 4 880 10.3390/pharmaceutics14040880 35456714
    [Google Scholar]
  31. Pawar P.K. Bala R. Khanna S. Formulation and optimization of fast dissolving intraoral drug delivery system for clobazam using response surface methodology. J. Adv. Pharm. Technol. Res. 2013 4 3 151 159 10.4103/2231‑4040.116785 24083203
    [Google Scholar]
  32. Fu Y. Yang S. Jeong S.H. Kimura S. Park K. Orally fast disintegrating tablets: Developments, technologies, taste-masking and clinical studies. Crit. Rev. Ther. Drug Carrier Syst. 2004 21 6 433 476 10.1615/CritRevTherDrugCarrierSyst.v21.i6.10 15658933
    [Google Scholar]
  33. Battu S.K. Repka M.A. Majumdar S. Rao Y M. Formulation and evaluation of rapidly disintegrating fenoverine tablets: Effect of superdisintegrants. Drug Dev. Ind. Pharm. 2007 33 11 1225 1232 10.1080/03639040701377888 18058319
    [Google Scholar]
  34. Naji GH Al-Zheery WH Fareed NY Design and in vitro evaluation of Acrivastine as Orodispersible tablet using direct compression method. Wiad Lek. 2023 76 1 170 4 10.36740/WLek202301123 36883506
    [Google Scholar]
  35. Mallikarjun V Balaji M Thalluri C Shanmugarathinam A Bhaskar G Roy H. Formulation, characterization, and taguchi design study of eplerenone lipid-based solid dispersions integrated with gelucire. Bio Nano Sci. 2023 13 2023 576 587 10.1007/s12668‑023‑01102‑4
    [Google Scholar]
  36. Zuo J. Gao Y. Bou-Chacra N. Löbenberg R. Evaluation of the DDSolver software applications. BioMed Res. Int. 2014 2014 1 9 10.1155/2014/204925
    [Google Scholar]
  37. Costa P. Sousa Lobo J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001 13 2 123 133 10.1016/S0928‑0987(01)00095‑1 11297896
    [Google Scholar]
  38. Akaike H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974 19 6 716 723 10.1109/TAC.1974.1100705
    [Google Scholar]
  39. MicroMath. Scientist User Handbook. Salt Lake, UT, USA MicroMath 1995
    [Google Scholar]
  40. Abdelbary A. Bendas E.R. Ramadan A.A. Mostafa D.A. Pharmaceutical and pharmacokinetic evaluation of a novel fast dissolving film formulation of flupentixol dihydrochloride. AAPS PharmSciTech 2014 15 6 1603 1610 10.1208/s12249‑014‑0186‑8 25142820
    [Google Scholar]
  41. Shah V.P. Tsong Y. Sathe P. Liu J.P. In vitro dissolution profile comparison--statistics and analysis of the similarity factor, f2. Pharm. Res. 1998 15 6 889 896 10.1023/A:1011976615750 9647355
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385350217241122151638
Loading
/content/journals/pnt/10.2174/0122117385350217241122151638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test