Skip to content
2000
image of Unraveling the Mysteries of Brain Cancer from Diagnosis to Treatment

Abstract

Even with recent advancements in surgery and multimodal adjuvant therapy, brain cancer treatment is still difficult. The blood-brain barrier and the potentially deadly medications' non-specificity have made pharmacological treatment for brain cancer particularly ineffective. The nanoparticle has surfaced as a viable brain delivery vector that can solve the issues with existing approaches. Furthermore, it is possible to integrate many functions into a single nanoplatform to enable tumor-specific diagnosis, therapy, and follow-up observation. Conventional technology does not allow for such multitasking. Recent developments in brain cancer treatment and detection using nanoparticles are discussed in this study. The benefits of delivery nanoparticles are discussed, along with the kinds of nanoparticle systems being studied and their potential uses.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385331332241226101149
2025-01-24
2025-07-05
Loading full text...

Full text loading...

References

  1. Karati D. Kumar D. A comprehensive review on targeted cancer therapy: New face of treatment approach. Curr. Pharm. Des. 2023 29 41 3282 3294 10.2174/0113816128272203231121034814 38038008
    [Google Scholar]
  2. Mukhtar M. Bilal M. Rahdar A. Barani M. Arshad R. Behl T. Brisc C. Banica F. Bungau S. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates. Chemosensors 2020 8 4 117 10.3390/chemosensors8040117
    [Google Scholar]
  3. Zhang Y. Li M. Gao X. Chen Y. Liu T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol. 2019 12 1 137 10.1186/s13045‑019‑0833‑3 31847897
    [Google Scholar]
  4. Mendiratta S. Hussein M. Nasser H.A. Ali A.A.A. Multidisciplinary role of mesoporous silica nanoparticles in brain regeneration and cancers: From crossing the blood–brain barrier to treatment. Part. Part. Syst. Charact. 2019 36 9 1900195 10.1002/ppsc.201900195
    [Google Scholar]
  5. Nowak M. Helgeson M.E. Mitragotri S. Delivery of nanoparticles and macromolecules across the blood–brain barrier. Adv. Ther. (Weinh.) 2020 3 1 1900073 10.1002/adtp.201900073
    [Google Scholar]
  6. Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013 2013 1 238428 25937958
    [Google Scholar]
  7. Pulgar V.M. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci. 2019 12 1019 10.3389/fnins.2018.01019 30686985
    [Google Scholar]
  8. Lombardo D. Kiselev M.A. Caccamo M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater. 2019 2019 1 26 10.1155/2019/3702518
    [Google Scholar]
  9. Biswas A. Shukla A. Maiti P. Biomaterials for interfacing cell imaging and drug delivery: An overview. Langmuir 2019 35 38 12285 12305 10.1021/acs.langmuir.9b00419 31125238
    [Google Scholar]
  10. Louis D.N. Perry A. Wesseling P. Brat D.J. Cree I.A. Figarella-Branger D. Hawkins C. Ng H.K. Pfister S.M. Reifenberger G. Soffietti R. von Deimling A. Ellison D.W. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-oncol. 2021 23 8 1231 1251 10.1093/neuonc/noab106 34185076
    [Google Scholar]
  11. Crowder S.L. Najam N. Sarma K.P. Fiese B.H. Arthur A.E. Quality of life, coping strategies, and supportive care needs in head and neck cancer survivors: A qualitative study. Support. Care Cancer 2021 29 8 4349 4356 10.1007/s00520‑020‑05981‑1 33415365
    [Google Scholar]
  12. Boire A. Brastianos P.K. Garzia L. Valiente M. Brain metastasis. Nat. Rev. Cancer 2020 20 1 4 11 10.1038/s41568‑019‑0220‑y 31780784
    [Google Scholar]
  13. Bailleux C. Eberst L. Bachelot T. Treatment strategies for breast cancer brain metastases. Br. J. Cancer 2021 124 1 142 155 10.1038/s41416‑020‑01175‑y 33250512
    [Google Scholar]
  14. Wang Y. Ye F. Liang Y. Yang Q. Breast cancer brain metastasis: Insight into molecular mechanisms and therapeutic strategies. Br. J. Cancer 2021 125 8 1056 1067 10.1038/s41416‑021‑01424‑8 34226684
    [Google Scholar]
  15. Haque S Norbert CC Patra CR Nanomedicine: Future therapy for brain cancers. Ther Deliv. 2021 37 74 10.1016/B978‑0‑12‑819793‑6.00003‑5
    [Google Scholar]
  16. Rasheed S. Rehman K. Akash M.S.H. An insight into the risk factors of brain tumors and their therapeutic interventions. Biomed. Pharmacother. 2021 143 112119 10.1016/j.biopha.2021.112119 34474351
    [Google Scholar]
  17. Daneman R. Prat A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 2015 7 1 a020412 10.1101/cshperspect.a020412 25561720
    [Google Scholar]
  18. Arvanitis C.D. Ferraro G.B. Jain R.K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 2020 20 1 26 41 10.1038/s41568‑019‑0205‑x 31601988
    [Google Scholar]
  19. Mo F. Pellerino A. Soffietti R. Rudà R. Blood–brain barrier in brain tumors: Biology and clinical relevance. Int. J. Mol. Sci. 2021 22 23 12654 10.3390/ijms222312654 34884457
    [Google Scholar]
  20. Dong X. Current strategies for brain drug delivery. Theranostics 2018 8 6 1481 1493 10.7150/thno.21254 29556336
    [Google Scholar]
  21. Ding S. Khan A.I. Cai X. Song Y. Lyu Z. Du D. Dutta P. Lin Y. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today 2020 37 112 125 10.1016/j.mattod.2020.02.001 33093794
    [Google Scholar]
  22. Song J. Lu C. Leszek J. Zhang J. Design and development of nanomaterial-based drug carriers to overcome the blood–brain barrier by using different transport mechanisms. Int. J. Mol. Sci. 2021 22 18 10118 10.3390/ijms221810118 34576281
    [Google Scholar]
  23. Adepu S. Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules 2021 26 19 5905 10.3390/molecules26195905 34641447
    [Google Scholar]
  24. Chen Y. Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 2012 64 7 640 665 10.1016/j.addr.2011.11.010 22154620
    [Google Scholar]
  25. Kusuhara H. Sugiyama Y. Efflux transport systems for drugs at the blood–brain barrier and blood–cerebrospinal fluid barrier (Part 1). Drug Discov. Today 2001 6 3 150 156 10.1016/S1359‑6446(00)01632‑9 11165188
    [Google Scholar]
  26. Cox B. Nicolaï J. Williamson B. The role of the efflux transporter, P‐glycoprotein, at the blood–brain barrier in drug discovery. Biopharm. Drug Dispos. 2023 44 1 113 126 10.1002/bdd.2331 36198662
    [Google Scholar]
  27. Mehta A.M. Sonabend A.M. Bruce J.N. Convection-enhanced delivery. Neurotherapeutics 2017 14 2 358 371 10.1007/s13311‑017‑0520‑4 28299724
    [Google Scholar]
  28. Römermann K. Fedrowitz M. Hampel P. Kaczmarek E. Töllner K. Erker T. Sweet D.H. Löscher W. Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology 2017 117 182 194 10.1016/j.neuropharm.2017.02.006 28192112
    [Google Scholar]
  29. Bachu V.S. Kedda J. Suk I. Green J.J. Tyler B. High-intensity focused ultrasound: A review of mechanisms and clinical applications. Ann. Biomed. Eng. 2021 49 9 1975 1991 10.1007/s10439‑021‑02833‑9 34374945
    [Google Scholar]
  30. Meng Y. Pople C.B. Lea-Banks H. Hynynen K. Lipsman N. Hamani C. Focused ultrasound neuromodulation. Int. Rev. Neurobiol. 2021 159 221 240 10.1016/bs.irn.2021.06.004 34446247
    [Google Scholar]
  31. Huang R. Boltze J. Li S. Strategies for improved intra-arterial treatments targeting brain tumors: A systematic review. Front. Oncol. 2020 10 1443 10.3389/fonc.2020.01443 32983974
    [Google Scholar]
  32. Patel M.M. Patel B.M. Crossing the blood–brain barrier: Recent advances in drug delivery to the brain. CNS Drugs 2017 31 2 109 133 10.1007/s40263‑016‑0405‑9 28101766
    [Google Scholar]
  33. Mahringer A. Puris E. Fricker G. Crossing the blood-brain barrier: A review on drug delivery strategies using colloidal carrier systems. Neurochem. Int. 2021 147 105017 10.1016/j.neuint.2021.105017 33887377
    [Google Scholar]
  34. Wu D. Chen Q. Chen X. Han F. Chen Z. Wang Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduct. Target. Ther. 2023 8 1 217 10.1038/s41392‑023‑01481‑w 37231000
    [Google Scholar]
  35. Helms H.C.C. Kristensen M. Saaby L. Fricker G. Brodin B. Drug delivery strategies to overcome the blood–brain barrier (BBB). Handb. Exp. Pharmacol. 2020 273 151 183 10.1007/164_2020_403 33367937
    [Google Scholar]
  36. Pardridge WM A historical review of brain drug delivery. Pharmaceutics. 2022 14 6 1283 10.3390/pharmaceutics14061283 35745855
    [Google Scholar]
  37. Han L. Jiang C. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm. Sin. B 2021 11 8 2306 2325 10.1016/j.apsb.2020.11.023 34522589
    [Google Scholar]
  38. Tang W. Fan W. Lau J. Deng L. Shen Z. Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 2019 48 11 2967 3014 10.1039/C8CS00805A 31089607
    [Google Scholar]
  39. Zhou X. Smith Q.R. Liu X. Brain penetrating peptides and peptide–drug conjugates to overcome the blood–brain barrier and target CNS diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021 13 4 e1695 10.1002/wnan.1695 33470550
    [Google Scholar]
  40. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  41. Fan Y. Marioli M. Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal. 2021 192 113642 10.1016/j.jpba.2020.113642 33011580
    [Google Scholar]
  42. Raju R Abuwatfa WH Pitt WG Liposomes for the treatment of brain cancer: A review Pharmaceuticals. 2023 16 8 1056 10.3390/ph16081056 37630971
    [Google Scholar]
  43. Narendra, Mehata AK Viswanadh MK Formulation and in vitro evaluation of upconversion nanoparticle-loaded liposomes for brain cancer. Ther Deliv. 2020 11 9 557 71 10.4155/tde‑2020‑0070 32867624
    [Google Scholar]
  44. Yuan B. Zhao Y. Dong S. Sun Y. Hao F. Xie J. Teng L. Lee R.J. Fu Y. Bi Y. Cell-penetrating peptide-coated liposomes for drug delivery across the blood–brain barrier. Anticancer Res. 2019 39 1 237 243 10.21873/anticanres.13103 30591464
    [Google Scholar]
  45. Raman S. Mahmood S. Hilles A.R. Javed M.N. Azmana M. Al-Japairai K.A.S. Polymeric nanoparticles for brain drug delivery: A review. Curr. Drug Metab. 2020 21 9 649 660 10.2174/1389200221666200508074348 32384025
    [Google Scholar]
  46. Fan X. Yang J. Loh X.J. Li Z. Polymeric janus nanoparticles: Recent advances in synthetic strategies, materials properties, and applications. Macromol. Rapid Commun. 2019 40 5 1800203 10.1002/marc.201800203 29900609
    [Google Scholar]
  47. Zhang W. Mehta A. Tong Z. Esser L. Voelcker N.H. Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges. Adv. Sci. 2021 8 10 2003937 10.1002/advs.202003937 34026447
    [Google Scholar]
  48. Kumari M. Acharya A. Krishnamurthy P.T. Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics. Beilstein J. Nanotechnol. 2023 14 1 912 926 10.3762/bjnano.14.75 37701520
    [Google Scholar]
  49. Chakraborty P. Das S.S. Dey A. Chakraborty A. Bhattacharyya C. Kandimalla R. Mukherjee B. Gopalakrishnan A.V. Singh S.K. Kant S. Nand P. Ojha S. Kumar P. Jha N.K. Jha S.K. Dewanjee S. Quantum dots: The cutting-edge nanotheranostics in brain cancer management. J. Control. Release 2022 350 698 715 10.1016/j.jconrel.2022.08.047 36057397
    [Google Scholar]
  50. Martins C.S.M. LaGrow A.P. Prior J.A.V. Quantum dots for cancer-related miRNA monitoring. ACS Sens. 2022 7 5 1269 1299 10.1021/acssensors.2c00149 35486955
    [Google Scholar]
  51. Li H. Zha S. Li H. Liu H. Wong K.L. All A.H. Polymeric dendrimers as nanocarrier vectors for neurotheranostics. Small 2022 18 45 2203629 10.1002/smll.202203629 36084240
    [Google Scholar]
  52. Dey A.D. Bigham A. Esmaeili Y. Ashrafizadeh M. Moghaddam F.D. Tan S.C. Yousefiasl S. Sharma S. Maleki A. Rabiee N. Kumar A.P. Thakur V.K. Orive G. Sharifi E. Kumar A. Makvandi P. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Semin. Cancer Biol. 2022 86 Pt 2 396 419 10.1016/j.semcancer.2022.06.003 35700939
    [Google Scholar]
  53. Maysinger D Zhang Q Kakkar A Dendrimers as modulators of brain cells. Molecules. 2020 25 19 4489 10.3390/molecules25194489 33007959
    [Google Scholar]
  54. Bober Z Bartusik-Aebisher D Aebisher D Application of dendrimers in anticancer diagnostics and therapy. Molecules. 2022 27 10 3237 10.3390/molecules27103237 35630713
    [Google Scholar]
  55. Guizze F. Serra C.H.R. Giarolla J. PAMAM dendrimers: A review of methodologies employed in biopharmaceutical classification. J. Pharm. Sci. 2022 111 10 2662 2673 10.1016/j.xphs.2022.07.009 35850238
    [Google Scholar]
  56. Tarach P. Janaszewska A. Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy. Int. J. Mol. Sci. 2021 22 6 2912 10.3390/ijms22062912 33805602
    [Google Scholar]
  57. Liu J. Gao Y. Zhu X. Zhang Y. Xu H. Wang T. Zhang G. Phosphorylated PAMAM dendrimers: An analog of dentin non-collagenous proteins, enhancing the osteo/odontogenic differentiation of dental pulp stem cells. Clin. Oral Investig. 2022 26 2 1737 1751 10.1007/s00784‑021‑04149‑3 34515858
    [Google Scholar]
  58. Sapra R. Verma R.P. Maurya G.P. Dhawan S. Babu J. Haridas V. Designer peptide and protein dendrimers: A cross-sectional analysis. Chem. Rev. 2019 119 21 11391 11441 10.1021/acs.chemrev.9b00153 31556597
    [Google Scholar]
  59. Mandal S. Panja P. Debnath K. Jana N.R. Jana N.R. Small-molecule-functionalized hyperbranched polyglycerol dendrimers for inhibiting protein aggregation. Biomacromolecules 2020 21 8 3270 3278 10.1021/acs.biomac.0c00713 32649191
    [Google Scholar]
  60. Panigrahi B.K. Nayak A.K. Carbon nanotubes: An emerging drug delivery carrier in cancer therapeutics. Curr. Drug Deliv. 2020 17 7 558 576 10.2174/1567201817999200508092821 32384030
    [Google Scholar]
  61. Guo Q. Shen X. Li Y. Xu S. Carbon nanotubes-based drug delivery to cancer and brain. Curr. Med. Sci. 2017 37 5 635 641 10.1007/s11596‑017‑1783‑z 29058274
    [Google Scholar]
  62. Rahamathulla M. Bhosale R.R. Osmani R.A.M. Mahima K.C. Johnson A.P. Hani U. Ghazwani M. Begum M.Y. Alshehri S. Ghoneim M.M. Shakeel F. Gangadharappa H.V. Carbon nanotubes: Current perspectives on diverse applications in targeted drug delivery and therapies. Materials 2021 14 21 6707 10.3390/ma14216707 34772234
    [Google Scholar]
  63. Agrahari V. The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches. Neural Regen. Res. 2017 12 2 197 200 10.4103/1673‑5374.200796 28400793
    [Google Scholar]
  64. Liu L. Kshirsagar P. Christiansen J. Gautam S.K. Aithal A. Gulati M. Kumar S. Solheim J.C. Batra S.K. Jain M. Wannemuehler M.J. Narasimhan B. Polyanhydride nanoparticles stabilize pancreatic cancer antigen MUC4β. J. Biomed. Mater. Res. A 2021 109 6 893 902 10.1002/jbm.a.37080 32776461
    [Google Scholar]
  65. de Albuquerque T.L. Marques Júnior J.E. de Queiroz L.P. Ricardo A.D.S. Rocha M.V.P. Polylactic acid production from biotechnological routes: A review. Int. J. Biol. Macromol. 2021 186 933 951 10.1016/j.ijbiomac.2021.07.074 34273343
    [Google Scholar]
  66. Su Y. Zhang B. Sun R. Liu W. Zhu Q. Zhang X. Wang R. Chen C. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application. Drug Deliv. 2021 28 1 1397 1418 10.1080/10717544.2021.1938756 34184949
    [Google Scholar]
  67. Matalqah S.M. Aiedeh K. Mhaidat N.M. Alzoubi K.H. Bustanji Y. Hamad I. Chitosan nanoparticles as a novel drug delivery system: A review article. Curr. Drug Targets 2020 21 15 1613 1624 10.2174/1389450121666200711172536 32651965
    [Google Scholar]
  68. Mohammadian S. Khazaei M. Maghami P. Avan A. Rezaei M. Polycaprolactone-based nanocarriers containing 5-fluorouracil as a therapeutic guided drug delivery approach for enhancing anticancer activity. Curr. Cancer Drug Targets 2023 23 7 524 533 10.2174/1568009623666230210140212 36809944
    [Google Scholar]
  69. Rana D. Bag K. Bhattacharyya S.N. Mandal B.M. Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): Existence of both UCST and LCST. J. Polym. Sci., B, Polym. Phys. 2000 38 3 369 375 10.1002/(SICI)1099‑0488(20000201)38:3<369::AID‑POLB3>3.0.CO;2‑W
    [Google Scholar]
  70. Rana D. Mandal B.M. Bhattacharyya S.N. Analogue calorimetric studies of blends of poly (vinyl ester) s and polyacrylates. Macromolecules 1996 29 5 1579 1583 10.1021/ma950954n
    [Google Scholar]
  71. Di Giacomo A.M. Mair M.J. Ceccarelli M. Anichini A. Ibrahim R. Weller M. Lahn M. Eggermont A.M.M. Fox B. Maio M. Immunotherapy for brain metastases and primary brain tumors. Eur. J. Cancer 2023 179 113 120 10.1016/j.ejca.2022.11.012 36521332
    [Google Scholar]
  72. Lladó V. López D.J. Ibarguren M. Alonso M. Soriano J.B. Escribá P.V. Busquets X. Regulation of the cancer cell membrane lipid composition by NaCHOleate. Biochim. Biophys. Acta Biomembr. 2014 1838 6 1619 1627 10.1016/j.bbamem.2014.01.027 24525074
    [Google Scholar]
  73. Josowitz AD Bindra RS Saltzman WM 2022 Polymer nanocarriers for targeted local delivery of agents in treating brain tumors. Nanotechnology. 34 7 10 10.1088/1361‑6528/ac9683 36179653
    [Google Scholar]
  74. Xie N. Shen G. Gao W. Huang Z. Huang C. Fu L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023 8 1 9 10.1038/s41392‑022‑01270‑x 36604431
    [Google Scholar]
  75. Fekrirad Z. Barzegar Behrooz A. Ghaemi S. Khosrojerdi A. Zarepour A. Zarrabi A. Arefian E. Ghavami S. Immunology meets bioengineering: Improving the effectiveness of glioblastoma immunotherapy. Cancers (Basel) 2022 14 15 3698 10.3390/cancers14153698 35954362
    [Google Scholar]
  76. Bagley S.J. Desai A.S. Linette G.P. June C.H. O’Rourke D.M. CAR T-cell therapy for glioblastoma: Recent clinical advances and future challenges. Neuro-oncol. 2018 20 11 1429 1438 10.1093/neuonc/noy032 29509936
    [Google Scholar]
  77. Bazi Alahri M Jibril Ibrahim A Barani M Management of brain cancer and neurodegenerative disorders with polymer-based nanoparticles as a biocompatible platform. Molecules. 2023 28 2 841 10.3390/molecules28020841 36677899
    [Google Scholar]
  78. Nieblas-Bedolla E Nayyar N Singh M Emerging immunotherapies in the treatment of brain metastases. Oncologist. 2021 26 3 231 241 10.1002/onco.13575 33103803
    [Google Scholar]
  79. Leonard A. Wolff J. Sengupta R. Marassa J. Piwnica-Worms D. Rubin J. Pollack I. Jakacki R. Butterfield L. Okada H. Fangusaro J. Warren K.E. Mullins C. Jurgen P. Julia S. Friedrich C.C. Keir S. Saling J. Roskoski M. Friedman H. Bigner D. Moertel C. Olin M. Dahlheimer T. Gustafson M. Sumstad D. McKenna D. Low W. Nascene D. Dietz A. Ohlfest J. Sturm D. Witt H. Hovestadt V. Quan D.A.K. Jones D.T.W. Konermann C. Pfaff E. Korshunov A. Rizhova M. Milde T. Witt O. Zapatka M. Collins V.P. Kool M. Reifenberger G. Lichter P. Lindroth A.M. Plass C. Jabado N. Pfister S.M. Pizer B. Salehzadeh A. Brodbelt A. Mallucci C. Brassesco M. Pezuk J. Morales A. de Oliveira J. Roberto G. Umezawa K. Valera E. Rego E. Scrideli C. Tone L. Veringa S.J.E. Van Vuurden D.G. Wesseling P. Vandertop W.P. Noske D.P. Wurdinger T. Kaspers G.J.L. Hulleman E. Wright K. Broniscer A. Bendel A. Bowers D. Crawford J. Fisher P. Hassall T. Armstrong G. Baker J. Qaddoumi I. Robinson G. Wetmore C. Klimo P. Boop F. Onar-Thomas A. Ellison D. Gajjar A. Cruz O. de Torres C. Sunol M. Rodriguez E. Alonso L. Parareda A. Cardesa T. Salvador H. Celis V. Guillen A. Garcia G. Muchart J. Trampal C. Martin M.L. Rebollo M. Mora J. Piotrowski A. Kowalska A. Coyle P. Smith S. Rogers H. Macarthur D. Grundy R. Puccetti D. Salamat S. Kennedy T. Fangusaro J. Patel N. Bradley K. Casey K. Iskandar B. Nakano Y. Okada K. Osugi Y. Yamasaki K. Fujisaki H. Fukushima H. Inoue T. Matsusaka Y. Sakamoto H. Hara J. De Vleeschouwer S. Ardon H. Van Calenbergh F. Sciot R. Wilms G. Van Loon J. Goffin J. Van Gool S. Puccetti D. Salamat S. Rusinak D. Patel N. Bradley K. Casey K. Knight P. Onel K. Wargowski D. Stettner A. Iskandar B. Al-Ghafari A. Punjaruk W. Coyle B. Kerr I. Xipell E. Rodriguez M. Gonzalez-Huarriz M. Tunon M.T. Zazpe I. Tejada-Solis S. Diez-Valle R. Fueyo J. Gomez-Manzano C. Alonso M.M. Pastakia D. McCully C. Murphy R. Bacher J. Thomas M. Steffen-Smith E. Saleem K. Waldbridge S. Widemann B. Warren K. Miele E. Buttarelli F. Arcella A. Begalli F. Po A. Baldi C. Carissimo G. Antonelli M. Donofrio V. Morra I. Nozza P. Gulino A. Giangaspero F. Ferretti E. Elens I. De Vleeschouwer S. Pauwels F. Van Gool S. Fritzell S. Eberstal S. Sanden E. Visse E. Darabi A. Siesjo P. McDonald P. Wrogemann J. Krawitz S. Del Bigio M. Eisenstat D. Wolff J. Kwiecien R. Pietsch T. Faldum A. Kortmann R-D. Warmuth-Metz M. Rutkowski S. Slavc I. Kramm C.M. Uparkar U. Geyer R. Ermoian R. Ellenbogen R. Leary S. Triscott J. Hu K. Fotovati A. Yip S. Kast R. Toyota B. Dunn S. Hegde M. Corder A. Chow K. Mukherjee M. Ashoori A. Brawley V. Heslop H. Gottschalk S. Yvon E. Ahmed N. Wong T-T. Yang F-Y. Lu M. Liang H-F. Wang H-E. Liu R-S. Teng M-C. Yen C-C. Agnihotri S. Ternamian C. Jones C. Zadeh G. Rutka J. Hawkins C. Filipek I. Drogosiewicz M. Perek-Polnik M. Swieszkowska E. Baginska B.D. Jurkiewicz E. Perek D. Kuehn A. Falkenstein F. Wolff J. Kwiecien R. Pietsch T. Gnekow A. Kramm C. Brooks M.D. Jackson E. Piwnica-Worms D. Mitra R.D. Rubin J.B. Liu X-Y. Korshunov A. Schwartzentruber J. Jones D.T.W. Pfaff E. Sturm D. Fontebasso A.M. Quang D-A.K. Albrecht S. Kool M. Dong Z. Siegel P. Von Diemling A. Faury D. Tabori U. Lichter P. Plass C. Majewski J. Pfister S.M. Jabado N. Lulla R. Echevarria M. Alden T. DiPatri A. Tomita T. Goldman S. Fangusaro J. Qaddoumi I. Lin T. Merchant T.E. Kocak M. Panandiker A.P. Armstrong G.T. Wetmore C. Gajjar A. Broniscer A. Gielen G.H. Muehlen A. Kramm C. Pietsch T. Hubert C. Ding Y. Toledo C. Paddison P. Olson J. Nandhabalan M. Bjerke L. Bax D. Carvalho D. Bajrami I. Ashworth A. Lord C. Hargrave D. Reis R. Workman P. Jones C. Little S. Popov S. Jury A. Burford A. Doey L. Al-Sarraj S. Jurgensmeier J. Jones C. Carvalho D. Bjerke L. Bax D. Chen L. Kozarewa I. Baker S. Grundy R. Ashworth A. Lord C. Hargrave D. Reis R. Jones C. Bjerke L. Perryman L. Burford A. Bax D. Jury A. Popov S. Box G. Raynaud F. Hargrave D. Eccles S. Jones C. Viana-Pereira M. Pereira M. Burford A. Jury A. Popov S. Perryman L. Bax D. Forshew T. Tatevossian R. Sheer D. Pimental J. Pires M. Reis R. Jones C. Sarkar C. Jha P. Patrick I.R.P. Somasundaram K. Pathak P. Sharma M.C. Suri V. Suri A. Gerges N. Haque T. Nantel A. Faury D. Jabado N. Lee C. Fotovati A. Triscott J. Chen J. Venugopal C. Singhal A. Dunham C. Kerr J. Verreault M. Yip S. Wakimoto H. Jones C. Jayanthan A. Narendran A. Singh S. Dunn S. Giraud G. Holm S. Gustavsson B. Van Gool S. Kizyma R. Kizyma Z. Dvornyak L. Kotsay B. Epari S. Sharma P. Gurav M. Gupta T. Shetty P. Moiyadi A. Kane S. Jalali R. High grade gliomas. Neuro-oncol. 2012 14 Suppl. 1 i56 i68 10.1093/neuonc/nos102
    [Google Scholar]
  80. Rabha B. Bharadwaj K.K. Pati S. Choudhury B.K. Sarkar T. Kari Z.A. Edinur H.A. Baishya D. Atanase L.I. Development of polymer-based nanoformulations for glioblastoma brain cancer therapy and diagnosis: An update. Polymers 2021 13 23 4114 10.3390/polym13234114 34883617
    [Google Scholar]
  81. Shah K. Stem cell-based therapies for tumors in the brain: Are we there yet? Neuro-oncol. 2016 18 8 1066 1078 10.1093/neuonc/now096 27282399
    [Google Scholar]
  82. Niranjan A. Lunsford L.D. Ahluwalia M.S. Targeted therapies for brain metastases. Prog. Neurol. Surg. 2019 34 125 137 10.1159/000493057 31096209
    [Google Scholar]
  83. Northcott P.A. Robinson G.W. Kratz C.P. Mabbott D.J. Pomeroy S.L. Clifford S.C. Rutkowski S. Ellison D.W. Malkin D. Taylor M.D. Gajjar A. Pfister S.M. Medulloblastoma. Nat. Rev. Dis. Primers 2019 5 1 11 10.1038/s41572‑019‑0063‑6 30765705
    [Google Scholar]
  84. Kianinejad N. Kwon Y.M. Dual-targeting of brain tumors with nanovesicles. Bioimpacts 2023 13 1 1 3 10.34172/bi.2022.26321 36816997
    [Google Scholar]
  85. Dai W. Wang X. Song G. Liu T. He B. Zhang H. Wang X. Zhang Q. Combination antitumor therapy with targeted dual-nanomedicines. Adv. Drug Deliv. Rev. 2017 115 23 45 10.1016/j.addr.2017.03.001 28285944
    [Google Scholar]
  86. Zhao Y. Yue P. Peng Y. Sun Y. Chen X. Zhao Z. Han B. Recent advances in drug delivery systems for targeting brain tumors. Drug Deliv. 2023 30 1 1 18 10.1080/10717544.2022.2154409 36597214
    [Google Scholar]
  87. Gao H. Perspectives on dual targeting delivery systems for brain tumors. J. Neuroimmune Pharmacol. 2017 12 1 6 16 10.1007/s11481‑016‑9687‑4 27270720
    [Google Scholar]
  88. Saenz-Antoñanzas A. Auzmendi-Iriarte J. Carrasco-Garcia E. Moreno-Cugnon L. Ruiz I. Villanua J. Egaña L. Otaegui D. Samprón N. Matheu A. Liquid biopsy in glioblastoma: Opportunities, applications and challenges. Cancers 2019 11 7 950 10.3390/cancers11070950 31284524
    [Google Scholar]
  89. Cè M. Irmici G. Foschini C. Danesini G.M. Falsitta L.V. Serio M.L. Fontana A. Martinenghi C. Oliva G. Cellina M. Artificial intelligence in brain tumor imaging: A step toward personalized medicine. Curr. Oncol. 2023 30 3 2673 2701 10.3390/curroncol30030203 36975416
    [Google Scholar]
  90. Park K.Y. Snyder A.Z. Olufawo M. Trevino G. Luckett P.H. Lamichhane B. Xie T. Lee J.J. Shimony J.S. Leuthardt E.C. Glioblastoma induces whole-brain spectral change in resting state fMRI: Associations with clinical comorbidities and overall survival. Neuroimage Clin. 2023 39 103476 10.1016/j.nicl.2023.103476 37453204
    [Google Scholar]
  91. He C. Hu Y. Yin L. Tang C. Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010 31 13 3657 3666 10.1016/j.biomaterials.2010.01.065 20138662
    [Google Scholar]
  92. Xuan L. Ju Z. Skonieczna M. Zhou P.K. Huang R. Nanoparticles‐induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm 2023 4 4 e327 10.1002/mco2.327 37457660
    [Google Scholar]
  93. Kyriakides T.R. Raj A. Tseng T.H. Xiao H. Nguyen R. Mohammed F.S. Halder S. Xu M. Wu M.J. Bao S. Sheu W.C. Biocompatibility of nanomaterials and their immunological properties. Biomed. Mater. 2021 16 4 042005 10.1088/1748‑605X/abe5fa 33578402
    [Google Scholar]
  94. Ray P. Haideri N. Haque I. Mohammed O. Chakraborty S. Banerjee S. Quadir M. Brinker A. Banerjee S. The impact of nanoparticles on the immune system: A gray zone of nanomedicine. Journal of Immunological Sciences 2021 5 1 19 33 10.29245/2578‑3009/2021/1.1206
    [Google Scholar]
  95. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  96. Operti M.C. Bernhardt A. Grimm S. Engel A. Figdor C.G. Tagit O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int. J. Pharm. 2021 605 120807 10.1016/j.ijpharm.2021.120807 34144133
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385331332241226101149
Loading
/content/journals/pnt/10.2174/0122117385331332241226101149
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Chemotherapy ; Brain cancer ; Nanotechnology ; Polymers ; Dual targeting
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test