Skip to content
2000
image of Formulation and Assessment of an Optimized Glimepiride Transdermal Therapeutic System Using 32 Full Factorial Design Approach

Abstract

Background

Currently, a large number of populations are suffering from diabetes mellitus, which significantly increases the burden on public health. Glimepiride is an antidiabetic drug with a shorter half-life (approximately 5 hours), low bioavailability, and first-pass metabolism. Due to these limitations, it is required to maintain a uniform therapeutic level, and it has been chosen as a transdermal drug delivery approach.

Objectives

The main objective of this investigation was to evaluate glimepiride-loaded transdermal patches on the skin to treat diabetes mellitus. To overcome the issue of oral glimepiride and provide a localized effect, a transdermal drug delivery approach was developed.

Methods

The glimepiride transdermal drug delivery approach was developed by using the solvent evaporation method. To examine the impact of altering amounts of polyvinyl alcohol (X) and polyvinyl pyrrolidone (X) on tensile strength, % of glimepiride released in 12 hours (Q12), and % of glimepiride released in 24 hours (Q24), as reliant on variables, a 32 complete factorial design was employed. For dependent variables, regression estimation and estimation of variance were employed. release statistics were fixed to different models for various glimepiride release kinetics. glimepiride release was tested using the best formulation.

Results

The formulation F4 with 1300.00 milligrams of polyvinyl alcohol and 600.00 milligrams of polyvinyl pyrrolidone demonstrated a release of 96.17% for up to 24 hours and zero order release kinetics consisting of r2=0.987, which was the best batch. The optimized formulation F4 showed a controlled release of glimepiride and better permeation and deposition properties.

Conclusion

The findings of this research work demonstrated the potential of the 32 full factorial mathematical models created to anticipate formulations with additional desirable release and permeability qualities for the treatment of diabetes mellitus.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385348069241017070659
2024-12-10
2025-01-19
Loading full text...

Full text loading...

References

  1. Nolte M.S. Karam H. Pancreatic hormones and antidiabetic drugs. Basic and clinical pharmacology. 8th ed Katzung B.G. New York Lange Medical Books/ McGraw-Hill Publishing Division 2001 711 734
    [Google Scholar]
  2. Davis S.N. Granner D.K. Insulin oral hypoglycemic agents, and the pharmacotherapy of the endocrine pancreas. Limbird LE, The pharmacological basis of therapeutics. 9th ed Hardman J.G. New York McGraw-Hill Co. 1996 1487 1517
    [Google Scholar]
  3. Takahashi Y. Furuya K. Iwata M. Onishi H. MacHida Y. Shirotake S. [Trial for transdermal administration of sulfonylureas]. Yakugaku Zasshi 1997 117 12 1022 1027 10.1248/yakushi1947.117.12_1022 9437909
    [Google Scholar]
  4. Mutalik S. Udupa N. Transdermal delivery of glibenclamide and glipizide: In vitro permeation studies through mouse skin. Pharmazie 2002 57 12 838 841 12561248
    [Google Scholar]
  5. MedLine Plus Glimepiride. 2024 Available From: http://www.nlm.nih.gov/medlineplus/druginfo/meds/a696016.html
  6. DrugBank Glimepiride is a sulfonylurea drug used to treat type 2 diabetes mellitus. 2024 Available From: http://www.drugbank.ca/drugs/db00222
  7. Ng L.C. Gupta M. Transdermal drug delivery systems in diabetes management: A review. Asian J. Pharmaceut. Sci. 2020 15 1 13 25 10.1016/j.ajps.2019.04.006 32175015
    [Google Scholar]
  8. Pallerla P. Varghese L. Mallavaram R. Vemuri J. In vitro pancreatic lipase, alpha-amylase and αlpha-glucosidase inhibitory activities of the phytochemical barbaloin. Int. J. Pharm. Sci. Drug Res. 2023 15 1 39 43 10.25004/IJPSDR.2023.150106
    [Google Scholar]
  9. Panchayya Hiremath S.S. Reddy J.J. Jamakandi V.G. Design and evaluation of transdermal patches of timolol maleate. Curr. Drug Deliv. 2018 15 5 658 663 10.2174/1567201814666171002142444 28969565
    [Google Scholar]
  10. Amjad M. Ehtheshamuddin M. Chand S. Hanifa M. Sabreesh R.A. Kumar G.S. Formulation and evaluation of transdermal patches of atenolol. Adv. Res. in Pharma. and Biolo 2011 1 2 109 119
    [Google Scholar]
  11. Pachisia N. Agrawal S.S. Formulation, development, and evaluation of transdermal drug delivery system of glimepiride. Int J of Pharm and Pharma Sci Res 2012 2 1 1 8
    [Google Scholar]
  12. Nimbalkar M. Jadhav S. Patil M. Mali A. Hake G. Development and evaluation of floating tablets of norfloxacin. Indo Ame J Pharma Res 2015 5 02 995 1006
    [Google Scholar]
  13. Oza N.A. Patadiya D.D. Patel P.U. Patel D.M. Formulation and evaluation of carvedilol transdermal patches by using hydrophilic & hydrophobic polymers. Int J For Pharma Res Scho 2013 2 1 151 162
    [Google Scholar]
  14. Shivaraj A. Panner S.S. Mani T.T. Sivakumar T. Design and evaluation of transdermal drug delivery of ketotifen fumarate. Int J Pharma and Bio Res 2010 1 2 42 47
    [Google Scholar]
  15. Teruo O. Berner B. Kim S.W. Berner B. One-way membrane for transdermal drug delivery systems. II. System optimization. Int. J. Pharm. 1991 77 2-3 231 237 10.1016/0378‑5173(91)90321‑E
    [Google Scholar]
  16. Mali A.D. Bathe R. Patil M. An updated review on transdermal drug delivery systems. Int. J. Adv. Sci. Res. 2015 1 6 244 254 10.7439/ijasr.v1i6.2243
    [Google Scholar]
  17. Patel K.N. Patel H.K. Patel V.A. Formulation and Characterization of Drug in Adhesive Transdermal Patches of Diclofenac Acid. Int. J. Pharm. Pharm. Sci. 2012 4 1 296 299
    [Google Scholar]
  18. Darwhekar G. Jain D.K. Patidar V.K. Formulation and evaluation of transdermal drug delivery system of clopidogrel bisulfate. Asi J Pharm and Life Sci 2011 1 3 269 278
    [Google Scholar]
  19. Koteswararao P. Duraivel S. Kumar K.P. Bhowmik D. Formulation and Evaluation of Transdermal Patches of Anti-Hypertensive Drug Metoprolol Succinate. Ind J of Res in Pharm and Biotech 2013 1 5 629 634
    [Google Scholar]
  20. Anisree G.S. Ramasamy C. Wesley J.I. Koshy B.M. Formulation of transdermal drug delivery system of metoprolol tartrate and its evaluation. J Pharma Sci and Res 2012 4 10 1939 1942
    [Google Scholar]
  21. Madhulatha A. Naga R.T. Formulation and evaluation of ibuprofen transdermal patches. Int. J. Res. Pharm. Biomed. Sci. 2013 4 1 351 362
    [Google Scholar]
  22. Rathod K. Shah C. Shah H. To optimize the effect of polymers on matrix type transdermal patch of trandolapril. Int J Pharma Res and Bio-Sci 2014 3 2 540 554
    [Google Scholar]
  23. Kaur A. Kaur G. Mucoadhesive buccal patches based on interpolymer complexes of chitosan–pectin for delivery of carvedilol. Saudi Pharm. J. 2012 20 1 21 27 10.1016/j.jsps.2011.04.005 23960773
    [Google Scholar]
  24. Kumar D.S. Sairam R. Anandbabu S. Karpagavalli L. Maheswaran A. Narayanan N. Formulation and evaluation of transdermal patches of salbutamol. Res. J. Pharm. Biol. Chem. Sci. 2012 3 3 1132 1139
    [Google Scholar]
  25. Namrata V.S. Lin P.L. Development and in-vitro evaluation of an optimized carvedilol transdermal therapeutic system using an experimental design approach. Asi J Pharma Sci 2013 8 28 38
    [Google Scholar]
  26. Korsmeyer R.W. Gurny R. Doelker E. Buri P. Peppas N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983 15 1 25 35 10.1016/0378‑5173(83)90064‑9
    [Google Scholar]
  27. Dash S. Murthy P.N. Nath L. Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010 67 3 217 223 20524422
    [Google Scholar]
  28. Costa P. Sousa Lobo J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001 13 2 123 133 10.1016/S0928‑0987(01)00095‑1 11297896
    [Google Scholar]
  29. Yadav N. Mittal A. Ali J. Sahoo J. Current updates in transdermal therapeutic systems and their role in neurological disorders. Curr. Protein Pept. Sci. 2021 22 6 458 469 10.2174/1389203721999201111195512 33183199
    [Google Scholar]
  30. Manvi F.V. Formulation of a transdermal drug delivery system of ketotifen fumarate. Int. J. Pharma Sci. 2003 65 3 239 243
    [Google Scholar]
  31. Fang J.Y. Sung K.C. Lin H.H. Fang C.L. Transdermal iontophoretic delivery of diclofenac sodium from various polymer formulations: In vitro and in vivo studies. Int. J. Pharm. 1999 178 1 83 92 10.1016/S0378‑5173(98)00361‑5 10205628
    [Google Scholar]
  32. Patil M.S. Vidyasagar G. Formulation, optimization and evaluation of floating tablets clarithromycin. Int. J. Pharm. Pharm. Sci. 2015 7 5 320 326
    [Google Scholar]
  33. Mali A.D. Bathe R.S. Development and evaluation of gastroretentive floating tablets of a quinapril HCL by direct compression technique. Int. J. Pharm. Pharm. Sci. 2017 9 8 35 46 10.22159/ijpps.2017v9i8.12463
    [Google Scholar]
  34. Joshi D. Tiwari M. Singh B. Semwal N. Design and characterisation of rosuvastatin calcium nanosuspension loaded transdermal patch. Curr. Drug Deliv. 2023 20 7 943 956 35611774
    [Google Scholar]
  35. Zhang X. Liu W. Wang W. Pi M. Huang B. Wu F. Evaluation of Gum Arabic Double-layer Microneedle Patch Containing Sumatriptan for Loading and Transdermal Delivery. Curr. Drug Deliv. 2024 21 1 104 114 10.2174/1567201820666230309140636 36892114
    [Google Scholar]
  36. Ogah O.S. Adebayo S.O. Olunuga T.O. Durodola A. Heart failure: Definition, classification, and pathophysiology – A mini-review. Nigerian J. Cardiol. 2017 14 1 9 16 10.4103/0189‑7969.201913
    [Google Scholar]
  37. Alexander A. Dwivedi S. Ajazuddin Giri T.K. Saraf S. Saraf S. Tripathi D.K. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J. Control. Release 2012 164 1 26 40 10.1016/j.jconrel.2012.09.017 23064010
    [Google Scholar]
  38. Alkilani A. McCrudden M.T. Donnelly R. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 2015 7 4 438 470 10.3390/pharmaceutics7040438 26506371
    [Google Scholar]
  39. Allam A.N. Gamal S.S. Naggar V.F. Bioavailability: A review. Int J Novel Drug Del Tech 2011 1 1 77 93
    [Google Scholar]
  40. Aparna P. Divya L. Bhadrayya K. Subrahmanyam C.V.S. Formulation and in-vitro evaluation of carvedilol transdermal delivery system. Trop. J. Pharm. Res. 2013 12 4 461 467 10.4314/tjpr.v12i4.3
    [Google Scholar]
  41. Fröhlich H. Zhao J. Täger T. Cebola R. Schellberg D. Katus H.A. Grundtvig M. Hole T. Atar D. Agewall S. Frankenstein L. Carvedilol compared with metoprolol succinate in the treatment and prognosis of patients with stable chronic heart failure: Carvedilol or metoprolol evaluation study. Circ. Heart Fail. 2015 8 5 887 896 10.1161/CIRCHEARTFAILURE.114.001701 26175538
    [Google Scholar]
  42. Gannu R. Vamshi Vishnu Y. Kishan V. Madhusudan Rao Y. Development of nitrendipine transdermal patches: In vitro and ex vivo characterization. Curr. Drug Deliv. 2007 4 1 69 76 10.2174/156720107779314767 17269919
    [Google Scholar]
  43. Inamdar A. Inamdar A. Heart failure: Diagnosis, management and utilization. J. Clin. Med. 2016 5 7 62 90 10.3390/jcm5070062 27367736
    [Google Scholar]
  44. Martella G. Costa C. Pisani A. Cupini L.M. Bernardi G. Calabresi P. Antiepileptic drugs on calcium currents recorded from cortical and PAG neurons: Therapeutic implications for migraine. Cephalalgia 2008 28 12 1315 1326 10.1111/j.1468‑2982.2008.01682.x 18771493
    [Google Scholar]
  45. Murthy S.N. Rani S. Hiremath R. Formulation and evaluation of controlled-release transdermal patches of theophylline-salbutamol sulfate. Drug Dev. Ind. Pharm. 2001 27 10 1057 1062 10.1081/DDC‑100108368 11794808
    [Google Scholar]
  46. Nira S.S. Rajan B.M. Formulation and evaluation of transdermal patches and to study penetration enhancement effect of eugenol. J. Appl. Pharm. Sci. 2011 1 96 101
    [Google Scholar]
  47. Patel R.P. Patel G. Baria A. Formulation and evaluation of transdermal patch of aceclofenac. Int. J. Drug Deliv. 2009 1 1 41 51 10.5138/ijdd.2009.0975.0215.01005
    [Google Scholar]
  48. Sarpotdar P.P. Zatz J.L. Evaluation of penetration enhancement of lidocaine by nonionic surfactants through hairless mouse skin in vitro. J. Pharm. Sci. 1986 75 2 176 181 10.1002/jps.2600750216 3958929
    [Google Scholar]
  49. Prajapati S.T. Patel C.G. Patel C.N. Formulation and evaluation of transdermal patch of repaglinide. ISRN Pharm. 2011 2011 1 9 10.5402/2011/651909 22389856
    [Google Scholar]
  50. Shaker D.S. Ghanem A.H. Li S.K. Warner K.S. Hashem F.M. Higuchi W.I. Mechanistic studies of the effect of hydroxypropyl-β-cyclodextrin on in vitro transdermal permeation of corticosterone through hairless mouse skin. Int. J. Pharm. 2003 253 1-2 1 11 10.1016/S0378‑5173(02)00625‑7 12593932
    [Google Scholar]
  51. Shin S.C. Lee H.J. Controlled release of triprolidine using ethylene-vinyl acetate membrane and matrix systems. Eur. J. Pharm. Biopharm. 2002 54 2 201 206 10.1016/S0939‑6411(02)00051‑6 12191692
    [Google Scholar]
  52. Karande P. Jain A. Ergun K. Kispersky V. Mitragotri S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc. Natl. Acad. Sci. USA 2005 102 13 4688 4693 10.1073/pnas.0501176102 15774584
    [Google Scholar]
  53. Naik A. Pechtold L.A.R.M. Potts R.O. Guy R.H. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J. Control. Release 1995 37 3 299 306 10.1016/0168‑3659(95)00088‑7
    [Google Scholar]
  54. Singh J. Tripathi K.P. Sakya T.R. Effect of penetration Enhancers on the in-vitro transport of ephedrine through rate skin and human epidermis from matrix-based transdermal formulations. Drug Dev. Ind. Pharm. 1993 19 13 1623 1628 10.3109/03639049309069331
    [Google Scholar]
  55. Lakshmi P.K. Mounika K. Saroja C.H. Transdermal permeation enhancement of lamotrigine using terpenes. J Pharma Care Health Sys 2014 1 103
    [Google Scholar]
  56. Shailesh T. Charmi G. Chhagan N. Formulation and evaluation of transdermal patch of repaglinide. ISRN Pharma 2011 2011 33
    [Google Scholar]
  57. Tanwar H. Sachdeva R. Transdermal Drug Delivery System: A Review. Int. J. Pharm. Sci. Res. 2016 7 6 2274 2290
    [Google Scholar]
  58. Sharma B. Yadav B. Saroha K. Nanda S. Formulation and Characterization of Transdermal Patch of Amlodipine Besylate. Int J Pharma Chem Sci 2012 1 3 953 969
    [Google Scholar]
  59. Takmaz E.A. Inal Ö. Baykara T. Studies on transdermal delivery enhancement of zidovudine. AAPS PharmSciTech 2009 10 1 88 97 10.1208/s12249‑008‑9179‑9 19148760
    [Google Scholar]
  60. Kavitha K. Kumar D.P. Development of transdermal patches of nicardipine hydrochloride: An attempt to improve bioavailability. Int J Biomed Pharma Sci 2011 2 285 293
    [Google Scholar]
  61. Sinha V.R. Kaur M.P. Permeation enhancers for transdermal drug delivery. Drug Dev. Ind. Pharm. 2000 26 11 1131 1140 10.1081/DDC‑100100984 11068686
    [Google Scholar]
  62. Asija R. Gupta A. Maheshwari B.S. Formulation and evalution of Transdermal patches of torasemide. Int. J. Adv. Sci. Res. 2015 1 1 38 44 10.7439/ijasr.v1i1.1734
    [Google Scholar]
  63. Jyotsana R. Nitin S. Formulation and evaluation of transdermal patches of donepezi. Rec Pat Drug Del Form 2015 9 1 95 103 10.2174/1872211308666141028213615
    [Google Scholar]
  64. Limpongsa E. Umprayn K. Preparation and evaluation of diltiazem hydrochloride diffusion-controlled transdermal delivery system. AAPS PharmSciTech 2008 9 2 464 470 10.1208/s12249‑008‑9062‑8 18431661
    [Google Scholar]
  65. Shinde A.J. Paithane M.J. Development of an in-vitro evaluation of transdermal patches of lovastatin as antilipidemic drug. Int Res J Pharm 2010 1 1 113 121
    [Google Scholar]
  66. Kavitha K. Kumar D.P. Development of transdermal patches of nicardipine hydrochloride: An attempt to improve bioavailability. Int. J. Res. Pharm. Biomed. Sci. 2011 2 1 285 294
    [Google Scholar]
  67. Bhatia K.S. Gao S. Singh J. Effect of penetration enhancers and iontophoresis on the FT-IR spectroscopy and LHRH permeability through porcine skin. J. Control. Release 1997 47 1 81 89 10.1016/S0168‑3659(96)01618‑5
    [Google Scholar]
  68. Chien Y.W. Transdermal drug delivery and delivery systems. Novel Drug Delivery Systems. 2nd ed Chien Y.W. New York Marcel Dekker 1992 301 380
    [Google Scholar]
  69. Frohoff-Hülsmann M.A. Schmitz A. Lippold B.C. Aqueous ethyl cellulose dispersions containing plasticizers of different water solubility and hydroxypropyl methylcellulose as coating material for diffusion pellets. I. Drug release rates from coated pellets. Int. J. Pharm. 1999 177 1 69 82 10.1016/S0378‑5173(98)00327‑5 10205604
    [Google Scholar]
  70. Bodmeier R. Paeratakul O. Mechanical properties of dry and wet cellulosic and acrylic films prepared from aqueous colloidal polymer dispersions used in the coating of solid dosage forms. Pharm. Res. 1994 11 6 882 888 10.1023/A:1018942127524 7937530
    [Google Scholar]
  71. Saettone M. Perini G. Rijli P. Rodriguez L. Cini M. Effect of different polymer-plasticizer combinations on ‘in vitro’ release of theophylline from coated pellets. Int. J. Pharm. 1995 126 1-2 83 88 10.1016/0378‑5173(95)04099‑4
    [Google Scholar]
  72. Sakellariou P. Rowe R.C. The morphology of blends of ethylcellulose with hydroxypropyl methylcellulose as used in film coating. Int. J. Pharm. 1995 125 2 289 296 10.1016/0378‑5173(95)00147‑B
    [Google Scholar]
  73. Golomb G. Fisher P. Rahamim E. The relationship between drug release rate, particle size and swelling of silicone matrices. J. Control. Release 1990 12 2 121 132 10.1016/0168‑3659(90)90088‑B
    [Google Scholar]
  74. Breuer M.M. The interaction between surfactants and keratinous tissues. J Soc Cosmet 1979 30 41 64
    [Google Scholar]
  75. Walters K.A. Walker M. Olejnik O. Non-ionic surfactant effects on hairless mouse skin permeability characteristics. J. Pharm. Pharmacol. 2011 40 8 525 529 10.1111/j.2042‑7158.1988.tb05295.x 2907003
    [Google Scholar]
  76. Mali A. Bhanwase A. Brain targeted drug delivery system of carmustine: Design, development, characterization, in vitro, ex vivo evaluation & in vivo pharmacokinetic study. Acta Chim. Slov. 2024 71 1 26 38 10.17344/acsi.2023.8461
    [Google Scholar]
  77. Mali A Bhanwase A. In-vitro, ex-vivo & in-vivo assessment of brain targeted thermoreversible mucoadhesive in-situ intranasal gel of carmustine for the treatment of glioblastoma. BioNanoScience 2024 2024 01521 10.1007/s12668‑024‑01521‑x
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385348069241017070659
Loading
/content/journals/pnt/10.2174/0122117385348069241017070659
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test