Skip to content
2000
image of A Comprehensive Review of Strategies of Topical Niosomes and Their Synergistic Effect for Enhanced Therapeutic Outcomes

Abstract

The review aims to assess the potential of niosomes—nonionic surfactant-based vesicular systems—as carriers for topical and transdermal drug delivery. Niosomes enable targeted and controlled drug release while minimizing systemic toxicity. The investigation centers on their structure, stability, and capacity to entrap both hydrophilic and lipophilic drugs, as well as their use in managing various dermatological and systemic disorders. Recent studies have examined the formulation of niosomes, particularly highlighting the roles of nonionic surfactants and cholesterol in enhancing the stability and entrapment efficiency of these vesicles. Research on permeability enhancers has been reviewed for their ability to work together to improve drug transport and bioavailability. It also provides a detailed discussion on the use of niosomes in treating various dermatological conditions, as well as their applications in systemic diseases, with a particular focus on co-delivery systems in cancer therapies. Niosomes exhibit efficacy in drug delivery by providing an increase in penetration through the stratum corneum, targeting hydrophilic and lipophilic drugs for dermatological and systemic applications. The Development of niosomal therapy has expanded into immunization, anti-inflammatory treatments, and the control of pigmentation. Permeability enhancers further increase their efficacy, bioavailability, and tissue localization. Anticancer treatment using niosomes for co-delivery of agents demonstrates synergistic effects with reduced side effects. Niosomes have tremendous potential in advancing topical and transdermal drug delivery, offering controlled, targeted release and improved patient outcomes. With optimized fabrication and comprehensive toxicity evaluation, niosomes can potentially revolutionize topical therapies, making them safer, more effective, and patient-friendly for a range of next-generation treatment options across dermatology and beyond.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385345369241212071947
2024-12-30
2025-01-19
Loading full text...

Full text loading...

References

  1. Choi M.J. Maibach H.I. Elastic vesicles as topical/transdermal drug delivery systems. Int. J. Cosmet. Sci. 2005 27 4 211 221 10.1111/j.1467‑2494.2005.00264.x 18492190
    [Google Scholar]
  2. Bouwstra J. Honeywell-Nguyen P.L. Gooris G.S. Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res. 2003 42 1 1 36 10.1016/S0163‑7827(02)00028‑0 12467638
    [Google Scholar]
  3. Sharma A. Babu Sharma R. Verma A. Thakur R. Insight on nanoparticles, green synthesis and applications in drug delivery system: A comprehensive review. Int. J. Life Sci. Pharma Res. 2022 12 68 84 10.22376/ijpbs/lpr.2022.12.5.P68‑84
    [Google Scholar]
  4. Choi M.J. Maibach H.I. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol. Physiol. 2005 18 5 209 219 10.1159/000086666 16015019
    [Google Scholar]
  5. Khatoon M. Shah K.U. Din F.U. Shah S.U. Rehman A.U. Dilawar N. Khan A.N. Proniosomes derived niosomes: Recent advancements in drug delivery and targeting. Drug Deliv. 2017 24 2 56 69 10.1080/10717544.2017.1384520 29130758
    [Google Scholar]
  6. Alyami H. Abdelaziz K. Dahmash E.Z. Iyire A. Nonionic surfactant vesicles (niosomes) for ocular drug delivery: Development, evaluation and toxicological profiling. J. Drug Deliv. Sci. Technol. 2020 60 102069 10.1016/j.jddst.2020.102069
    [Google Scholar]
  7. Chang H.I. Yeh M.K. Clinical development of liposome-based drugs: Formulation, characterization, and therapeutic efficacy. Int. J. Nanomedicine 2012 7 49 60 22275822
    [Google Scholar]
  8. Chandrakar S. Saraf S. Niosome-a versatile tool in transdermal drug delivery. Res. J. Pharm. Dos. Forms Technol. 2009 1 1 4
    [Google Scholar]
  9. Suttee A. Mishra V. Nayak P. Singh M. Sriram P. Niosomes: Potential nanocarriers for drug delivery. Int. J. Pharm. Qual. Assur. 2020 11 3 389 394 10.25258/ijpqa.11.3.13
    [Google Scholar]
  10. Chen S. Hanning S. Falconer J. Locke M. Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019 144 18 39 10.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  11. Fang J.Y. Hong C.T. Chiu W.T. Wang Y.Y. Effect of liposomes and niosomes on skin permeation of enoxacin. Int. J. Pharm. 2001 219 1-2 61 72 10.1016/S0378‑5173(01)00627‑5 11337166
    [Google Scholar]
  12. Liga S. Paul C. Moacă E.A. Péter F. Niosomes: Composition, formulation techniques, and recent progress as delivery systems in cancer therapy. Pharmaceutics 2024 16 2 223 10.3390/pharmaceutics16020223 38399277
    [Google Scholar]
  13. Saharawat S. Verma S. A Comprehensive review on niosomes as a strategy in targeted drug delivery: Pharmaceutical, and herbal cosmetic applications. Curr. Drug Deliv. 2024 21 11 1460 1473 10.2174/0115672018269199231121055548 38231066
    [Google Scholar]
  14. Abdelkader H. Alani A.W.G. Alany R.G. Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014 21 2 87 100 10.3109/10717544.2013.838077 24156390
    [Google Scholar]
  15. Kashapov R. Gaynanova G. Gabdrakhmanov D. Kuznetsov D. Pavlov R. Petrov K. Zakharova L. Sinyashin O. Self-assembly of amphiphilic compounds as a versatile tool for construction of nanoscale drug carriers. Int. J. Mol. Sci. 2020 21 18 6961 10.3390/ijms21186961 32971917
    [Google Scholar]
  16. Lai F. Caddeo C. Manca M.L. Manconi M. Sinico C. Fadda A.M. What’s new in the field of phospholipid vesicular nanocarriers for skin drug delivery. Int. J. Pharm. 2020 583 119398 10.1016/j.ijpharm.2020.119398 32376441
    [Google Scholar]
  17. Jain A. Jain A. Gulbake A. Shilpi S. Hurkat P. Jain S.K. Peptide and protein delivery using new drug delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 2013 30 4 293 329 10.1615/CritRevTherDrugCarrierSyst.2013006955 23662604
    [Google Scholar]
  18. Fang J.Y. Yu S.Y. Wu P.C. Huang Y.B. Tsai Y.H. In vitro skin permeation of estradiol from various proniosome formulations. Int. J. Pharm. 2001 215 1-2 91 99 10.1016/S0378‑5173(00)00669‑4 11250095
    [Google Scholar]
  19. Sabale V. Charde M. Dumore N. Mahajan U. Recent Developments in Proniosomal Transdermal Drug Delivery: An Overview. Curr. Drug Deliv. 2023 20 6 683 693 10.2174/1567201819666220422153059 35466874
    [Google Scholar]
  20. Manosroi A. Khanrin P. Lohcharoenkal W. Werner R.G. Götz F. Manosroi W. Manosroi J. Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. Int. J. Pharm. 2010 392 1-2 304 310 10.1016/j.ijpharm.2010.03.064 20381599
    [Google Scholar]
  21. Shah H.S. Gotecha A. Jetha D. Rajput A. Bariya A. Panchal S. Butani S. Gamma oryzanol niosomal gel for skin cancer: Formulation and optimization using quality by design (QbD) approach. AAPS Open 2021 7 1 9 10.1186/s41120‑021‑00041‑2
    [Google Scholar]
  22. Carafa M. Santucci E. Lucania G. Lidocaine-loaded non-ionic surfactant vesicles: Characterization and in vitro permeation studies. Int. J. Pharm. 2002 231 1 21 32 10.1016/S0378‑5173(01)00828‑6 11719010
    [Google Scholar]
  23. Glavas-Dodov M. Goracinova K. Mladenovska K. Fredro-Kumbaradzi E. Release profile of lidocaine HCl from topical liposomal gel formulation. Int. J. Pharm. 2002 242 1-2 381 384 10.1016/S0378‑5173(02)00221‑1 12176284
    [Google Scholar]
  24. Puglia C. Bonina F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin. Drug Deliv. 2012 9 4 429 441 10.1517/17425247.2012.666967 22394125
    [Google Scholar]
  25. Parveen S. Ahmed M. Baboota S. Ali J. An innovative approach in nanotechnology-based delivery system for the effective management of psoriasis. Curr. Pharm. Des. 2022 28 13 1082 1102 10.2174/1381612828666220201141915 35105284
    [Google Scholar]
  26. Kadian V. Kumar S. Saini K. Kakkar V. Rao R. Dithranol: An insight into its novel delivery cargos for psoriasis management. Curr. Drug Res. Rev. 2021 12 2 82 96 10.2174/2589977512666200525154954 32484107
    [Google Scholar]
  27. Wang W. Zhou H. Liu L. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. Eur. J. Med. Chem. 2018 158 502 516 10.1016/j.ejmech.2018.09.027 30243154
    [Google Scholar]
  28. Mehrarya M. Gharehchelou B. Haghighi Poodeh S. Jamshidifar E. Karimifard S. Farasati Far B. Akbarzadeh I. Seifalian A. Niosomal formulation for antibacterial applications. J. Drug Target. 2022 30 5 476 493 10.1080/1061186X.2022.2032094 35060818
    [Google Scholar]
  29. Bissett D.L. Robinson L.R. Raleigh P.S. Miyamoto K. Hakozaki T. Li J. Kelm G.R. Reduction in the appearance of facial hyperpigmentation by topical N‐acetyl glucosamine. J. Cosmet. Dermatol. 2007 6 1 20 26 10.1111/j.1473‑2165.2007.00295.x 17348991
    [Google Scholar]
  30. Shatalebi MA Mostafavi SA Moghaddas A Niosome as a drug carrier for topical delivery of N-acetyl glucosamine. Res Pharm Sci 5 2 107
    [Google Scholar]
  31. Zuccari G. Baldassari S. Ailuno G. Turrini F. Alfei S. Caviglioli G. Formulation strategies to improve oral bioavailability of ellagic acid. Appl. Sci. (Basel) 2020 10 10 3353 10.3390/app10103353
    [Google Scholar]
  32. Manosroi J. Khositsuntiwong N. Manosroi W. Götz F. Werner R.G. Manosroi A. Enhancement of transdermal absorption, gene expression and stability of tyrosinase plasmid (pMEL34)-loaded elastic cationic niosomes: potential application in vitiligo treatment. J. Pharm. Sci. 2010 99 8 3533 3541 10.1002/jps.22104 20213835
    [Google Scholar]
  33. Shifera A.S. Hardin J.A. Factors modulating expression of Renilla luciferase from control plasmids used in luciferase reporter gene assays. Anal. Biochem. 2010 396 2 167 172 10.1016/j.ab.2009.09.043 19788887
    [Google Scholar]
  34. Manosroi A. Khositsuntiwong N. Götz F. Werner R.G. Manosroi J. Transdermal enhancement through rat skin of luciferase plasmid DNA loaded in elastic nanovesicles. J. Liposome Res. 2009 19 2 91 98 10.1080/08982100902731523 19241277
    [Google Scholar]
  35. Vyas S. Singh R. Jain S. Mishra V. Mahor S. Singh P. Gupta P. Rawat A. Dubey P. Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int. J. Pharm. 2005 296 1-2 80 86 10.1016/j.ijpharm.2005.02.016 15885458
    [Google Scholar]
  36. Linch C.A. Whiting D.A. Holland M.M. Human hair histogenesis for the mitochondrial DNA forensic scientist. J. Forensic Sci. 2001 46 4 15056J 10.1520/JFS15056J 11451065
    [Google Scholar]
  37. Tiwari S. Vyas S.P. Novel approaches to oral immunization for hepatitis B. Curr. Infect. Dis. Rep. 2011 13 1 4 12 10.1007/s11908‑010‑0152‑x 21308449
    [Google Scholar]
  38. Ebrahimpoor S. Pakzad S.R. Ajdary S. IgG1 and IgG2a profile of serum antibodies to Leishmania major amastigote in BALB/c and C57BL/6Mice. Iran. J. Allergy Asthma Immunol. 2013 12 4 361 367 23996712
    [Google Scholar]
  39. Baldauf K. Royal J. Hamorsky K. Matoba N. Cholera toxin B: One subunit with many pharmaceutical applications. Toxins (Basel) 2015 7 3 974 996 10.3390/toxins7030974 25802972
    [Google Scholar]
  40. Morris C.J. Carrageenan-induced paw edema in the rat and mouse. Methods Mol. Biol. 2003 225 115 122 10.1385/1‑59259‑374‑7:115 12769480
    [Google Scholar]
  41. Goyal C. Ahuja M. Sharma S.K. Preparation and evaluation of anti-inflammatory activity of gugulipid-loaded proniosomal gel. Acta Pol. Pharm. 2011 68 1 147 150 21485714
    [Google Scholar]
  42. Singh B. Mehta G. Kumar R. Bhatia A. Ahuja N. Katare O. Design, development and optimization of nimesulide-loaded liposomal systems for topical application. Curr. Drug Deliv. 2005 2 2 143 153 10.2174/1567201053585985 16305415
    [Google Scholar]
  43. Manosroi A. Chutoprapat R. Sato Y. Antioxidant activities and skin hydration effects of rice bran bioactive compounds entrapped in niosomes. J. nanoscience and nanotechnology 2011 11 3 2269 2277 10.1166/jnn.2011.3532
    [Google Scholar]
  44. Gupta A. Singh S. Kotla N.G. Webster T.J. Formulation and evaluation of a topical niosomal gel containing a combination of benzoyl peroxide and tretinoin for antiacne activity. Int. J. Nanomedicine 2014 10 171 182 25565812
    [Google Scholar]
  45. Manosroi A. Jantrawut P. Akihisa T. Manosroi W. Manosroi J. In vitro and in vivo skin anti-aging evaluation of gel containing niosomes loaded with a semi-purified fraction containing gallic acid from Terminalia chebula galls. Pharm. Biol. 2011 49 11 1190 1203 10.3109/13880209.2011.576347 22014267
    [Google Scholar]
  46. Vyas J Vyas P Raval D Paghdar P Development of topical niosomal gel of benzoyl peroxide. Int. Schol. Res. Not. 2011 2011 1 503158 10.5402/2011/503158
    [Google Scholar]
  47. Teaima M.H. Gebril M.I. Allah F.I.A. Niosomes versus proniosomes as promising drug delivery systems in treatment of diabetes mellitus. Int. J. Appl. Pharm. 2022 14 32 40 10.22159/ijap.2022v14i5.44039
    [Google Scholar]
  48. Manconi M. Sinico C. Valenti D. Lai F. Fadda A.M. Niosomes as carriers for tretinoin: III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int. J. Pharm. 2006 311 1-2 11 19 10.1016/j.ijpharm.2005.11.045 16439071
    [Google Scholar]
  49. Targhi A.A. Moammeri A. Jamshidifar E. Abbaspour K. Sadeghi S. Lamakani L. Akbarzadeh I. Synergistic effect of curcumin-Cu and curcumin-Ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. Bioorg. Chem. 2021 115 105116 10.1016/j.bioorg.2021.105116 34333420
    [Google Scholar]
  50. Teeranachaideekul V. Parichatikanond W. Junyaprasert V.B. Morakul B. Pumpkin seed oil-loaded niosomes for topical application: 5α-reductase inhibitory, anti-inflammatory, and in vivo anti-hair loss effects. Pharmaceuticals (Basel) 2022 15 8 930 10.3390/ph15080930 36015077
    [Google Scholar]
  51. Menéndez J.A. del Mar Barbacid M. Montero S. Sevilla E. Escrich E. Solanas M. Cortés-Funes H. Colomer R. Effects of gamma-linolenic acid and oleic acid on paclitaxel cytotoxicity in human breast cancer cells. Eur. J. Cancer 2001 37 3 402 413 10.1016/S0959‑8049(00)00408‑1 11239764
    [Google Scholar]
  52. Manosroi A. Ruksiriwanich W. Abe M. Manosroi W. Manosroi J. Transfollicular enhancement of gel containing cationic niosomes loaded with unsaturated fatty acids in rice (oryza sativa) bran semi-purified fraction. Eur. J. Pharm. Biopharm. 2012 81 2 303 313 10.1016/j.ejpb.2012.03.014 22490981
    [Google Scholar]
  53. Mali N. Darandale S. Vavia P. Niosomes as a vesicular carrier for topical administration of minoxidil: formulation and in vitro assessment. Drug Deliv. Transl. Res. 2013 3 6 587 592 10.1007/s13346‑012‑0083‑1 25786376
    [Google Scholar]
  54. Fox L.T. Gerber M. Plessis J.D. Hamman J.H. Transdermal drug delivery enhancement by compounds of natural origin. Molecules 2011 16 12 10507 10540 10.3390/molecules161210507
    [Google Scholar]
  55. Prashar M. Aggarwal G. Harikumar S.L. Synergistic action of penetration enhancers in transdermal drug delivery. J. Drug Deliv. Ther. 2014 4 3 10.22270/jddt.v4i3.824
    [Google Scholar]
  56. Fattahi N. Shahbazi M.A. Maleki A. Hamidi M. Ramazani A. Santos H.A. Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J. Control. Release 2020 326 556 598 10.1016/j.jconrel.2020.07.012 32726650
    [Google Scholar]
  57. Pereira R. Silva S.G. Pinheiro M. Reis S. Vale M.L. Current status of amino acid-based permeation enhancers in transdermal drug delivery. Membranes (Basel) 2021 11 5 343 10.3390/membranes11050343 34067194
    [Google Scholar]
  58. Chen J. Jiang Q.D. Chai Y.P. Zhang H. Peng P. Yang X.X. Natural terpenes as penetration enhancers for transdermal drug delivery. Molecules 2016 21 12 1709 10.3390/molecules21121709 27973428
    [Google Scholar]
  59. Neculai A-M. Cima L-M. Recent studies on increasing transdermal delivery systems of skin medicinal products. Eximia 2022 4 144 151
    [Google Scholar]
  60. Ibrahim S.A. Li S.K. Chemical enhancer solubility in human stratum corneum lipids and enhancer mechanism of action on stratum corneum lipid domain. Int. J. Pharm. 2010 383 1-2 89 98 10.1016/j.ijpharm.2009.09.014 19747970
    [Google Scholar]
  61. Njoku K. Sutton C.J.J. Whetton A.D. Crosbie E.J. Metabolomic biomarkers for detection, prognosis and identifying recurrence in endometrial cancer. Metabolites 2020 10 8 314 10.3390/metabo10080314 32751940
    [Google Scholar]
  62. Panchagnula R. Salve P.S. Thomas N.S. Jain A.K. Ramarao P. Transdermal delivery of naloxone: Effect of water, propylene glycol, ethanol and their binary combinations on permeation through rat skin. Int. J. Pharm. 2001 219 1-2 95 105 10.1016/S0378‑5173(01)00634‑2 11337170
    [Google Scholar]
  63. Karande P Mitragotri S Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochimica et Biophysica Acta (BBA)-Biomembranes 2009 1788 11 2362 2373 10.1016/j.bbamem.2009.08.015
    [Google Scholar]
  64. Thomas NS Panchagnula R Combination strategies to enhance transdermal permeation of zidovudine (AZT). Die Pharmazie-An Int. J. Pharmac. Sci. 2003 58 12 895 8
    [Google Scholar]
  65. Tavano L. Muzzalupo R. Mauro L. Pellegrino M. Andò S. Picci N. Transferrin-conjugated pluronic niosomes as a new drug delivery system for anticancer therapy. Langmuir 2013 29 41 12638 12646 10.1021/la4021383 24040748
    [Google Scholar]
  66. Balasubramanian E. Gajendran T. Comparative studies on the anticancer activity of colchicine by various controlled drug delivery modes. Int. J. Pharma Bio Sci. 2013 4 9 26
    [Google Scholar]
  67. Gharbavi M. Amani J. Kheiri-Manjili H. Danafar H. Sharafi A. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier. Adv. Pharmacol. Pharmac. Sci. 2018 2018 1 6847971 10.1155/2018/6847971
    [Google Scholar]
  68. Moammeri A. Abbaspour K. Zafarian A. Jamshidifar E. Motasadizadeh H. Dabbagh Moghaddam F. Salehi Z. Makvandi P. Dinarvand R. pH-responsive, adorned nanoniosomes for codelivery of cisplatin and epirubicin: Synergistic treatment of breast cancer. ACS Appl. Bio Mater. 2022 5 2 675 690 10.1021/acsabm.1c01107 35129960
    [Google Scholar]
  69. Bayindir Z.S. Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J. Pharm. Sci. 2010 99 4 2049 2060 10.1002/jps.21944 19780133
    [Google Scholar]
  70. Tang X. Sun J. Ge T. Zhang K. Gui Q. Zhang S. Chen W. PEGylated liposomes as delivery systems for Gambogenic acid: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces 2018 172 26 36 10.1016/j.colsurfb.2018.08.022 30125771
    [Google Scholar]
  71. Pourjavadi A. Asgari S. Hosseini S.H. Akhlaghi M. Codelivery of hydrophobic and hydrophilic drugs by graphene-decorated magnetic dendrimers. Langmuir 2018 34 50 15304 15318 10.1021/acs.langmuir.8b02710 30424605
    [Google Scholar]
  72. Alemi A. Zavar Reza J. Haghiralsadat F. Zarei Jaliani H. Haghi Karamallah M. Hosseini S.A. Haghi Karamallah S. Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy. J. Nanobiotechnology 2018 16 1 28 10.1186/s12951‑018‑0351‑4 29571289
    [Google Scholar]
  73. Agarwal S. Mohamed M.S. Raveendran S. Rochani A.K. Maekawa T. Kumar D.S. Formulation, characterization and evaluation of morusin loaded niosomes for potentiation of anticancer therapy. RSC Advances 2018 8 57 32621 32636 10.1039/C8RA06362A 35547672
    [Google Scholar]
  74. Safari Sharafshadeh M. Tafvizi F. Khodarahmi P. Ehtesham S. Preparation and physicochemical properties of cisplatin and doxorubicin encapsulated by niosome alginate nanocarrier for cancer therapy. Int. J. Biol. Macromol. 2023 235 123686 10.1016/j.ijbiomac.2023.123686 36801304
    [Google Scholar]
  75. Zarepour A. Egil A.C. Cokol Cakmak M. Esmaeili Rad M. Cetin Y. Aydinlik S. Ozaydin Ince G. Zarrabi A. Fabrication of a dual-drug-loaded smart niosome-g-chitosan polymeric platform for lung cancer treatment. Polymers 2023 15 2 298 10.3390/polym15020298 36679179
    [Google Scholar]
  76. Saharkhiz S. Zarepour A. Zarrabi A. A new theranostic pH-responsive niosome formulation for doxorubicin delivery and bio-imaging against breast cancer. Int. J. Pharm. 2023 637 122845 10.1016/j.ijpharm.2023.122845 36958608
    [Google Scholar]
  77. Shahbazi R. Jafari-Gharabaghlou D. Mirjafary Z. Saeidian H. Zarghami N. Design and optimization various formulations of PEGylated niosomal nanoparticles loaded with phytochemical agents: Potential anti-cancer effects against human lung cancer cells. Pharmacol. Rep. 2023 75 2 442 455 10.1007/s43440‑023‑00462‑8 36859742
    [Google Scholar]
  78. Hemati M. Haghiralsadat F. Yazdian F. Jafari F. Moradi A. Malekpour-Dehkordi Z. Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artif. Cells Nanomed. Biotechnol. 2019 47 1 1295 1311 10.1080/21691401.2018.1489271 30033768
    [Google Scholar]
  79. Crinò L. Scagliotti G. Marangolo M. Figoli F. Clerici M. De Marinis F. Salvati F. Cruciani G. Dogliotti L. Pucci F. Paccagnella A. Adamo V. Altavilla G. Incoronato P. Trippetti M. Mosconi A.M. Santucci A. Sorbolini S. Oliva C. Tonato M. Cisplatin-gemcitabine combination in advanced non-small-cell lung cancer: A phase II study. J. Clin. Oncol. 1997 15 1 297 303 10.1200/JCO.1997.15.1.297 8996156
    [Google Scholar]
  80. Kassem M.A. El-Sawy H.S. Abd-Allah F.I. Abdelghany T.M. El-Say K.M. Maximizing the therapeutic efficacy of imatinib mesylate–loaded niosomes on human colon adenocarcinoma using box-behnken design. J. Pharm. Sci. 2017 106 1 111 122 10.1016/j.xphs.2016.07.007 27544432
    [Google Scholar]
  81. Soni S. Baghel K. Soni M.L. Kashaw S.K. Soni V. Size-dependent effects of niosomes on the penetration of methotrexate in skin layers. Future J. Pharmac. Sci. 2024 10 1 48 10.1186/s43094‑024‑00624‑2
    [Google Scholar]
  82. Hedberg M.L. Berry C.T. Moshiri A.S. Xiang Y. Yeh C.J. Attilasoy C. Capell B.C. Seykora J.T. Molecular mechanisms of cutaneous squamous cell carcinoma. Int. J. Mol. Sci. 2022 23 7 3478 10.3390/ijms23073478 35408839
    [Google Scholar]
  83. Ewert de Oliveira B. Junqueira Amorim O.H. Lima L.L. Rezende R.A. Mestnik N.C. Bagatin E. Leonardi G.R. 5-Fluorouracil, innovative drug delivery systems to enhance bioavailability for topical use. J. Drug Deliv. Sci. Technol. 2021 61 102155 10.1016/j.jddst.2020.102155
    [Google Scholar]
  84. Gugleva V. Mihaylova R. Momekov G. Kamenova K. Forys A. Trzebicka B. Petrova M. Ugrinova I. Momekova D. Petrov P.D. pH-responsive niosome-based nanocarriers of antineoplastic agents. RSC Advances 2024 14 16 11124 11140 10.1039/D4RA01334D 38606056
    [Google Scholar]
  85. Shirode D.S. Raut D.J. Sarasawat N. Niosomal encapsulation of quercetin and silymarin and their combination on dimethylnitrosoamine-induced and phenobarbital promoted hepatocellular carcinoma in rat model. Current Drug Discovery Technologies 2024 21 5 43 55 10.2174/0115701638278205231231153851
    [Google Scholar]
  86. Verma S. Singh S.K. Syan N. Nanoparticle vesicular systems: A versatile tool for drug delivery. J. Chem. Pharm. Res. 2010 2 496 509
    [Google Scholar]
  87. Zha J. Li J. Su Z. Akimbekov N. Wu X. Lysostaphin: Engineering and potentiation toward better applications. J. Agric. Food Chem. 2022 70 37 11441 11457 10.1021/acs.jafc.2c03459 36082619
    [Google Scholar]
  88. Ridyard K.E. Overhage J. The potential of human peptide ll-37 as an antimicrobial and anti-biofilm agent. Antibiotics 2021 10 6 650 10.3390/antibiotics10060650 34072318
    [Google Scholar]
  89. Bhardwaj P. Tripathi P. Gupta R. Pandey S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020 56 101581 10.1016/j.jddst.2020.101581
    [Google Scholar]
  90. Ruckmani K. Sankar V. Formulation and optimization of zidovudine niosomes. AAPS Pharm. Sci. Tech. 2010 11 3 1119 1127 10.1208/s12249‑010‑9480‑2 20635228
    [Google Scholar]
  91. Sharma S. Rajendran V. Kulshreshtha R. Ghosh P.C. Enhanced efficacy of anti-miR-191 delivery through stearylamine liposome formulation for the treatment of breast cancer cells. Int. J. Pharm. 2017 530 1-2 387 400 10.1016/j.ijpharm.2017.07.079 28774852
    [Google Scholar]
  92. Mohammadi S. Pardakhty A. Khalili M. Fathi R. Rezaeizadeh M. Farajzadeh S. Mohebbi A. Aflatoonian M. Niosomal benzoyl peroxide and clindamycin lotion versus niosomal clindamycin lotion in treatment of acne vulgaris: A randomized clinical trial. Adv. Pharm. Bull. 2019 9 4 578 583 10.15171/apb.2019.066 31857961
    [Google Scholar]
  93. Arafa M.G. Ghalwash D. El-Kersh D.M. Elmazar M.M. Propolis-based niosomes as oromuco-adhesive films: A randomized clinical trial of a therapeutic drug delivery platform for the treatment of oral recurrent aphthous ulcers. Sci. Rep. 2018 8 1 18056 10.1038/s41598‑018‑37157‑7 30575794
    [Google Scholar]
  94. Lakshmi P.K. Devi G. Bhaskaran S. Sacchidanand S. Niosomal methotrexate gel in the treatment of localized psoriasis: Phase I and phase II studies. Indian J. Dermatol. Venereol. Leprol. 2007 73 3 157 161 10.4103/0378‑6323.32709 17558046
    [Google Scholar]
  95. Shamsi Meymandi S. Amiri R. Aflatunian M. Comparison of the efficacy of niosomal minoxidil with conventional minoxidil in the treatment of androgenetic alopecia: A randomized, controlled, double-blind clinical trial. J Dermatology Cosmet 2014 5 53 60
    [Google Scholar]
  96. Damrongrungruang T. Paphangkorakit J. Limsitthichaikoon S. Anthocyanin complex niosome gel accelerates oral wound healing: In vitro and clinical studies. Nanomedicine: Nanotechnology, Biology and Medicine. 2021 37 102423
    [Google Scholar]
  97. Farajzadeh S Pardakhti A Mohammadi S A randomized clinical trial of using niosomal zinc sulfate plus cryotherapy in comparison with placebo along with cryotherapy in treatment of common wart. J. Kerman University of Med. Sci.. 2018 25 1 1 18
    [Google Scholar]
  98. El-Mahdy M. Mohamed E-E.L. Saddik M. Ali M. El-Sayed A. Formulation and clinical evaluation of niosomal methylene blue for successful treatment of acne. J. Adv. Biome. Pharmac. Sci. 2020 3 3 116 26 10.21608/jabps.2020.25846.1079
    [Google Scholar]
  99. Mohammadi S. Badakhsh H. Pardakhti A. Evaluation of efficacy of niosomal clindamycin phosphate 1% solution in comparison to conventional clindamycin phosphate 1% solution in the treatment of acne vulgaris: A randomized controlled trial. J. Pak. Assoc. Dermatol. 2020 30 64 71
    [Google Scholar]
  100. Ongtanasup T. Tawanwongsri W. Manaspon C. Srisang S. Eawsakul K. Comprehensive investigation of niosomal red palm wax gel encapsulating ginger (Zingiber officinale Roscoe): Network pharmacology, molecular docking, in vitro studies and phase 1 clinical trials. Int. J. Biol. Macromol. 2024 277 Pt 3 134334 10.1016/j.ijbiomac.2024.134334 39094890
    [Google Scholar]
  101. Jadhav K.R. Pawar A.Y. Bachhav A.A. Proniosome: A novel non-ionic provesicules as potential drug carrier. Asian J. Pharm. 2016 10 S210 S222
    [Google Scholar]
  102. Kumar G.P. Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm. Sin. B 2011 1 4 208 219 10.1016/j.apsb.2011.09.002
    [Google Scholar]
  103. Mohammadi S. Farajzadeh S. Pardakhty A. A survey to compare the efficacy of niosomal erythromycin alone versus combination of erythromycin and zinc acetate in the treatment of acne vulgaris. J. Kerman Univ. Med. Sci. 2017 24 420 430
    [Google Scholar]
  104. Lakshmi PK Bhaskaran S Phase II study of topical niosomal urea gel-an adjuvant in the treatment of psoriasis. Int. J. Pharm. Sci. Rev. Res. 2011 7 1 1 7
    [Google Scholar]
  105. Moghassemi S. Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Cont. Rel. 2014 185 22 36 10.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  106. Silindir M. Özer A.Y. Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. Fabad J. Pharmac. Sci. 2009 34 1 43
    [Google Scholar]
  107. Prajapati B.G. Sharma D. Elossaily G.M. Sharma N. Bilandi A. Kapoor D.U. Unlocking potential of zinc oxide nanoparticles in enhancing topical drug delivery. Nano-Struct. Nano-Obj. 2024 39 101302 10.1016/j.nanoso.2024.101302
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385345369241212071947
Loading
/content/journals/pnt/10.2174/0122117385345369241212071947
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: and transdermal ; cancer ; synergistic ; permeation enhancers ; Niosome ; dermal ; Topical
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test