Skip to content
2000
image of Soluplus-Stabilized Nimodipine-Entrapped Spanlastic Formulations 
Prepared with Edge Activator (Tween20): Comparative Physicochemical Evaluation

Abstract

Background

Nimodipine (ND) is a vasodilator drug that is used for acute subarachnoid hemorrhage. It has a predominant hydrophobic property, causing low solubility and low bioavailability. Spanlastics are elastic nanovesicular systems based on non-ionic surfactants and edge activators as major components. The goal of this work is to formulate ND as spanlastic nanovesicles to improve the drug's bioavailability.

Methods

Spanlastic formulations containing ND were prepared by using the ethanol injection method. The composition of the ND formulation includes Span60 as a nonionic surfactant and Tween 20 as edge activators in different ratios. Stabilizers like Soluplus are used in some formulations and then compared with other formulations without that stabilizer. The evaluation study involved Vesicle Size (VS), PolyDispersity Index (PDI), and Entrapment Efficiency (%EE). Then, the optimized formula was subjected to an release study and zeta potential, additionally comparing the optimized formula with the formula without soluplus in the same concentration in Scanning Electron Microscopy (SEM), solubility study, Deformability Index (DI), and stability study.

Results

The results indicated a significant shift in some evaluation criteria and a non-significant change in other characterizations, including the difference in polymer ratio, sonication time, and the existence of a stabilizer. The best formula, F27, was found to have VS, PDI, %EE, and zeta potential of 125.7±0.29 nm, 0.4744±0.002, and 85.43±0.17% and -20.01 ± 0.89 mV, respectively. The photomicrographs of the prepared spanlastic revealed a more uniform and spherical spanlastic, indicating a greater capacity for continuous release. With the addition of Soluplus, the formula became more stable in one month and had a higher deformability index.

Discussion

A significant shift was observed in both VS and PDI. As the stabilizer concentration increases, VS and PDI will decrease. The non-significant shift was noted in the %EE with the presence of a stabilizer. Soluplus has the ability to spontaneously self-assemble into spherical particles. Additionally, PEG 6000, as a component of Soluplus's structure, has a tendency to form strong or tightly bound bilayers and prevent aggregation and formulation of large vesicles.

Conclusion

This study explains the accessibility of the formulation of ND as spanlastic nanovesicles by using the ethanol injection method. This spanlastic formulation contains non-ionic surfactants and edge activators (Span 40 and Tween 20) in varying ratios. To get a stable formula, Soluplus is added to prevent the development of crystals and agglomeration.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385348551241028102256
2024-11-04
2025-01-19
Loading full text...

Full text loading...

References

  1. Rao B.N. Reddy K.R. Mounika B. Fathima S.R. Tejaswini A. Vesicular drug delivery system: a review. Int. J. Chemtech Res. 2019 12 5 39 53 10.20902/IJCTR.2019.120505
    [Google Scholar]
  2. Konatham T.K.R. Alapati S. A critical analysis of the vesicular drug delivery system: recent advancements and prospects for the future. JIAPS 2023 8 3 5 12 10.37022/jiaps.v8i3.480
    [Google Scholar]
  3. Ren Y. Nie L. Zhu S. Zhang X. Nanovesicles-Mediated Drug Delivery for Oral Bioavailability Enhancement. Int. J. Nanomedicine 2022 17 4861 4877 10.2147/IJN.S382192 36262189
    [Google Scholar]
  4. Pramod P.S. Takamura K. Chaphekar S. Balasubramanian N. Jayakannan M. Dextran vesicular carriers for dual encapsulation of hydrophilic and hydrophobic molecules and delivery into cells. Biomacromolecules 2012 13 11 3627 3640 10.1021/bm301583s 23082727
    [Google Scholar]
  5. Ansari M.D. Saifi Z. Pandit J. Khan I. Solanki P. Sultana Y. Aqil M. Spanlastics a Novel Nanovesicular Carrier: Its Potential Application and Emerging Trends in Therapeutic Delivery. AAPS PharmSciTech 2022 23 4 112 10.1208/s12249‑022‑02217‑9 35411425
    [Google Scholar]
  6. Tayel S.A. El-Nabarawi M.A. Tadros M.I. Abd-Elsalam W.H. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments. Int. J. Pharm. 2015 483 1-2 77 88 10.1016/j.ijpharm.2015.02.012 25666025
    [Google Scholar]
  7. Kamath K. Jain S. Shabaraya A. Spanlastics: a modern formulation approach in drug delivery. Eur. J. Pharm. Med. Res. 2023 10 96 10.20959/wjpr202320‑30212
    [Google Scholar]
  8. Mosallam S. Albash R. Abdelbari M.A. Advanced Vesicular Systems for Antifungal Drug Delivery. AAPS PharmSciTech 2022 23 6 206 10.1208/s12249‑022‑02357‑y 35896903
    [Google Scholar]
  9. Alhammid S.N.A. Kassab H.J. Hussein L.S. Haiss M.A. Alkufi H. Spanlastics Nanovesicles: An Emerging and Innovative Approach for Drug Delivery. Maaen Journal for Medical Sciences 2023 2 3 9 10.55810/2789‑9136.1027
    [Google Scholar]
  10. Batzri S. Korn E.D. Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta Biomembr. 1973 298 4 1015 1019 10.1016/0005‑2736(73)90408‑2 4738145
    [Google Scholar]
  11. Justo O.R. Moraes Â.M. Analysis of process parameters on the characteristics of liposomes prepared by ethanol injection with a view to process scale-up: Effect of temperature and batch volume. Chem. Eng. Res. Des. 2011 89 6 785 792 10.1016/j.cherd.2010.09.018
    [Google Scholar]
  12. Pons M. Foradada M. Estelrich J. Liposomes obtained by the ethanol injection method. Int. J. Pharm. 1993 95 1-3 51 56 10.1016/0378‑5173(93)90389‑W
    [Google Scholar]
  13. Jaafar-Maalej C. Diab R. Andrieu V. Elaissari A. Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res. 2010 20 3 228 243 10.3109/08982100903347923 19899957
    [Google Scholar]
  14. Sala M. Miladi K. Agusti G. Elaissari A. Fessi H. Preparation of liposomes: A comparative study between the double solvent displacement and the conventional ethanol injection—From laboratory scale to large scale. Colloids Surf. A Physicochem. Eng. Asp. 2017 524 71 78 10.1016/j.colsurfa.2017.02.084
    [Google Scholar]
  15. Schubert M. Müller-Goymann C.C. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters. Eur. J. Pharm. Biopharm. 2003 55 1 125 131 10.1016/S0939‑6411(02)00130‑3 12551713
    [Google Scholar]
  16. Sebaaly C. Greige-Gerges H. Stainmesse S. Fessi H. Charcosset C. Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. Food Biosci. 2016 15 1 10 10.1016/j.fbio.2016.04.005
    [Google Scholar]
  17. Pando D. Matos M. Gutiérrez G. Pazos C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf. B Biointerfaces 2015 128 398 404 10.1016/j.colsurfb.2015.02.037 25766923
    [Google Scholar]
  18. Gentine P. Bourel-Bonnet L. Frisch B. Modified and derived ethanol injection toward liposomes: development of the process. J. Liposome Res. 2013 23 1 11 19 10.3109/08982104.2012.717298 23020802
    [Google Scholar]
  19. Charcosset C. Juban A. Valour J.P. Urbaniak S. Fessi H. Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices. Chem. Eng. Res. Des. 2015 94 508 515 10.1016/j.cherd.2014.09.008
    [Google Scholar]
  20. Toniazzo T. Peres M.S. Ramos A.P. Pinho S.C. Encapsulation of quercetin in liposomes by ethanol injection and physicochemical characterization of dispersions and lyophilized vesicles. Food Biosci. 2017 19 17 25 10.1016/j.fbio.2017.05.003
    [Google Scholar]
  21. Yang K. Delaney J.T. Schubert U.S. Fahr A. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method. J. Liposome Res. 2012 22 1 31 41 10.3109/08982104.2011.584319 21682653
    [Google Scholar]
  22. Fan M. Xu S. Xia S. Zhang X. Preparation of salidroside nano-liposomes by ethanol injection method and in vitro release study. Eur. Food Res. Technol. 2008 227 1 167 174 10.1007/s00217‑007‑0706‑9
    [Google Scholar]
  23. Ghanbarzadeh S. Valizadeh H. Zakeri-Milani P. Sirolimus nano liposomes: optimization of sirolimus nano liposome prepared by modified ethanol injection method using responce suerface methodology. Pharm. Ind. 2013 2013 75
    [Google Scholar]
  24. Maitani Y. Soeda H. Junping W. Takayama K. Modified ethanol injection method for liposomes containing β-sitosterol β-d-glucoside. J. Liposome Res. 2001 11 1 115 125 10.1081/LPR‑100103174 19530923
    [Google Scholar]
  25. Bai C. Luo G. Liu Y. Zhao S. Zhu X. Zhao Q. Peng H. Xiong H. A comparison investigation of coix seed oil liposomes prepared by five different methods. J. Dispers. Sci. Technol. 2015 36 1 136 145 10.1080/01932691.2014.893524
    [Google Scholar]
  26. Moghassemi S. Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release 2014 185 22 36 10.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  27. Tuomela A. Hirvonen J. Peltonen L. Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability. Pharmaceutics 2016 8 2 16 10.3390/pharmaceutics8020016 27213435
    [Google Scholar]
  28. Kim M.S. Soluplus-coated colloidal silica nanomatrix system for enhanced supersaturation and oral absorption of poorly water-soluble drugs. Artif. Cells Nanomed. Biotechnol. 2013 41 6 363 367 10.3109/21691401.2012.762369 23336707
    [Google Scholar]
  29. Yang H. Teng F. Wang P. Tian B. Lin X. Hu X. Zhang L. Zhang K. Zhang Y. Tang X. Investigation of a nanosuspension stabilized by Soluplus® to improve bioavailability. Int. J. Pharm. 2014 477 1-2 88 95 10.1016/j.ijpharm.2014.10.025 25455766
    [Google Scholar]
  30. Moffat A.C. Osselton M.D. Widdop B. Watts J. Clarke’s analysis of drugs and poisons. Pharmaceutical Press : London 2011
    [Google Scholar]
  31. Mahmoud S.H. Ji X. Isse F.A. Nimodipine Pharmacokinetic Variability in Various Patient Populations. Drugs R D. 2020 20 4 307 318 10.1007/s40268‑020‑00322‑3 32902829
    [Google Scholar]
  32. Rathod N. Borkhataria C. Manek R. Patel V. Patel N. Patel K. Paun J. Sakhiya D. Study on the Correlation Between Nimodipine (BCS Class II) Solubility, Dissolution Improvement, and Brain Tissue Concentration Through Cocrystallization. J. Pharm. Innov. 2023 18 4 2235 2248 10.1007/s12247‑023‑09786‑7
    [Google Scholar]
  33. Ramadhan S.H. Al-Kinani K.K. Statistical Optimization and Characterization of Nimodipine Transferosomes. Al-Rafidain Journal of Medical Sciences 2024 7 1 S77 83 10.54133/ajms.v7i1(Special).1015
    [Google Scholar]
  34. Chalikwar S.S. Belgamwar V.S. Talele V.R. Surana S.J. Patil M.U. Formulation and evaluation of Nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system. Colloids Surf. B Biointerfaces 2012 97 109 116 10.1016/j.colsurfb.2012.04.027 22609590
    [Google Scholar]
  35. Alhagiesa A.W. Ghareeb M.M. The Formulation and Characterization of Nimodipine Nanoparticles for the Enhancement of solubility and dissolution rate. Iraqi J Pharm Sci 2021 30 2 10.31351/vol30iss2pp143‑152
    [Google Scholar]
  36. Sandhya M. Ramasamy D. Sudhakar K. Kadirgama K. Harun W.S.W. Ultrasonication an intensifying tool for preparation of stable nanofluids and study the time influence on distinct properties of graphene nanofluids – A systematic overview. Ultrason. Sonochem. 2021 73 105479 10.1016/j.ultsonch.2021.105479 33578278
    [Google Scholar]
  37. Alzalzalee R.A. Kassab H.J. Effect of Polymer Type and Concentration on Preparation of Cilnidipine Nanoparticle (A Preformulation Study). Hist. Med. 2023 9 1 1902 1906 10.17720/2409‑5834.v9.1.2023.243
    [Google Scholar]
  38. Alshahrani S.M. Preparation, characterization and in vivo anti-inflammatory studies of ostrich oil based nanoemulsion. J. Oleo Sci. 2019 68 3 203 208 10.5650/jos.ess18213 30760670
    [Google Scholar]
  39. Al-Shaibani A.J.N. Ghareeb M.M. Formulation, in vitro and in vivo evaluation of olanzapine nanoparticles dissolving microneedles for transdermal delivery. Pharmacia 2024 71 1 13 10.3897/pharmacia.71.e120974
    [Google Scholar]
  40. Mahmood H.S. Ghareeb M.M. Hamzah Z.O. Formulation and in-vitro evaluation of flurbiprofen nanoparticles for transdermal delivery. J Complement Med Res. 2020 11 5 223
    [Google Scholar]
  41. Michaels A.S. Nelsen L. Porter M.C. Ultrafiltration. Membrane Processes in Industry and Biomedicine: Proceedings of a Symposium held at the 160th National Meeting of the American Chemical Society, under the sponsorship of the Division of Industrial and Engineering Chemistry, Chicago, Illinois Springer 1970 197 232
    [Google Scholar]
  42. Rashid A.M. Abdal-Hammid S.N. Formulation and characterization of itraconazole as nanosuspension dosage form for enhancement of solubility. Iraqi J Pharm Sci 2019 28 2 10.31351/vol28iss2pp124‑133
    [Google Scholar]
  43. Karami S. Rostamizadeh K. Shademani N. Parsa M. Synthesis and investigation of the curcumin-loaded magnetic lipid nanoparticles and their cytotoxicity assessment on human breast carcinoma cell line. Jundishapur J. Nat. Pharm. Prod. 2020 15 2 10.5812/jjnpp.91886
    [Google Scholar]
  44. Abbas I.K. Abd-AlHammid S.N. Design, Optimization and Characterization of Self-Nanoemulsifying Drug Delivery Systems of Bilastine. Iraqi J Pharm Sci 2023 32 164 76
    [Google Scholar]
  45. Ghareeb M.M. Formulation and characterization of isradipine as oral nanoemulsion. Iraqi J Pharm Sci 2020 29 1 143 53
    [Google Scholar]
  46. Noor A.H. Ghareeb M.M. Formulation and evaluation of ondansetron HCl nanoparticles for transdermal delivery. Iraqi J Pharm Sci 2020 29 2 70 9 10.31351/vol29iss2pp70‑79
    [Google Scholar]
  47. Abdulbaqi M.R. Kassab H.J. Abdulelah F.M. Preparation and evaluation of zinc oxide (ZnO) metal nanoparticles carriers for azilsartan. Arch. Venez. Farmacol. Ter. 2021 40 4 353 360 10.5281/zenodo.5218710
    [Google Scholar]
  48. Abdelrahman F.E. Elsayed I. Gad M.K. Elshafeey A.H. Mohamed M.I. Response surface optimization, Ex vivo and in vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone. Int. J. Pharm. 2017 530 1-2 1 11 10.1016/j.ijpharm.2017.07.050 28733244
    [Google Scholar]
  49. Gorajana A. Rajendran A. Rao N.K. Preperation and in vitro evaluation of solid dispersions of nimodipine using PEG 4000 and PVP K30. Asian J Pharm Res Heal Care 2010 2 2 163 169
    [Google Scholar]
  50. Shekhar Dey N. Mukherjee B. Maji R. Sankar Satapathy B. Development of Linker-Conjugated Nanosize Lipid Vesicles: A Strategy for Cell Selective Treatment in Breast Cancer. Curr. Cancer Drug Targets 2016 16 4 357 372 10.2174/1568009616666151106120606 26548758
    [Google Scholar]
  51. Kakkar S. Kaur I.P. Spanlastics—A novel nanovesicular carrier system for ocular delivery. Int. J. Pharm. 2011 413 1-2 202 210 10.1016/j.ijpharm.2011.04.027 21540093
    [Google Scholar]
  52. Al-mahallawi A.M. Khowessah O.M. Shoukri R.A. Nano-transfersomal ciprofloxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery: In-vitro optimization, ex-vivo permeation studies, and in-vivo assessment. Int. J. Pharm. 2014 472 1-2 304 314 10.1016/j.ijpharm.2014.06.041 24971692
    [Google Scholar]
  53. Gupta P.N. Mishra V. Rawat A. Dubey P. Mahor S. Jain S. Chatterji D.P. Vyas S.P. Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int. J. Pharm. 2005 293 1-2 73 82 10.1016/j.ijpharm.2004.12.022 15778046
    [Google Scholar]
  54. Reddy M.S. Gurram A.K. Deshpande P.B. Kar S.S. Nayak U.Y. Udupa N. Role of components in the formation of self-microemulsifying drug delivery systems. Indian J. Pharm. Sci. 2015 77 3 249 257 10.4103/0250‑474X.159596 26180269
    [Google Scholar]
  55. Abdulqader A. Sultan N.A.R. Preparation and characterization of Posaconazole as a Nano-micelles using d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS). Iraqi J. Pharm Sci. 2023 32 Suppl. 26 32 10.31351/vol32issSuppl.pp26‑32
    [Google Scholar]
  56. Manar T.A. Hanan K.J. Optimizing intranasal amisulpride loaded nanostructured lipid carriers: Formulation, development, and characterization parameters. Pharm. Nanotechnol. 2024 2024 1 16
    [Google Scholar]
  57. Salman A.H. Al-Gawhari F.J. Al-kinani K.K. The effect of formulation and process variables on prepared etoricoxib ‎Nanosponges. J. Adv. Pharm. Educ. Res. 2021 11 2 82 87 10.51847/Q0QRKUV2kQ
    [Google Scholar]
  58. Ahmed M.Z. Gupta A. Warsi M.H. Ali A.M.A. Hasan N. Ahmad F.J. Zafar A. Jain G.K. Nano Matrix Soft Confectionary for Oral Supplementation of Vitamin D: Stability and Sensory Analysis. Gels 2022 8 5 250 10.3390/gels8050250 35621548
    [Google Scholar]
  59. Gurpreet K. Singh S.K. Review of nanoemulsion formulation and characterization techniques. Indian J. Pharm. Sci. 2018 80 5 10.4172/pharmaceutical‑sciences.1000422
    [Google Scholar]
  60. Mohamed H.B. El-Shanawany S.M. Hamad M.A. Elsabahy M. Niosomes: A Strategy toward Prevention of Clinically Significant Drug Incompatibilities. Sci. Rep. 2017 7 1 6340 10.1038/s41598‑017‑06955‑w 28740102
    [Google Scholar]
  61. Ugorji O.L. Okoye O.I. Nwangwu C. Agbo C.P. Kenechukwu F.C. Soluplus-stabilized 5-fluorouracil-entrapped niosomal formulations prepared via active and passive loading techniques: comparative physico-chemical evaluation. J. Dispers. Sci. Technol. 2024 45 5 891 899 10.1080/01932691.2023.2186427
    [Google Scholar]
  62. Mateos H. Gentile L. Murgia S. Colafemmina G. Collu M. Smets J. Palazzo G. Understanding the self-assembly of the polymeric drug solubilizer Soluplus®. J. Colloid Interface Sci. 2022 611 224 234 10.1016/j.jcis.2021.12.016 34952275
    [Google Scholar]
  63. Pereira-Silva M. Diaz-Gomez L. Blanco-Fernandez B. Ferreirós A. Veiga F. Concheiro A. Paiva-Santos A.C. Alvarez-Lorenzo C. Cancer cell membrane-modified Soluplus® micelles for gemcitabine delivery to pancreatic cancer using a prodrug approach. Int. J. Pharm. 2024 662 124529 10.1016/j.ijpharm.2024.124529 39084580
    [Google Scholar]
  64. Danaei M. Dehghankhold M. Ataei S. Hasanzadeh Davarani F. Javanmard R. Dokhani A. Khorasani S. Mozafari M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018 10 2 57 10.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  65. Obitte N.C. Ofokansi K.C. Kenechukwu F.C. Development and Evaluation of Novel Self-Nanoemulsifying Drug Delivery Systems Based on a Homolipid from Capra hircus and Its Admixtures with Melon Oil for the Delivery of Indomethacin. J. Pharm. (Cairo) 2014 2014 1 9 10.1155/2014/340486 26556192
    [Google Scholar]
  66. Altamimi M.A. Neau S.H. Investigation of the in vitro performance difference of drug-Soluplus® and drug-PEG 6000 dispersions when prepared using spray drying or lyophilization. Saudi Pharm. J. 2017 25 3 419 439 10.1016/j.jsps.2016.09.013 28344498
    [Google Scholar]
  67. Lu B. Huang Y. Chen Z. Ye J. Xu H. Chen W. Long X. Niosomal Nanocarriers for Enhanced Skin Delivery of Quercetin with Functions of Anti-Tyrosinase and Antioxidant. Molecules 2019 24 12 2322 10.3390/molecules24122322 31238562
    [Google Scholar]
  68. Kenechukwu F.C. Kalu C.F. Momoh M.A. Onah I.A. Attama A.A. Okore V.C. Novel Bos indicus fat-based nanoparticulate lipospheres of miconazole nitrate as enhanced mucoadhesive therapy for oral candidiasis. Biointerface Res. Appl. Chem. 2022 13 1 24 10.33263/BRIAC131.024
    [Google Scholar]
  69. Jin X. Zhou B. Xue L. San W. Soluplus® micelles as a potential drug delivery system for reversal of resistant tumor. Biomed. Pharmacother. 2015 69 388 395 10.1016/j.biopha.2014.12.028 25661387
    [Google Scholar]
  70. Németh Z. Csóka I. Semnani Jazani R. Sipos B. Haspel H. Kozma G. Kónya Z. Dobó D.G. Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives. Pharmaceutics 2022 14 9 1798 10.3390/pharmaceutics14091798 36145546
    [Google Scholar]
  71. Salim F.F. Rajab N.A. Formulation and Characterization of Piroxicam as Self-Nano Emulsifying Drug Delivery System Iraqi J Pharm Sci 2020 29 1 10.31351/vol29iss1pp174‑183
    [Google Scholar]
  72. Sharma O.P. Patel V. Mehta T. Design of experiment approach in development of febuxostat nanocrystal: Application of Soluplus® as stabilizer. Powder Technol. 2016 302 396 405 10.1016/j.powtec.2016.09.004
    [Google Scholar]
  73. Ghareeb M.M. Neamah A.J. Formulation and characterization of nimodipine nanoemulsion as ampoule for oral route. Int. J. Pharm. Sci. Res. 2017 8 2 591
    [Google Scholar]
  74. Alhagiesa A.W. Ghareeb M.M. Formulation and evaluation of nimodipine nanoparticles incorporated within orodispersible tablets. Int J Drug Deliv Technol. 2020 10 4 547 552 10.25258/ijddt.10.4.7
    [Google Scholar]
  75. Salih O.S. Al-Akkam E.J. Preparation, in-vitro, and ex-vivo evaluation of ondansetron loaded invasomes for transdermal delivery. Iraqi J Pharm Sci 2023 32 3 71 84
    [Google Scholar]
  76. Teng Z. Yu M. Ding Y. Zhang H. Shen Y. Jiang M. Liu P. Opoku-Damoah Y. Webster T.J. Zhou J. Preparation and characterization of nimodipine-loaded nanostructured lipid systems for enhanced solubility and bioavailability. Int. J. Nanomedicine 2018 14 119 133 10.2147/IJN.S186899 30613141
    [Google Scholar]
  77. Kassab H.J. Alkufi H.K. Hussein L.S. Use of factorial design in formulation and evaluation of intrarectal in situ gel of sumatriptan. J. Adv. Pharm. Technol. Res. 2023 14 2 119 124 10.4103/japtr.japtr_603_22 37255866
    [Google Scholar]
  78. Shanta Taher S. Sadeq Z.A. Al-Kinani K.K. Alwan Z.S. Solid lipid nanoparticles as a promising approach for delivery of anticancer agents. Vojen. Zdrav. Listy 2022 91 3 197 207 10.31482/mmsl.2021.042
    [Google Scholar]
  79. Mast M.P. Modh H. Knoll J. Fecioru E. Wacker M.G. An update to dialysis-based drug release testing—data analysis and validation using the pharma test dispersion releaser. Pharmaceutics 2021 13 12 2007 10.3390/pharmaceutics13122007 34959289
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385348551241028102256
Loading
/content/journals/pnt/10.2174/0122117385348551241028102256
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test