Skip to content
2000
image of Lipid-Based Nanoparticles as Drug Delivery System for Modern Therapeutics

Abstract

The emergence of lipid-based nanoparticulate systems has significantly reshaped the landscape of drug delivery. This review aims to encapsulate the advancements, challenges, and potential of lipid-based nanoparticulate drug delivery in modern therapeutics. Lipid-based nanoparticles, including liposomes, lipid nanoparticles, and solid lipid nanoparticles, harness the biocompatibility and biodegradability of lipids to encapsulate and deliver a diverse range of therapeutic agents. This platform offers solutions to various drug delivery challenges, such as enhancing drug solubility and bio- availability, achieving controlled and sustained release, targeted delivery, and co-delivery of multi-agents. These nanoparticles have demonstrated potential in overcoming biological barriers, including the blood-brain barrier, mucosal barriers, and cellular barriers, enabling the delivery of drugs to previously inaccessible sites. Biocompatibility and reduced toxicity are intrinsic attributes of lipid-based nanoparticles, minimizing immune responses and systemic toxicity while promoting personalized medicine possibilities. However, challenges in formulation, stability, and regulatory approval underscore the need for ongoing research and innovation in this field.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385337379240916053259
2024-10-11
2025-01-19
Loading full text...

Full text loading...

References

  1. Buse J. El-Aneed A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: Current research and advances. Nanomedicine (Lond.) 2010 5 8 1237 1260 10.2217/nnm.10.107 21039200
    [Google Scholar]
  2. Yavlovich A. Smith B. Gupta K. Blumenthal R. Puri A. Light-sensitive lipid-based nanoparticles for drug delivery: Design principles and future considerations for biological applications. Mol. Membr. Biol. 2010 27 7 364 381 10.3109/09687688.2010.507788 20939770
    [Google Scholar]
  3. Samimi S. Maghsoudnia N. Eftekhari R.B. Dorkoosh F. Lipid-based nanoparticles for drug delivery systems. Characterization and biology of nanomaterials for drug delivery. Amsterdam Elsevier 2019 47 76 10.1016/B978‑0‑12‑814031‑4.00003‑9
    [Google Scholar]
  4. Puri A. Loomis K. Smith B. Lee J.H. Yavlovich A. Heldman E. Blumenthal R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 2009 26 6 523 580 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 20402623
    [Google Scholar]
  5. Ickenstein L.M. Garidel P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin. Drug Deliv. 2019 16 11 1205 1226 10.1080/17425247.2019.1669558 31530041
    [Google Scholar]
  6. Xu Y. Fourniols T. Labrak Y. Préat V. Beloqui A. des Rieux A. Surface modification of lipid-based nanoparticles. ACS Nano 2022 16 5 7168 7196 10.1021/acsnano.2c02347 35446546
    [Google Scholar]
  7. Chuang S.Y. Lin C.H. Huang T.H. Fang J.Y. Lipid-based nanoparti- cles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials (Basel) 2018 8 1 42 10.3390/nano8010042 29342965
    [Google Scholar]
  8. Yonezawa S. Koide H. Asai T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev. 2020 154-155 64 78 10.1016/j.addr.2020.07.022 32768564
    [Google Scholar]
  9. Agrawal S. Garg A. Varshney V. Recent updates on applications of Lipid-based nanoparticles for site-specific drug delivery. Pharm. Nanotechnol. 2022 10 1 24 41 10.2174/2211738510666220304111848 35249522
    [Google Scholar]
  10. Angelova A. Garamus V.M. Angelov B. Tian Z. Li Y. Zou A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv. Colloid Interface Sci. 2017 249 331 345 10.1016/j.cis.2017.04.006 28477868
    [Google Scholar]
  11. Bangham A.D. Liposomes: The Babraham connection. Chem. Phys. Lipids 1993 64 1-3 275 285 10.1016/0009‑3084(93)90071‑A 8242839
    [Google Scholar]
  12. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  13. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  14. Maurer N. Fenske D.B. Cullis P.R. Developments in liposomal drug delivery systems. Expert Opin. Biol. Ther. 2001 1 6 923 947 10.1517/14712598.1.6.923 11728226
    [Google Scholar]
  15. Bangham A.D. Horne R.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 1964 8 5 660 IN10 10.1016/S0022‑2836(64)80115‑7 14187392
    [Google Scholar]
  16. Finkelstein M.C. Weissmann G. Enzyme replacement via liposomes variations in lipid composition determine liposomal integrity in biological fluids. Biochim. Biophys. Acta, Gen. Subj. 1979 587 2 202 216 10.1016/0304‑4165(79)90354‑4
    [Google Scholar]
  17. Torchilin V.P. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc. Natl. Acad. Sci. U S A 2003 100 4 1972 1977 10.1073/pnas.0435906100
    [Google Scholar]
  18. Carson D Yang D Pornpattananangkul D Nakatsuji T Chan M Huang CM Zhang L The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials 2009 30 30 6035 40 10.1016/j.biomaterials.2009.07.033
    [Google Scholar]
  19. Schwarzkopf R. Drexler M. Ma M.W. Schultz V.M. Le K.T. Rutenberg T.F. Rinehart J.B. Is there a benefit for liposomal bupivacaine compared to a traditional periarticular injec- tion in total knee arthroplasty patients with a history of chronic opioid use? J. Arthroplasty 2016 31 8 1702 1705 10.1016/j.arth.2016.01.037 26897490
    [Google Scholar]
  20. Large D.E. Abdelmessih R.G. Fink E.A. Auguste D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021 176 113851 10.1016/j.addr.2021.113851 34224787
    [Google Scholar]
  21. Dua J.S. Rana A.C. Bhandari A.K. Liposome: Methods of prepara- tion and applications. Int J Pharm Stud Res 2012 3 2 14 20
    [Google Scholar]
  22. Trucillo P. Campardelli R. Reverchon E. Liposomes: From bang- ham to supercritical fluids. Processes (Basel) 2020 8 9 1022 10.3390/pr8091022
    [Google Scholar]
  23. Pradhan B Kumar N Saha S Roy A. Liposome: Method of prepa- ration, advantages, evaluation and its application. J Appl Pharm Sci 2015 3 3 01 8
    [Google Scholar]
  24. Batzri S. Korn E.D. Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta Biomembr. 1973 298 4 1015 1019 10.1016/0005‑2736(73)90408‑2 4738145
    [Google Scholar]
  25. Hauschild A Wollina U. Dummer R. Brockmeyer N.H. Konrad H. Busch J.O. Kaatz M. Knopf B. Koch H.J. Multicenter study of pegylated liposomal doxorubicin in patients with cutaneous T‐cell lymphoma. Cancer 2003 98 5 993 10.1002/cncr.11593
    [Google Scholar]
  26. Jahn I.J. Žukovskaja O. Zheng X.S. Weber K. Bocklitz T.W. Cialla-May D. Popp J. Surface-enhanced Raman spectroscopy and microfluidic platforms: Challenges, solutions and potential applications. Analyst (Lond.) 2017 142 7 1022 1047 10.1039/C7AN00118E 28276552
    [Google Scholar]
  27. Maitani Y. Igarashi S. Sato M. Hattori Y. Cationic liposome (DC-Chol/DOPE = 1:2) and a modified ethanol injection method to prepare liposomes, increased gene expression. Int. J. Pharm. 2007 342 1-2 33 39 10.1016/j.ijpharm.2007.04.035 17566677
    [Google Scholar]
  28. Sedighi M. Sieber S. Rahimi F. Shahbazi M.A. Rezayan A.H. Huwyler J. Witzigmann D. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Deliv. Transl. Res. 2019 9 1 404 413 10.1007/s13346‑018‑0587‑4 30306459
    [Google Scholar]
  29. Frederiksen L. Anton K. van Hoogevest P. Keller H.R. Leuenberger H. Preparation of liposomes encapsulating water-soluble compounds using supercritical carbon dioxide. J. Pharm. Sci. 1997 86 8 921 928 10.1021/js960403q 9269870
    [Google Scholar]
  30. Otake K. Shimomura T. Goto T. Imura T. Furuya T. Yoda S. Takebayashi Y. Sakai H. Abe M. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir 2006 22 6 2543 2550 10.1021/la051654u 16519453
    [Google Scholar]
  31. Trucillo P. Campardelli R. Reverchon E. A versatile supercritical assisted process for the one-shot production of liposomes. J. Supercrit. Fluids 2019 146 136 143 10.1016/j.supflu.2019.01.015
    [Google Scholar]
  32. Baillie A.J. Florence A.T. Hume L.R. Muirhead G.T. Rogerson A. The preparation and properties of niosomes—non-ionic surfactant vesicles. J. Pharm. Pharmacol. 2011 37 12 863 868 10.1111/j.2042‑7158.1985.tb04990.x 2868092
    [Google Scholar]
  33. Schroeder A. Honen R. Turjeman K. Gabizon A. Kost J. Barenholz Y. Ultrasound triggered release of cisplatin from liposomes in murine tumors. J. Control. Release 2009 137 1 63 68 10.1016/j.jconrel.2009.03.007 19303426
    [Google Scholar]
  34. Iorio R. Clair A.J. Inneh I.A. Slover J.D. Bosco J.A. Zuckerman J.D. Early results of Medicare’s bundled payment initiative for a 90-day total joint arthroplasty episode of care. J. Arthroplasty 2016 31 2 343 350 10.1016/j.arth.2015.09.004 26427938
    [Google Scholar]
  35. Hogan M.J. Pardi N. mRNA Vaccines in the COVID-19 Pandemic and Beyond. Annu. Rev. Med. 2022 73 1 17 39 10.1146/annurev‑med‑042420‑112725 34669432
    [Google Scholar]
  36. Semple S.C. Leone R. Barbosa C.J. Tam Y.K. Lin P.J.C. Lipid Nanoparticle Delivery Systems to Enable mRNA-Based Therapeutics. Pharmaceutics 2022 14 2 398 10.3390/pharmaceutics14020398
    [Google Scholar]
  37. Yoo C.Y. Park S.N Seong J.S. Preparation of novel capsosome with liposomal core by layer-by-Layer self-assembly of sodium hyaluronate and chitosan. Colloids Surf B Biointerfaces 2016 144 99 107 10.1016/j.colsurfb.2016.04.010
    [Google Scholar]
  38. Kim M.J. Breuer K.S. Controlled mixing in microfluidic systems using bacterial chemotaxis. Anal. Chem. 2007 79 3 955 959 10.1021/ac0614691 17263321
    [Google Scholar]
  39. Moghassemi S. Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release 2014 185 22 36 10.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  40. Anthemidis A.N. Adam I.S.I. Development of on-line single-drop micro-extraction sequential injection system for electrothermal atomic absorption spectrometric determination of trace metals. Anal. Chim. Acta 2009 632 2 216 220 10.1016/j.aca.2008.10.078 19110096
    [Google Scholar]
  41. Branco Monica C. Schneider Joel P. Self-assembling materials for therapeutic delivery. Acta Biomater. 2009 5 3 817 813 10.1016/j.actbio.2008.09.018
    [Google Scholar]
  42. Kalhapure R.S. Suleman N. Mocktar C. Seedat N. Govender T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J. Pharm. Sci. 2015 104 3 872 905 10.1002/jps.24298 25546108
    [Google Scholar]
  43. Shanmugapriya K. Kang H.W. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. Mater. Sci. Eng. C 2019 105 110110 10.1016/j.msec.2019.110110 31546465
    [Google Scholar]
  44. Di Leone S. Kyropoulou M. Köchlin J. Wehr R. Meier W.P. Palivan C.G. Tailoring a solvent-assisted method for solid-supported hybrid lipid–polymer membranes. Langmuir 2022 38 21 6561 6570 10.1021/acs.langmuir.2c00204 35580858
    [Google Scholar]
  45. Liu J. Jiang X. Ashley C. Brinker C.J. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J. Am. Chem. Soc. 2009 131 22 7567 7569 10.1021/ja902039y 19445508
    [Google Scholar]
  46. Lingayat V.J. Zarekar N.S. Shendge R.S. Solid lipid nanoparticles: A review. Nanoscience and Nanotechnology Research 2017 4 2 67 72
    [Google Scholar]
  47. Mehnert W. Mäder K. Solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2012 64 83 101 10.1016/j.addr.2012.09.021 11311991
    [Google Scholar]
  48. Jenning V. Lippacher A. Gohla S.H. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J. Microencapsul. 2002 19 1 1 10 10.1080/713817583 11811751
    [Google Scholar]
  49. Ibrahim S. Tamoxifen drug loading solid lipid nanoparticles prepared by hot high pressure ho- mogenization techniques. Am. J. Pharmacol. Toxicol. 2008 3 3 219 224 10.3844/ajptsp.2008.219.224
    [Google Scholar]
  50. Silva A.C. González-Mira E. García M.L. Egea M.A. Fonseca J. Silva R. Santos D. Souto E.B. Ferreira D. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids Surf. B Biointerfaces 2011 86 1 158 165 10.1016/j.colsurfb.2011.03.035 21530187
    [Google Scholar]
  51. Parhi R. Suresh P. Preparation and characterization of solid lipid nanoparticles-a review. Curr. Drug Discov. Technol. 2012 9 1 2 16 10.2174/157016312799304552 22235925
    [Google Scholar]
  52. Akbari J. Saeedi M. Morteza-Semnani K. Rostamkalaei S.S. Asadi M. Asare-Addo K. Nokhodchi A. The design of naproxen solid lipid nanoparticles to target skin layers. Colloids Surf. B Biointerfaces 2016 145 626 633 10.1016/j.colsurfb.2016.05.064 27288817
    [Google Scholar]
  53. Trotta M. Debernardi F. Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int. J. Pharm. 2003 257 1-2 153 160 10.1016/S0378‑5173(03)00135‑2 12711170
    [Google Scholar]
  54. Vakhariya R.R. Salunkhe V.R. Randive D.S. Bhutkar M.A. Bhinge S.D. Design, development and optimization of ramipril solid lipid nanoparticles using solvent emulsification and evaporation method. Nanosci. Nanotechnol. Asia 2021 11 1 42 52 10.2174/2210681209666191204113659
    [Google Scholar]
  55. Trucillo P. Campardelli R. Production of solid lipid nanoparticles with a supercritical fluid assisted process. J. Supercrit. Fluids 2019 143 16 23 10.1016/j.supflu.2018.08.001
    [Google Scholar]
  56. Gasco M.R. Priano L. Zara G.P. Solid lipid nanoparticles and microemulsions for drug delivery. Prog. Brain Res. 2009 180 181 192 10.1016/S0079‑6123(08)80010‑6 20302835
    [Google Scholar]
  57. Freire J.T. Drying of pharmaceutical products. Transport Phenomena in Particulate Systems Sharjah, United Arab Emirates Bentham Science Publishers 2009
    [Google Scholar]
  58. Chattopadhyay P. Shekunov B. Yim D. Cipolla D. Boyd B. Farr S. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv. Drug Deliv. Rev. 2007 59 6 444 453 10.1016/j.addr.2007.04.010 17582648
    [Google Scholar]
  59. Wang T. Hu Q. Zhou M. Xia Y. Nieh M.P. Luo Y. Development of “all natural” layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology. Eur. J. Pharm. Biopharm. 2016 107 273 285 10.1016/j.ejpb.2016.07.022 27470922
    [Google Scholar]
  60. Freitas C. Müller R.H. Spray-drying of solid lipid nanoparticles (SLNTM). Eur. J. Pharm. Biopharm. 1998 46 2 145 151 10.1016/S0939‑6411(97)00172‑0 9795036
    [Google Scholar]
  61. Shi L. Li Z. Yu L. Jia H. Zheng L. Effects of surfactants and lipids on the preparation of solid lipid nanoparticles using double emul- sion method. J. Dispers. Sci. Technol. 2011 32 2 254 259 10.1080/01932691003659130
    [Google Scholar]
  62. Nabi-Meibodi M. Vatanara A. Najafabadi A.R. Rouini M.R. Ramezani V. Gilani K. Etemadzadeh S.M.H. Azadmanesh K. The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method. Colloids Surf. B Biointerfaces 2013 112 408 414 10.1016/j.colsurfb.2013.06.013 24036624
    [Google Scholar]
  63. Charcosset C. El-Harati A. Fessi H. Preparation of solid lipid nanoparticles using a membrane contactor. J. Control. Release 2005 108 1 112 120 10.1016/j.jconrel.2005.07.023 16169111
    [Google Scholar]
  64. Ganesan P. Narayanasamy D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm. 2017 6 37 56 10.1016/j.scp.2017.07.002
    [Google Scholar]
  65. Kesharwani P. Jain K. Jain N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014 39 2 268 307 10.1016/j.progpolymsci.2013.07.005
    [Google Scholar]
  66. Peretz S. Regev O. Carbon nanotubes as nanocarriers in medicine. Curr. Opin. Colloid Interface Sci. 2012 17 6 360 368 10.1016/j.cocis.2012.09.001
    [Google Scholar]
  67. Shin D.H. Tam Y.T. Kwon G.S. Polymeric micelle nanocarriers in cancer research. Front. Chem. Sci. Eng. 2016 10 3 348 359 10.1007/s11705‑016‑1582‑2
    [Google Scholar]
  68. Jana P. Dev A. Carbon quantum dots: A promising nanocarrier for bioimaging and drug delivery in cancer. Mater. Today Commun. 2022 32 104068 10.1016/j.mtcomm.2022.104068
    [Google Scholar]
  69. Dabholkar N. Waghule T. Krishna Rapalli V. Gorantla S. Alexander A. Narayan Saha R. Singhvi G. Lipid shell lipid nanocapsules as smart generation lipid nanocarriers. J. Mol. Liq. 2021 339 117145 10.1016/j.molliq.2021.117145
    [Google Scholar]
  70. Subedi R.K. Kang K.W. Choi H.K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur. J. Pharm. Sci. 2009 37 3-4 508 513 10.1016/j.ejps.2009.04.008 19406231
    [Google Scholar]
  71. Sahin N.O. Niosomes as nanocarrier systems. Nanomaterials and Nanosystems for Biomedical Applications. Cham Springer 2007 67 81 10.1007/978‑1‑4020‑6289‑6_4
    [Google Scholar]
  72. Zhao X. Chen Q. Li Y. Tang H. Liu W. Yang X. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur. J. Pharm. Biopharm. 2015 93 27 36 10.1016/j.ejpb.2015.03.003 25770771
    [Google Scholar]
  73. Yang S.C. Zhu J.B. Preparation and characterization of camptothecin solid lipid nanoparticles. Drug Dev. Ind. Pharm. 2002 28 3 265 274 10.1081/DDC‑120002842 12026219
    [Google Scholar]
  74. Kim J.H. Baek J.S. Park J.K. Lee B.J. Kim M.S. Hwang S.J. Lee J.Y. Cho C.W. Development of houttuynia cor- data extract-loaded solid lipid nanoparticles for oral delivery: High drug loading efficiency and controlled release. Molecules 2017 22 12 2215 10.3390/molecules22122215 29236057
    [Google Scholar]
  75. Su Y. Hu J. Huang Z. Huang Y. Peng B. Xie N. Liu H. Paclitaxel-loaded star-shaped copolymer nanoparticles for enhanced malignant melanoma chemotherapy against multidrug resistance. Drug Des. Devel. Ther. 2017 11 659 668 10.2147/DDDT.S127328 28293102
    [Google Scholar]
  76. Sahu P.K. Mishra D.K. Jain N. Rajoriya V. Jain A.K. Mannosylated solid lipid nanoparticles for lung-targeted delivery of Paclitaxel. Drug Dev. Ind. Pharm. 2015 41 4 640 649 10.3109/03639045.2014.891130 24564799
    [Google Scholar]
  77. Mohanty B. Majumdar D.K. Mishra S.K. Panda A.K. Patnaik S. Development and characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery. Pharm. Dev. Technol. 2015 20 4 458 464 10.3109/10837450.2014.882935 24490828
    [Google Scholar]
  78. Wang T. Ma X. Lei Y. Luo Y. Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin. Colloids Surf. B Biointerfaces 2016 148 1 11 10.1016/j.colsurfb.2016.08.047 27588376
    [Google Scholar]
  79. Gurumukhi V.C. Bari S.B. Development of ritonavir-loaded nanostructured lipid carriers employing quality by design (QbD) as a tool: Characterizations, permeability, and bioavailability studies. Drug Deliv. Transl. Res. 2021 1 21 34671949
    [Google Scholar]
  80. Manjunath K. Venkateswarlu V. Hussain A. Preparation and characterization of nitrendipine solid lipid nanoparticles. Pharmazie 2011 66 3 178 186 21553647
    [Google Scholar]
  81. Saez V. Souza I.D.L. Mansur C.R.E. Lipid nanoparticles (SLN & NLC) for delivery of vitamin E: A comprehensive review. Int. J. Cosmet. Sci. 2018 40 2 103 116 10.1111/ics.12452 29505675
    [Google Scholar]
  82. Nakmode D. Bhavana V. Thakor P. Madan J. Singh P.K. Singh S.B. Rosenholm J.M. Bansal K.K. Mehra N.K. Fundamental aspects of lipid-based excipients in lipid-based product development. Pharmaceutics 2022 14 4 831 10.3390/pharmaceutics14040831 35456665
    [Google Scholar]
  83. Patel V. Lalani R. Bardoliwala D. Ghosh S. Misra A. Lipid-based oral formulation strategies for lipophilic drugs. AAPS PharmSciTech 2018 19 8 3609 3630 10.1208/s12249‑018‑1188‑8 30255474
    [Google Scholar]
  84. Barkat M.A. Li- pid-based nanosystem as intelligent carriers for versatile drug de- livery applications. Curr. Pharm. Des. 2020 26 11 1167 1180 10.2174/1381612826666200206094529 32026769
    [Google Scholar]
  85. Salunkhe S.A. Chitkara D. Mahato R.I. Mittal A. Lipid based nanocarriers for effective drug delivery and treatment of diabetes associated liver fibrosis. Adv. Drug Deliv. Rev. 2021 173 394 415 10.1016/j.addr.2021.04.003 33831474
    [Google Scholar]
  86. Matougui N. Boge L. Groo A.C. Umerska A. Ringstad L. Bysell H. Saulnier P. Lipid-based nanoformulations for peptide delivery. Int. J. Pharm. 2016 502 1-2 80 97 10.1016/j.ijpharm.2016.02.019 26899976
    [Google Scholar]
  87. Jog R. Burgess D.J. Excipients used in oral nanocarrier-based for- mulations.Fundamentals of Nanoparticles. Amsterdam Elsevier 2018 279 342 10.1016/B978‑0‑323‑51255‑8.00010‑0
    [Google Scholar]
  88. Thassu D. Pathak Y. Deleers M. Nanoparticulate Drug Delivery Systems. 1st ed Boca Raton CRC Press 2007 10.1201/9781420008449
    [Google Scholar]
  89. Müller R. Runge S.A. Ravelli V. Thünemann A.F. Mehnert W. Souto E.B. Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug–lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm. 2008 68 3 535 544 10.1016/j.ejpb.2007.07.006 17804210
    [Google Scholar]
  90. Adler-Moore J.P. Proffitt R.T. Amphotericin B lipid preparations: What are the differences? Clin. Microbiol. Infect. 2008 14 Suppl. 4 25 36 10.1111/j.1469‑0691.2008.01979.x 18430127
    [Google Scholar]
  91. Chongtham N. Bisht M.S. Haorongbam S. Nutritional properties of bamboo shoots: Potential and prospects for utilization as a health food. Compr. Rev. Food Sci. Food Saf. 2011 10 3 153 168 10.1111/j.1541‑4337.2011.00147.x
    [Google Scholar]
  92. Trotta M. Battaglia L.S. D’Addino I. Peira E. Gallarate M. Solid lipid nanoparticles prepared by coacervation method as vehicles for ocular cyclosporine. J. Drug Deliv. Sci. Technol. 2012 22 125 130
    [Google Scholar]
  93. Qiu F Meng T Chen Q Fenofibrate-loaded biodegradable nanoparticles for the treatment of experimental diabetic retinopathy and neovascular age-related macular degeneration. Mol Pharm. 2019 16 5 1958 1970 10.1021/acs.molpharmaceut.8b01319
    [Google Scholar]
  94. Shen J. Burgess D.J. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: Recent developments and challenges. Drug Deliv. Transl. Res. 2013 3 5 409 415 10.1007/s13346‑013‑0129‑z 24069580
    [Google Scholar]
  95. Gupta M.K. Goldman D. Bogner R.H. Tseng Y.C. Enhanced drug dissolution and bulk properties of solid dispersions granulated with a surface adsorbent. Pharm. Dev. Technol. 2001 6 4 563 572 10.1081/PDT‑120000294 11775957
    [Google Scholar]
  96. Das P. Mukherjee S. Sen R. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 2008 72 9 1229 1234 10.1016/j.chemosphere.2008.05.015
    [Google Scholar]
  97. Shen D.D. Rivara M.B. Yeung C.K. Robinson-Cohen C. Phillips B.R. Ruzinski J. Rock D. Linke L. Ikizler T.A. Himmelfarb J. Effect of coenzyme Q10 on biomarkers of oxidative stress and cardiac function in hemodialysis patients: The CoQ10 biomarker trial. Am J Kidney Dis. 2017 69 3 389 399 10.1053/j.ajkd.2016.08.041
    [Google Scholar]
  98. Abbas F. Kossi M.E. Shaheen I.S. Sharma A. Halawa A. Post-transplantation lymphoproliferative disorders: Current concepts and future therapeutic approaches. World J. Transplant. 2020 10 2 29 46 10.5500/wjt.v10.i2.29 32226769
    [Google Scholar]
  99. Wissing S. Lippacher A. Müller R. Investigations on the occlusive properties of solid lipid nanoparticles (SLN). J. Cosmet. Sci. 2001 52 5 313 324 11567210
    [Google Scholar]
  100. Milligan J.J. Saha S. A nanoparticle’s journey to the tumor: Strategies to overcome first-pass metabolism and their limitations. Cancers (Basel) 2022 14 7 1741 10.3390/cancers14071741 35406513
    [Google Scholar]
  101. Matsuno R. Adachi S. Lipid encapsulation technology - techniques and applications to food. Trends Food Sci. Technol. 1993 4 8 256 261 10.1016/0924‑2244(93)90141‑V
    [Google Scholar]
  102. Yoshida K. Maeda K. Sugiyama Y. Transporter-mediated drug--drug interactions involving OATP substrates: Predictions based on in vitro inhibition studies. Clin. Pharmacol. Ther. 2012 91 6 1053 1064 10.1038/clpt.2011.351 22534868
    [Google Scholar]
  103. Gyimesi G. Hediger M.A. Transporter-Mediated Drug Delivery. Molecules 2023 28 3 1151 10.3390/molecules28031151 36770817
    [Google Scholar]
  104. Rattanakit P. Moulton S.E. Santiago K.S. Liawruangrath S. Wallace G.G. Extrusion printed polymer structures: A facile and versatile approach to tailored drug delivery platforms. Int. J. Pharm. 2012 422 1-2 254 263 10.1016/j.ijpharm.2011.11.007 22101281
    [Google Scholar]
  105. Lee Y.C. Lee K. Oh Y.K. Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: A review. Bioresour. Technol. 2015 184 63 72 10.1016/j.biortech.2014.10.145 25465786
    [Google Scholar]
  106. Ren X. Wang N. Zhou Y. Song A. Jin G. Li Z. Luan Y. An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomater. 2021 124 179 190 10.1016/j.actbio.2021.01.041 33524560
    [Google Scholar]
  107. Kell D.B. The transporter-mediated cellular uptake and efflux of pharmaceutical drugs and biotechnology products: How and why phospholipid bilayer transport Is negligible in real biomembranes. Molecules 2021 26 18 5629 10.3390/molecules26185629 34577099
    [Google Scholar]
  108. Bertoni S. Albertini B. Ronowicz-Pilarczyk J. Passerini N. Tailoring the release of drugs having different water solubility by hybrid polymer-lipid microparticles with a biphasic structure. Eur. J. Pharm. Biopharm. 2023 190 171 183 10.1016/j.ejpb.2023.07.017 37517450
    [Google Scholar]
  109. Xue H. Guo P. Wen W.C. Wong H. Lipid-based nanocarriers for RNA delivery. Curr. Pharm. Des. 2015 21 22 3140 3147 10.2174/1381612821666150531164540 26027572
    [Google Scholar]
  110. Hao J. Wang X. Bi Y. Teng Y. Wang J. Li F. Li Q. Zhang J. Guo F. Liu J. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf. B Biointerfaces 2014 114 111 120 10.1016/j.colsurfb.2013.09.059 24176890
    [Google Scholar]
  111. Papi M. Pozzi D. Palmieri V. Caracciolo G. Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID-19 using 3D bioprinting. Nano Today 2022 43 101403 10.1016/j.nantod.2022.101403 35079274
    [Google Scholar]
  112. Cao C. Liu F. Tan H. Song D. Shu W. Li W. Zhou Y. Bo X. Xie Z. Deep learning and its applications in biomedicine. Gen. Proteomics Bioinformatics 2018 16 1 17 32 10.1016/j.gpb.2017.07.003 29522900
    [Google Scholar]
  113. Schelke M.W. Hackett K. Chen J.L. Shih C. Shum J. Montgomery M.E. Chiang G.C. Berkowitz C. Seifan A. Krikorian R. Isaacson R.S. Nutritional interventions for Alzheimer’s prevention: A clinical precision medicine approach. Ann. N. Y. Acad. Sci. 2016 1367 1 50 56 10.1111/nyas.13070 27116241
    [Google Scholar]
  114. Merisko-Liversidge E. Liversidge G.G. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev. 2011 63 6 427 440 10.1016/j.addr.2010.12.007 21223990
    [Google Scholar]
  115. Park K. Controlled drug delivery systems: Past forward and future back. J. Control. Release 2014 190 3 8 10.1016/j.jconrel.2014.03.054 24794901
    [Google Scholar]
  116. Asad S. Jacobsen A.C. Teleki A. Inorganic nanoparticles for oral drug delivery: Opportunities, barriers, and future perspectives. Curr. Opin. Chem. Eng. 2022 38 100869 10.1016/j.coche.2022.100869
    [Google Scholar]
  117. Fatima S. Iqbal Z. Panda A.K. Samim M. Talegaonkar S. Ahmad F.J. Polymeric nanoparticles as a platform for permeability enhancement of class III drug amikacin. Colloids Surf. B Biointerfaces 2018 169 206 213 10.1016/j.colsurfb.2018.05.028 29778036
    [Google Scholar]
  118. Tan M. He C. Jiang W. Zeng C. Yu N. Huang W. Gao Z. Xing J. Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia–reperfusion injury in rats. Int. J. Nanomedicine 2017 12 3253 3265 10.2147/IJN.S131893 28458544
    [Google Scholar]
  119. Kraft J.C. Freeling J.P. Wang Z. Ho R.J.Y. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci. 2014 103 1 29 52 10.1002/jps.23773 24338748
    [Google Scholar]
  120. José Alonso M. Nanomedicines for overcoming biological barriers. Biomed. Pharmacother. 2004 58 3 168 172 10.1016/j.biopha.2004.01.007 15082339
    [Google Scholar]
  121. Poovi G. Damodharan N. Lipid nanoparticles: A challenging approach for oral delivery of BCS Class-II drugs. Future J. Pharmaceut. Sci. 2018 4 2 191 205 10.1016/j.fjps.2018.04.001
    [Google Scholar]
  122. Blanco E. Shen H. Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015 33 9 941 951 10.1038/nbt.3330 26348965
    [Google Scholar]
  123. Kwan A.C. Aronis K.N. Sandfort V. Blumenthal R.S. Bluemke D.A. Bridging the gap for lipid lowering therapy: Plaque regression, coronary computed tomographic angiography, and imaging-guided personalized medicine. Expert Rev. Cardiovasc. Ther. 2017 15 7 547 558 10.1080/14779072.2017.1348228 28657444
    [Google Scholar]
  124. Battaglia L. Gallarate M. Lipid nanoparticles: State of the art, new preparation methods and challenges in drug delivery. Expert Opin. Drug Deliv. 2012 9 5 497 508 10.1517/17425247.2012.673278 22439808
    [Google Scholar]
  125. Korzun T. Moses A.S. Diba P. Sattler A.L. Taratula O.R. Sahay G. Taratula O. Marks D.L. From bench to bedside: Implications of lipid nanoparticle carrier reactogenicity for advancing nucleic acid therapeutics. Pharmaceuticals (Basel) 2023 16 8 1088 10.3390/ph16081088 37631003
    [Google Scholar]
  126. Zhang R.X. Cai P. Zhang T. Chen K. Li J. Cheng J. Pang K.S. Adissu H.A. Rauth A.M. Wu X.Y. Polymer–lipid hybrid nanoparticles synchronize pharmacokinetics of co-encapsulated doxorubicin–mitomycin C and enable their spatiotemporal co-delivery and local bioavailability in breast tumor. Nanomedicine 2016 12 5 1279 1290 10.1016/j.nano.2015.12.383 26772427
    [Google Scholar]
  127. Li F. Wong T.Y. Lin S. Chow S. Cheung W. Chan F.L. Chen S. Leung L.K. Coadministrating luteolin minimizes the side effects of the aromatase inhibitor letrozole. J. Pharmacol. Exp. Ther. 2014 351 2 270 277 10.1124/jpet.114.216754 25138022
    [Google Scholar]
  128. Baek J.S. Cho C.W. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells. Oncotarget 2017 8 18 30369 30382 10.18632/oncotarget.16153 28423731
    [Google Scholar]
  129. Pizzol C. Filippin-Monteiro F. Restrepo J. Pittella F. Silva A. Alves de Souza P. Machado de Campos A. Creczynski-Pasa T. Influence of surfactant and lipid type on the physicochemical properties and biocompatibility of solid lipid nanoparticles. Int. J. Environ. Res. Public Health 2014 11 8 8581 8596 10.3390/ijerph110808581 25141003
    [Google Scholar]
  130. Li C. Zhang J. Zu Y.J. Nie S.F. Cao J. Wang Q. Nie S.P. Deng Z.Y. Xie M.Y. Wang S. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin. J. Nat. Med. 2015 13 9 641 652 10.1016/S1875‑5364(15)30061‑3 26412423
    [Google Scholar]
  131. Huang G. Zhang N. Bi X. Dou M. Solid lipid nanoparticles of temozolomide: Potential reduction of cardial and nephric toxicity. Int. J. Pharm. 2008 355 1-2 314 320 10.1016/j.ijpharm.2007.12.013 18255242
    [Google Scholar]
  132. Maier M.A. Jayaraman M. Matsuda S. Liu J. Barros S. Querbes W. Tam Y.K. Ansell S.M. Kumar V. Qin J. Zhang X. Wang Q. Panesar S. Hutabarat R. Carioto M. Hettinger J. Kandasamy P. Butler D. Rajeev K.G. Pang B. Charisse K. Fitzgerald K. Mui B.L. Du X. Cullis P. Madden T.D. Hope M.J. Manoharan M. Akinc A. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 2013 21 8 1570 1578 10.1038/mt.2013.124 23799535
    [Google Scholar]
  133. Wang D. Sun Y. Liu Y. Meng F. Lee R.J. Clinical translation of immunoliposomes for cancer therapy: Recent perspectives. Expert Opin. Drug Deliv. 2018 15 9 893 903 10.1080/17425247.2018.1517747 30169978
    [Google Scholar]
  134. Eiras F Amaral MH Silva R Martins E Lobo JMS Silva AC Characterization and biocompatibility evaluation of cutaneous formulations containing lipid nanoparticles. Int J Pharm. 2017 519 1-2 373 380 10.1016/j.ijpharm.2017.01.045
    [Google Scholar]
  135. Mishra D.K. Dhote V. Bhatnagar P. Mishra P.K. Engineering solid lipid nanoparticles for improved drug delivery: Promises and challenges of translational research. Drug Deliv. Transl. Res. 2012 2 4 238 253 10.1007/s13346‑012‑0088‑9 25787030
    [Google Scholar]
  136. Fan Y. Marioli M. Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal. 2021 192 113642 10.1016/j.jpba.2020.113642 33011580
    [Google Scholar]
  137. Duan Y. Dhar A. Patel C. Khimani M. Neogi S. Sharma P. Siva Kumar N. Vekariya R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances 2020 10 45 26777 26791 10.1039/D0RA03491F 35515778
    [Google Scholar]
  138. D’Angelo N.A. Noronha M.A. Câmara M.C.C. Kurnik I.S. Feng C. Araujo V.H.S. Santos J.H.P.M. Feitosa V. Molino J.V.D. Rangel-Yagui C.O. Chorilli M. Ho E.A. Lopes A.M. Doxorubicin nanoformulations on therapy against cancer: An overview from the last 10 years. Biomater. Advances 2022 133 112623 10.1016/j.msec.2021.112623 35525766
    [Google Scholar]
  139. Goli V.A.R. Butreddy A. Biosimilar monoclonal antibodies: Challenges and approaches towards formulation. Chem. Biol. Interact. 2022 366 110116 10.1016/j.cbi.2022.110116 36007632
    [Google Scholar]
  140. Yang L. Gong L. Wang P. Zhao X. Zhao F. Zhang Z. Li Y. Huang W. Recent advances in lipid nanoparticles for delivery of mRNA. Pharmaceutics 2022 14 12 2682 10.3390/pharmaceutics14122682 36559175
    [Google Scholar]
  141. Witzigmann D. Kulkarni J.A. Leung J. Chen S. Cullis P.R. van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv. Drug Deliv. Rev. 2020 159 344 363 10.1016/j.addr.2020.06.026 32622021
    [Google Scholar]
  142. Scioli Montoto S. Muraca G. Ruiz M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci. 2020 7 587997 10.3389/fmolb.2020.587997 33195435
    [Google Scholar]
  143. Kumari A. Yadav S.K. Yadav S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010 75 1 1 18 10.1016/j.colsurfb.2009.09.001 19782542
    [Google Scholar]
  144. Loh J.S. Tan L.K.S. Lee W.L. Ming L.C. How C.W. Foo J.B. Kifli N. Goh B.H. Ong Y.S. Do lipid-based nanoparticles hold promise for advancing the clinical translation of anticancer alkaloids? Cancers (Basel) 2021 13 21 5346 10.3390/cancers13215346 34771511
    [Google Scholar]
  145. Pilkington E.H. Suys E.J.A. Trevaskis N.L. Wheatley A.K. Zukancic D. Algarni A. Al-Wassiti H. Davis T.P. Pouton C.W. Kent S.J. Truong N.P. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater. 2021 131 16 40 10.1016/j.actbio.2021.06.023 34153512
    [Google Scholar]
  146. Huang J. Xiao K. Nanoparticles-based strategies to improve the delivery of therapeutic small interfering RNA in precision oncology. Pharmaceutics 2022 14 8 1586 10.3390/pharmaceutics14081586 36015212
    [Google Scholar]
  147. Schoenmaker L Witzigmann D Kulkarni JA Verbeke R Kersten G Jiskoot W Crommelin DJ mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm. 2021 601 120586 10.1016/j.ijpharm.2021.120586
    [Google Scholar]
  148. Buonaguro L. Petrizzo A. Tagliamonte M. Tornesello M.L. Buonaguro F.M. Challenges in cancer vaccine development for hepatocellular carcinoma. J. Hepatol. 2013 59 4 897 903 10.1016/j.jhep.2013.05.031 23714157
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385337379240916053259
Loading
/content/journals/pnt/10.2174/0122117385337379240916053259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test