Skip to content
2000
image of An Enhanced Scrutiny of Mechanistic and Translational Approaches to Extinguish Cancer Hypoxia

Abstract

Cancer continues to pose a formidable challenge in global health due to its incidence and increasing resistance to conventional therapies. A key factor driving this resistance is tumor hypoxia, characterized by reduced oxygen levels within cancer cells. This hypoxic environment triggers a variety of adaptive mechanisms, significantly compromising the efficacy of cancer treatments. Notably, hypoxia promotes metastasis and reshapes the tumor microenvironment (TME), thereby aggravating treatment resistance. Central to this process are hypoxia-inducible factors (HIFs), which mediate cellular adaptations such as metabolic shifts and enhanced survival pathways. These adaptations render therapies like chemotherapy, radiotherapy, and photodynamic therapy (PDT) less effective. Additionally, hypoxia-induced vascular irregularities further impede drug delivery, amplifying the therapeutic challenge. This review provides a comprehensive examination of the roles of hypoxia in cancer, its contributions to drug resistance, and its interplay with apoptosis and autophagy. By evaluating novel mechanistic and translational approaches to target hypoxia, this study highlights the potential to improve therapeutic outcomes and offers insights into overcoming treatment resistance in cancer.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385328105241216042016
2024-12-26
2025-01-19
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Wei R. Liu S. Zhang S. Min L. Zhu S. Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers. Anal. Cell. Pathol. 2020 2020 1 13 10.1155/2020/6283796 32377504
    [Google Scholar]
  3. Wang M. Zhao J. Zhang L. Wei F. Lian Y. Wu Y. Gong Z. Zhang S. Zhou J. Cao K. Li X. Xiong W. Li G. Zeng Z. Guo C. Role of tumor microenvironment in tumorigenesis. J. Cancer 2017 8 5 761 773 10.7150/jca.17648 28382138
    [Google Scholar]
  4. Rofstad E.K. Gaustad J.V. Egeland T.A.M. Mathiesen B. Galappathi K. Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int. J. Cancer 2010 127 7 1535 1546 10.1002/ijc.25176 20091868
    [Google Scholar]
  5. Vaupel P. Kelleher D.K. Höckel M. Oxygenation status of malignant tumors: Pathogenesis of hypoxia and significance for tumor therapy. Semin. Oncol. 2001 28 2 Suppl. 8 29 35 10.1016/S0093‑7754(01)90210‑6 11395850
    [Google Scholar]
  6. Wenger R. Kurtcuoglu V. Scholz C. Marti H. Hoogewijs D. Frequently asked questions in hypoxia research. Hypoxia 2015 3 35 43 10.2147/HP.S92198 27774480
    [Google Scholar]
  7. Bayer C. Vaupel P. Acute versus chronic hypoxia in tumors: Controversial data concerning time frames and biological consequences. Controversial data concerning time frames and biological consequences. Strahlentherapie und Onkologie Organ der Deutschen Rontgengesellschaft 2012 188 7 616 627 10.1007/s00066‑012‑0085‑4 22454045
    [Google Scholar]
  8. Vaupel P. Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 2004 9 S5 Suppl. 5 4 9 10.1634/theoncologist.9‑90005‑4 15591417
    [Google Scholar]
  9. Rosic G. Selakovic D. Omarova S. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials. Adv. Biol. Ear. Sci. 2024 9 9 11 34 10.62476/abes9s11
    [Google Scholar]
  10. Huseynov E. Khalilov R. Mohamed A.J. Novel nanomaterials for hepatobiliary diseases treatment and future perspectives. Adv. Biol. Ear. Sci. 2024 9 9 81 91 10.62476/abes9s81
    [Google Scholar]
  11. Salahshour P. Abdolmaleki S. Monemizadeh S. Gholizadeh S. Khaksar S. Nanobiomaterials/bioinks based scaffolds in 3d bioprinting for tissue engineering and artificial human organs. Adv. Biol. Ear. Sci. 2024 9 9 97 104 10.62476/abes9s97
    [Google Scholar]
  12. Ullah N. Hasnain S.Z.U. Baloch R. Amin A. Nasibova A. Selakovic D. Rosic G.L. Islamov S. Naraliyeva N. Jaradat N. Mammadova A.O. Exploring essential oil-based bio-composites: molecular docking and in vitro analysis for oral bacterial biofilm inhibition. Front Chem. 2024 12 1383620 10.3389/fchem.2024.1383620 39086984
    [Google Scholar]
  13. Godet I. Doctorman S. Wu F. Gilkes D.M. Detection of hypoxia in cancer models: Significance, challenges, and advances. Cells 2022 11 4 686 10.3390/cells11040686 35203334
    [Google Scholar]
  14. Hammond E.M. Asselin M.C. Forster D. O’Connor J.P. Senra J.M. Williams K.J. The meaning, measurement and modification of hypoxia in the laboratory and the clinic. Clin. Oncol. 2014 26 5 277 288 10.1016/j.clon.2014.02.002 24602562
    [Google Scholar]
  15. Chi J.T. Wang Z. Nuyten D.S.A. Rodriguez E.H. Schaner M.E. Salim A. Wang Y. Kristensen G.B. Helland Å. Børresen-Dale A.L. Giaccia A. Longaker M.T. Hastie T. Yang G.P. van de Vijver M.J. Brown P.O. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 2006 3 3 e47 10.1371/journal.pmed.0030047 16417408
    [Google Scholar]
  16. Iyer N.V. Kotch L.E. Agani F. Leung S.W. Laughner E. Wenger R.H. Gassmann M. Gearhart J.D. Lawler A.M. Yu A.Y. Semenza G.L. Cellular and developmental control of O 2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 1998 12 2 149 162 10.1101/gad.12.2.149 9436976
    [Google Scholar]
  17. Iliopoulos O. Levy A.P. Jiang C. Kaelin W.G. Jr Goldberg M.A. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl. Acad. Sci. USA 1996 93 20 10595 10599 10.1073/pnas.93.20.10595 8855223
    [Google Scholar]
  18. Semenza G.L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest. 2013 123 9 3664 3671 10.1172/JCI67230 23999440
    [Google Scholar]
  19. Libutti S.K. Tamarkin L. Nilubol N. Targeting the invincible barrier for drug delivery in solid cancers: interstitial fluid pressure. Oncotarget 2018 9 87 35723 35725 10.18632/oncotarget.26267 30515264
    [Google Scholar]
  20. Guo K. Searfoss G. Krolikowski D. Pagnoni M. Franks C. Clark K. Yu K.T. Jaye M. Ivashchenko Y. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ. 2001 8 4 367 376 10.1038/sj.cdd.4400810 11550088
    [Google Scholar]
  21. An W.G. Kanekal M. Simon M.C. Maltepe E. Blagosklonny M.V. Neckers L.M. Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 1998 392 6674 405 408 10.1038/32925 9537326
    [Google Scholar]
  22. Roberts A.M. Watson I.R. Evans A.J. Foster D.A. Irwin M.S. Ohh M. Suppression of hypoxia-inducible factor 2alpha restores p53 activity via Hdm2 and reverses chemoresistance of renal carcinoma cells. Cancer Res. 2009 69 23 9056 9064 10.1158/0008‑5472.CAN‑09‑1770 19920202
    [Google Scholar]
  23. Krishnamachary B. Zagzag D. Nagasawa H. Rainey K. Okuyama H. Baek J.H. Semenza G.L. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. 2006 66 5 2725 2731 10.1158/0008‑5472.CAN‑05‑3719 16510593
    [Google Scholar]
  24. Staller P. Sulitkova J. Lisztwan J. Moch H. Oakeley E.J. Krek W. Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 2003 425 6955 307 311 10.1038/nature01874 13679920
    [Google Scholar]
  25. Petrova V. Annicchiarico-Petruzzelli M. Melino G. Amelio I. The hypoxic tumour microenvironment. Oncogenesis 2018 7 1 10 10.1038/s41389‑017‑0011‑9 29362402
    [Google Scholar]
  26. Conway E. Collen D. Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 2001 49 3 507 521 10.1016/S0008‑6363(00)00281‑9 11166264
    [Google Scholar]
  27. Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005 438 7070 932 936 10.1038/nature04478 16355210
    [Google Scholar]
  28. de la Puente P. Muz B. Azab F. Azab A.K. Cell trafficking of endothelial progenitor cells in tumor progression. Clin. Cancer Res. 2013 19 13 3360 3368 10.1158/1078‑0432.CCR‑13‑0462 23665736
    [Google Scholar]
  29. Muz B. de la Puente P. Azab F. Luderer M. Azab A.K. The role of hypoxia and exploitation of the hypoxic environment in hematologic malignancies. Mol. Cancer Res. 2014 12 10 1347 1354 10.1158/1541‑7786.MCR‑14‑0028 25158954
    [Google Scholar]
  30. Zhang L. Hill R.P. Hypoxia enhances metastatic efficiency by up-regulating Mdm2 in KHT cells and increasing resistance to apoptosis. Cancer Res. 2004 64 12 4180 4189 10.1158/0008‑5472.CAN‑03‑3038 15205329
    [Google Scholar]
  31. Luoto K.R. Kumareswaran R. Bristow R.G. Tumor hypoxia as a driving force in genetic instability. Genome Integr. 2013 4 1 5 10.1186/2041‑9414‑4‑5 24152759
    [Google Scholar]
  32. Kondo A. Safaei R. Mishima M. Niedner H. Lin X. Howell S.B. Hypoxia-induced enrichment and mutagenesis of cells that have lost DNA mismatch repair. Cancer Res. 2001 61 20 7603 7607 11606400
    [Google Scholar]
  33. Pires I.M. Bencokova Z. Milani M. Folkes L.K. Li J.L. Stratford M.R. Harris A.L. Hammond E.M. Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res. 2010 70 3 925 935 10.1158/0008‑5472.CAN‑09‑2715 20103649
    [Google Scholar]
  34. Brurberg K.G. Graff B.A. Olsen D.R. Rofstad E.K. Tumor-line specific pO2 fluctuations in human melanoma xenografts. Int. J. Radiat. Oncol. Biol. Phys. 2004 58 2 403 409 10.1016/j.ijrobp.2003.09.049 14751509
    [Google Scholar]
  35. Kimura H. Braun R.D. Ong E.T. Hsu R. Secomb T.W. Papahadjopoulos D. Hong K. Dewhirst M.W. Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res. 1996 56 23 5522 5528 8968110
    [Google Scholar]
  36. Agani F. Jiang B.H. Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr. Cancer Drug Targets 2013 13 3 245 251 10.2174/1568009611313030003 23297826
    [Google Scholar]
  37. Courtnay R. Ngo D.C. Malik N. Ververis K. Tortorella S.M. Karagiannis T.C. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol. Biol. Rep. 2015 42 4 841 851 10.1007/s11033‑015‑3858‑x 25689954
    [Google Scholar]
  38. Richard D.E. Berra E. Gothié E. Roux D. Pouysségur J. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J. Biol. Chem. 1999 274 46 32631 32637 10.1074/jbc.274.46.32631 10551817
    [Google Scholar]
  39. Royds J. A. Dower S. K. Qwarnstrom E. E. Lewis C. E. Response of tumour cells to hypoxia: role of p53 and NFkB Molecular pathology : MP 1998 51 2 55 61 10.1136/mp.51.2.55
    [Google Scholar]
  40. Tafani M. Pucci B. Russo A. Schito L. Pellegrini L. Perrone G.A. Villanova L. Salvatori L. Ravenna L. Petrangeli E. Russo M.A. Modulators of HIF1α and NFkB in cancer treatment: Is it on? Front. Pharmacol. 2013 4 13 10.3389/fphar.2013.00013 23408731
    [Google Scholar]
  41. Semenza G.L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 2012 33 4 207 214 10.1016/j.tips.2012.01.005 22398146
    [Google Scholar]
  42. Bertout J.A. Patel S.A. Simon M.C. The impact of O2 availability on human cancer. Nat. Rev. Cancer 2008 8 12 967 975 10.1038/nrc2540 18987634
    [Google Scholar]
  43. Zagzag D. Krishnamachary B. Yee H. Okuyama H. Chiriboga L. Ali M.A. Melamed J. Semenza G.L. Stromal cell-derived factor-1alpha and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res. 2005 65 14 6178 6188 10.1158/0008‑5472.CAN‑04‑4406 16024619
    [Google Scholar]
  44. Pasquier E. Kavallaris M. André N. Metronomic chemotherapy: new rationale for new directions. Nat. Rev. Clin. Oncol. 2010 7 8 455 465 10.1038/nrclinonc.2010.82 20531380
    [Google Scholar]
  45. Kerbel R.S. Kamen B.A. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer 2004 4 6 423 436 10.1038/nrc1369 15170445
    [Google Scholar]
  46. Krock B.L. Skuli N. Simon M.C. Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2011 2 12 1117 1133 10.1177/1947601911423654 22866203
    [Google Scholar]
  47. Carmeliet P. Jain R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011 473 7347 298 307 10.1038/nature10144 21593862
    [Google Scholar]
  48. Lou Y. McDonald P.C. Oloumi A. Chia S. Ostlund C. Ahmadi A. Kyle A. auf dem Keller U. Leung S. Huntsman D. Clarke B. Sutherland B.W. Waterhouse D. Bally M. Roskelley C. Overall C.M. Minchinton A. Pacchiano F. Carta F. Scozzafava A. Touisni N. Winum J.Y. Supuran C.T. Dedhar S. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011 71 9 3364 3376 10.1158/0008‑5472.CAN‑10‑4261 21415165
    [Google Scholar]
  49. Jahanban-Esfahlan R. de la Guardia M. Ahmadi D. Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J. Cell. Physiol. 2018 233 3 2019 2031 10.1002/jcp.25859 28198007
    [Google Scholar]
  50. Funaki R. Okamoto W. Endo C. Morita Y. Kihira K. Komatsu T. Genetically engineered haemoglobin wrapped covalently with human serum albumins as an artificial O 2 carrier. J. Mater. Chem. B Mater. Biol. Med. 2020 8 6 1139 1145 10.1039/C9TB02184A 31840728
    [Google Scholar]
  51. Mansilla S. Llovera L. Portugal J. Chemotherapeutic targeting of cell death pathways. Anticancer. Agents Med. Chem. 2012 12 3 226 238 10.2174/187152012800228805 22263795
    [Google Scholar]
  52. Walsh J.C. Lebedev A. Aten E. Madsen K. Marciano L. Kolb H.C. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid. Redox Signal. 2014 21 10 1516 1554 10.1089/ars.2013.5378 24512032
    [Google Scholar]
  53. Agius L.M. Hypoxia induces therapeutic resistance and enhances subsequent reformulated tumorigenesis and metastasis. Cancer Rep. Rev. 2016 1 10.15761/CRR.1000101
    [Google Scholar]
  54. McClean S. Hill B.T. Modified multiple drug resistance phenotype of Chinese hamster ovary cells selected with X-rays and vincristine versus X-rays only. Br. J. Cancer 1994 69 4 711 716 10.1038/bjc.1994.134 7908216
    [Google Scholar]
  55. Zhang G-J. Gao R. Wang J-S. Fu J-K. Zhang M-X. Jin X. Various doses of fractioned irradiation modulates multidrug resistance 1 expression differently through hypoxia-inducible factor 1α in esophageal cancer cells. Dis. Esophagus 2011 24 7 481 488 10.1111/j.1442‑2050.2010.01168.x 21309917
    [Google Scholar]
  56. Sullivan R. Graham C. Chemosensitization of cancer by nitric oxide. Curr. Pharm. Des. 2008 14 11 1113 1123 10.2174/138161208784246225 18473858
    [Google Scholar]
  57. Wu H.M. Shao L.J. Jiang Z.F. Liu R.Y. Gemcitabine-induced autophagy protects human lung cancer cells from apoptotic death. Lung 2016 194 6 959 966 10.1007/s00408‑016‑9936‑6 27604425
    [Google Scholar]
  58. Sia J. Szmyd R. Hau E. Gee H.E. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front. Cell Dev. Biol. 2020 8 41 10.3389/fcell.2020.00041 32117972
    [Google Scholar]
  59. van den Boogaard W.M.C. Komninos D.S.J. Vermeij W.P. Chemotherapy side-effects. Cancers 2022 14 3 627 10.3390/cancers14030627 35158895
    [Google Scholar]
  60. Vilema-Enríquez G. Arroyo A. Grijalva M. Amador-Zafra R.I. Camacho J. Molecular and cellular effects of hydrogen peroxide on human lung cancer cells: Potential therapeutic implications. Oxid. Med. Cell. Longev. 2016 2016 1 1908164 10.1155/2016/1908164 27375834
    [Google Scholar]
  61. Lennicke C. Rahn J. Lichtenfels R. Wessjohann L.A. Seliger B. Hydrogen peroxide – production, fate and role in redox signaling of tumor cells. Cell Commun. Signal. 2015 13 1 39 10.1186/s12964‑015‑0118‑6 26369938
    [Google Scholar]
  62. Manotham K. Tanaka T. Matsumoto M. Ohse T. Inagi R. Miyata T. Kurokawa K. Fujita T. Ingelfinger J.R. Nangaku M. Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int. 2004 65 3 871 880 10.1111/j.1523‑1755.2004.00461.x 14871406
    [Google Scholar]
  63. Greenberger L.M. Horak I.D. Filpula D. Sapra P. Westergaard M. Frydenlund H.F. Albæk C. Schrøder H. Ørum H. A RNA antagonist of hypoxia-inducible factor-1α, EZN-2968, inhibits tumor cell growth. Mol. Cancer Ther. 2008 7 11 3598 3608 10.1158/1535‑7163.MCT‑08‑0510 18974394
    [Google Scholar]
  64. Hu J. Handisides D.R. Van Valckenborgh E. De Raeve H. Menu E. Vande Broek I. Liu Q. Sun J.D. Van Camp B. Hart C.P. Vanderkerken K. Targeting the multiple myeloma hypoxic niche with TH-302, a hypoxia-activated prodrug. Blood 2010 116 9 1524 1527 10.1182/blood‑2010‑02‑269126 20530289
    [Google Scholar]
  65. Erler J.T. Bennewith K.L. Cox T.R. Lang G. Bird D. Koong A. Le Q.T. Giaccia A.J. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 2009 15 1 35 44 10.1016/j.ccr.2008.11.012 19111879
    [Google Scholar]
  66. Azab A.K. Azab F. Blotta S. RhoA and Rac1 GTPases play major and differential roles in stromal cell–derived factor-1–induced cell adhesion and chemotaxis in multiple myeloma. Blood 2019 143 25 2674 10.1182/blood.2024025276 38900475
    [Google Scholar]
  67. Munshi N.C. Anderson K.C. Minimal residual disease in multiple myeloma. J. Clin. Oncol. 2013 31 20 2523 2526 10.1200/JCO.2013.49.2124 23733782
    [Google Scholar]
  68. Lee C.T. Mace T. Repasky E.A. Hypoxia-driven immunosuppression: A new reason to use thermal therapy in the treatment of cancer? Int. J. Hyperthermia 2010 26 3 232 246 10.3109/02656731003601745 20388021
    [Google Scholar]
  69. Noman M.Z. Hasmim M. Messai Y. Terry S. Kieda C. Janji B. Chouaib S. Hypoxia: a key player in antitumor immune response. A review in the theme: Cellular responses to hypoxia. Am. J. Physiol. Cell Physiol. 2015 309 9 C569 C579 10.1152/ajpcell.00207.2015 26310815
    [Google Scholar]
  70. Siemens D.R. Hu N. Sheikhi A.K. Chung E. Frederiksen L.J. Pross H. Graham C.H. Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res. 2008 68 12 4746 4753 10.1158/0008‑5472.CAN‑08‑0054 18559521
    [Google Scholar]
  71. Zaarour R.F. Azakir B. Hajam E.Y. Nawafleh H. Zeinelabdin N.A. Engelsen A.S.T. Thiery J. Jamora C. Chouaib S. Role of hypoxia-mediated autophagy in tumor cell death and survival. Cancers 2021 13 3 533 10.3390/cancers13030533 33573362
    [Google Scholar]
  72. Daskalaki I. Gkikas I. Tavernarakis N. Hypoxia and selective autophagy in cancer development and therapy. Front. Cell Dev. Biol. 2018 6 104 10.3389/fcell.2018.00104 30250843
    [Google Scholar]
  73. Rampling R. Cruickshank G. Lewis A.D. Fitzsimmons S.A. Workman P. Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 1994 29 3 427 431 10.1016/0360‑3016(94)90432‑4 8005794
    [Google Scholar]
  74. Tan Q. Wang M. Yu M. Zhang J. Bristow R. G. Hill R. P. Tannock I. F. Role of autophagy as a survival mechanism for hypoxic cells in tumors. International journal of radiation oncology, biology, physics 2016 29 3 427 431 10.1016/j.neo.2016.04.003
    [Google Scholar]
  75. Bartoszewska S. Collawn J.F. Bartoszewski R. The role of the hypoxia-related unfolded protein response (UPR) in the tumor microenvironment. Cancers 2022 14 19 4870 10.3390/cancers14194870 36230792
    [Google Scholar]
  76. Weinberg S.E. Chandel N.S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 2015 11 1 9 15 10.1038/nchembio.1712 25517383
    [Google Scholar]
  77. Zannella V.E. Dal Pra A. Muaddi H. McKee T.D. Stapleton S. Sykes J. Glicksman R. Chaib S. Zamiara P. Milosevic M. Wouters B.G. Bristow R.G. Koritzinsky M. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response. Clin. Cancer Res. 2013 19 24 6741 6750 10.1158/1078‑0432.CCR‑13‑1787 24141625
    [Google Scholar]
  78. Schönmeyr B.H. Wong A.K. Reid V.J. Gewalli F. Mehrara B.J. The effect of hyperbaric oxygen treatment on squamous cell cancer growth and tumor hypoxia. Ann. Plast. Surg. 2008 60 1 81 88 10.1097/SAP.0b013e31804a806a 18281803
    [Google Scholar]
  79. Chen S.Y. Tsuneyama K. Yen M.H. Lee J.T. Chen J.L. Huang S.M. Hyperbaric oxygen suppressed tumor progression through the improvement of tumor hypoxia and induction of tumor apoptosis in A549-cell-transferred lung cancer. Sci. Rep. 2021 11 1 12033 10.1038/s41598‑021‑91454‑2 34103583
    [Google Scholar]
  80. Liu X. Ye N. Liu S. Guan J. Deng Q. Zhang Z. Xiao C. Ding Z. Y. Zhang B. X. Chen X. P. Li Z. Yang X. Hyperbaric oxygen boosts pd-1 antibody delivery and t cell infiltration for augmented immune responses against solid tumors. Adv. Sci. 2021 8 15 e2100233 10.1002/advs.202100233
    [Google Scholar]
  81. Alagoz T. Buller R.E. Anderson B. Terrell K.L. Squatrito R.C. Niemann T.H. Tatman D.J. Jebson P. Evaluation of hyperbaric oxygen as a chemosensitizer in the treatment of epithelial ovarian cancer in xenografts in mice. Cancer 1995 75 9 2313 2322 10.1002/1097‑0142(19950501)75:9<2313::AID‑CNCR2820750921>3.0.CO;2‑6 7536123
    [Google Scholar]
  82. Kalns J. Krock L. Piepmeier E. Jr The effect of hyperbaric oxygen on growth and chemosensitivity of metastatic prostate cancer. Anticancer Res. 1998 18 1A 363 367 9568104
    [Google Scholar]
  83. Takiguchi N. Saito N. Nunomura M. Kouda K. Oda K. Furuyama N. Nakajima N. Use of 5-FU plus hyperbaric oxygen for treating malignant tumors: evaluation of antitumor effect and measurement of 5-FU in individual organs. Cancer Chemother. Pharmacol. 2001 47 1 11 14 10.1007/s002800000190 11221954
    [Google Scholar]
  84. Wang P. Gong S. Pan J. Wang J. Zou D. Xiong S. Zhao L. Yan Q. Deng Y. Wu N. Liao B. Hyperbaric oxygen promotes not only glioblastoma proliferation but also chemosensitization by inhibiting HIF1α/HIF2α-Sox2. Cell Death Discov. 2021 7 1 103 10.1038/s41420‑021‑00486‑0 33986256
    [Google Scholar]
  85. Salvagno M. Coppalini G. Taccone F.S. Strapazzon G. Mrakic-Sposta S. Rocco M. Khalife M. Balestra C. The normobaric oxygen paradox—hyperoxic hypoxic paradox: A novel expedient strategy in hematopoiesis clinical issues. Int. J. Mol. Sci. 2022 24 1 82 10.3390/ijms24010082 36613522
    [Google Scholar]
  86. Kim S.W. Kim I.K. Ha J.H. Yeo C.D. Kang H.H. Kim J.W. Lee S.H. Normobaric hyperoxia inhibits the progression of lung cancer by inducing apoptosis. Exp. Biol. Med. (Maywood) 2018 243 9 739 748 10.1177/1535370218774737 29763371
    [Google Scholar]
  87. Lee H.Y. Kim I.K. Lee H.I. Lee H.Y. Kang H.S. Yeo C.D. Kang H.H. Moon H.S. Lee S.H. Combination of carboplatin and intermittent normobaric hyperoxia synergistically suppresses benzo[a]pyrene-induced lung cancer. Korean J. Intern. Med. 2018 33 3 541 551 10.3904/kjim.2016.334 29237253
    [Google Scholar]
  88. Chen L. Yang Z. Liu H. Hemoglobin-based oxygen carriers: Where are we now in 2023? Medicina 2023 59 2 396 10.3390/medicina59020396 36837597
    [Google Scholar]
  89. Filippi M. Nguyen D.V. Garello F. Perton F. Bégin-Colin S. Felder-Flesch D. Power L. Scherberich A. Metronidazole-functionalized iron oxide nanoparticles for molecular detection of hypoxic tissues. Nanoscale 2019 11 46 22559 22574 10.1039/C9NR08436C 31746914
    [Google Scholar]
  90. Qi X. Wong B.L. Lau S.H. Tak-Pan Ng K. Kwok S.Y. Kin-Wai Sun C. Tzang F.C. Shao Y. Li C.X. Geng W. Ling C.C. Ma Y.Y. Liu X.B. Liu H. Liu J. Yeung W.H. Lo C.M. Man K. A hemoglobin-based oxygen carrier sensitized Cisplatin based chemotherapy in hepatocellular carcinoma. Oncotarget 2017 8 49 85311 85325 10.18632/oncotarget.19672 29156721
    [Google Scholar]
  91. Yang Z. Heater B.S. Cuddington C.T. Palmer A.F. Lee M.M.M. Chan M.K. Targeted myoglobin delivery as a strategy for enhancing the sensitivity of hypoxic cancer cells to radiation. iScience 2020 23 6 101158 10.1016/j.isci.2020.101158 32464594
    [Google Scholar]
  92. Lin T. Zhao X. Zhao S. Yu H. Cao W. Chen W. Wei H. Guo H. O 2 -generating MnO 2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics 2018 8 4 990 1004 10.7150/thno.22465 29463995
    [Google Scholar]
  93. Song D. Beringhs A.O.R. Zhuang Z. Joshi G. Tran T.H. Claffey K.P. Yuan H. Lu X. Overcoming hypoxia-induced chemoresistance to cisplatin through tumor oxygenation monitored by optical imaging. Nanotheranostics 2019 3 2 223 235 10.7150/ntno.35935 31183316
    [Google Scholar]
  94. Song G. Ji C. Liang C. Song X. Yi X. Dong Z. Yang K. Liu Z. TaOx decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy. Biomaterials 2017 112 257 263 10.1016/j.biomaterials.2016.10.020 27768978
    [Google Scholar]
  95. Cai X. Xie Z. Ding B. Shao S. Liang S. Pang M. Lin J. Monodispersed copper(I)-Based nano metal-organic framework as a biodegradable drug carrier with enhanced photodynamic therapy efficacy. Adv. Sci., 2019 6 15 1900848 10.1002/advs.201900848
    [Google Scholar]
  96. Saeb M.R. Rabiee N. Mozafari M. Verpoort F. Voskressensky L.G. Luque R. Metal–Organic Frameworks (MOFs) for Cancer Therapy. Materials 2021 14 23 7277 10.3390/ma14237277 34885431
    [Google Scholar]
  97. Zhao Y. Liang C. Mei Z. Yang H. Wang B. Xie C. Xu Y. Tian J. Oxygen-Enriched MOF-Hemoglobin X-ray nanosensitizer for enhanced cancer Radio–Radiodynamic Therapy. ACS Materials Letters 2023 5 12 3237 3247 10.1021/acsmaterialslett.3c01158
    [Google Scholar]
  98. Mizukami Y. Moriya A. Takahashi Y. Shimizu K. Konishi S. Takakura Y. Nishikawa M. Incorporation of gelatin microspheres into hepg2 human hepatocyte spheroids for functional improvement through improved oxygen supply to spheroid core. Biol. Pharm. Bull. 2020 43 8 1220 1225 10.1248/bpb.b20‑00141 32741942
    [Google Scholar]
  99. Wu X. Zhu Y. Huang W. Li J. Zhang B. Li Z. Yang X. Hyperbaric oxygen potentiates doxil antitumor efficacy by promoting tumor penetration and sensitizing cancer cells. Adv. Sci. 2018 5 8 1700859 10.1002/advs.201700859
    [Google Scholar]
  100. He H. Li Y. Jia X.R. Du J. Ying X. Lu W.L. Lou J.N. Wei Y. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 2011 32 2 478 487 10.1016/j.biomaterials.2010.09.002 20934215
    [Google Scholar]
  101. Jiang M.S. Yin X.Y. Qin B. Xuan S.Y. Yuan X.L. Yin H. Zhu C. Li X. Yang J. Du Y.Z. Luo L.H. You J. Inhibiting hypoxia and chemotherapy-induced cancer cell metastasis under a valid therapeutic effect by an assistance of biomimetic oxygen delivery. Mol. Pharm. 2019 16 11 4530 4541 10.1021/acs.molpharmaceut.9b00663 31617723
    [Google Scholar]
  102. Lucas A. Belcher D.A. Munoz C. Williams A.T. Palmer A.F. Cabrales P. Polymerized human hemoglobin increases the effectiveness of cisplatin-based chemotherapy in non-small cell lung cancer. Oncotarget 2020 11 42 3770 3781 10.18632/oncotarget.27776 33144918
    [Google Scholar]
  103. Kumar S. Dutta J. Dutta P.K. Koh J. A systematic study on chitosan-liposome based systems for biomedical applications. Int. J. Biol. Macromol. 2020 160 470 481 10.1016/j.ijbiomac.2020.05.192 32464212
    [Google Scholar]
  104. Huang B. Chen S. Pei W. Xu Y. Jiang Z. Niu C. Wang L. Oxygen-Sufficient nanoplatform for chemo-sonodynamic therapy of hypoxic tumors. Front Chem. 2020 8 358 10.3389/fchem.2020.00358 32411675
    [Google Scholar]
  105. Zhong L. Yang T. Li P. Shi L. Lai J. Gu L. Metal-organic framework-based nanotherapeutics with tumor hypoxia-relieving ability for synergistic sonodynamic/chemo-therapy. Front. Mater. 2022 9 841503 10.3389/fmats.2022.841503
    [Google Scholar]
  106. Bhandari P.N. Cui Y. Elzey B.D. Goergen C.J. Long C.M. Irudayaraj J. Oxygen nanobubbles revert hypoxia by methylation programming. Sci. Rep. 2017 7 1 9268 10.1038/s41598‑017‑08988‑7 28839175
    [Google Scholar]
  107. Zhang X. Chen X. Zhao Y. Nanozymes: Versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 2022 14 1 95 10.1007/s40820‑022‑00828‑2 35384520
    [Google Scholar]
  108. Hu D. Chen Z. Sheng Z. Gao D. Yan F. Ma T. Zheng H. Hong M. A catalase-loaded hierarchical zeolite as an implantable nanocapsule for ultrasound-guided oxygen self-sufficient photodynamic therapy against pancreatic cancer. Nanoscale 2018 10 36 17283 17292 10.1039/C8NR05548C 30198041
    [Google Scholar]
  109. Hou X. Tao Y. Li X. Pang Y. Yang C. Jiang G. Liu Y. CD44-targeting oxygen self-sufficient nanoparticles for enhanced photodynamic therapy against malignant melanoma. Int. J. Nanomedicine 2020 15 10401 10416 10.2147/IJN.S283515 33376328
    [Google Scholar]
  110. Yin J. Cao H. Wang H. Sun K. Li Y. Zhang Z. Phospholipid membrane-decorated deep-penetrated nanocatalase relieve tumor hypoxia to enhance chemo-photodynamic therapy. Acta Pharm. Sin. B 2020 10 11 2246 2257 10.1016/j.apsb.2020.06.004 33304789
    [Google Scholar]
  111. Heble A.Y. Santelli J. Armstrong A.M. Mattrey R.F. Lux J. Catalase-Loaded silica nanoparticles formulated via direct surface modification as potential oxygen generators for hypoxia relief. ACS Appl. Mater. Interfaces 2021 13 5 5945 5954 10.1021/acsami.0c19633 33497181
    [Google Scholar]
  112. Cheng X. He L. Xu J. Fang Q. Yang L. Xue Y. Wang X. Tang R. Oxygen-producing catalase-based prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy. Acta Biomater. 2020 112 234 249 10.1016/j.actbio.2020.05.035 32502633
    [Google Scholar]
  113. Shi C. Li M. Zhang Z. Yao Q. Shao K. Xu F. Xu N. Li H. Fan J. Sun W. Du J. Long S. Wang J. Peng X. Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy. Biomaterials 2020 233 119755 10.1016/j.biomaterials.2020.119755 31927233
    [Google Scholar]
  114. Hong L. Wang J. Zhou Y. Shang G. Guo T. Tang H. Li J. Luo Y. Zeng X. Zeng Z. Hu Z. Orthogonal Optimization, Characterization, and In Vitro anticancer activity evaluation of a hydrogen peroxide-responsive and oxygen-reserving nanoemulsion for hypoxic tumor photodynamic therapy. Cancers 2023 15 5 1576 10.3390/cancers15051576 36900370
    [Google Scholar]
  115. Wei J. Chen X. Shi S. Mo S. Zheng N. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures. Nanoscale 2015 7 45 19018 19026 10.1039/C5NR05675F 26515167
    [Google Scholar]
  116. Shukla A.K. Randhawa S. Saini T.C. Acharya A. Carbon nanosphere based bifunctional oxidoreductase nano-catalytic agent to mitigate hypoxia in cancer cells. Int. J. Biol. Macromol. 2023 233 123466 10.1016/j.ijbiomac.2023.123466 36739044
    [Google Scholar]
  117. Yao Y. Li P. He J. Wang D. Hu J. Yang X. Albumin-Templated Bi 2 Se 3 –MnO 2 Nanocomposites with Promoted Catalase-Like Activity for Enhanced Radiotherapy of Cancer. ACS Appl. Mater. Interfaces 2021 13 24 28650 28661 10.1021/acsami.1c05669 34124895
    [Google Scholar]
  118. Jiang F. Zhao Y. Yang C. Cheng Z. Liu M. Xing B. Ding B. Ma P. Lin J. A tumor microenvironment-responsive Co/ZIF-8/ICG/Pt nanoplatform for chemodynamic and enhanced photodynamic antitumor therapy. Dalton transactions (Cambridge, England : 2003) 2022 51 7 2798 2804 10.1039/D1DT04120G
    [Google Scholar]
  119. He J. Fu L.H. Qi C. Lin J. Huang P. Metal peroxides for cancer treatment. Bioact. Mater. 2021 6 9 2698 2710 10.1016/j.bioactmat.2021.01.026 33665502
    [Google Scholar]
  120. Zhu H. Li J. Qi X. Chen P. Pu K. Oxygenic hybrid semiconducting nanoparticles for enhanced photodynamic therapy. Nano Lett. 2018 18 1 586 594 10.1021/acs.nanolett.7b04759 29220576
    [Google Scholar]
  121. Yu Q. Huang T. Liu C. Zhao M. Xie M. Li G. Liu S. Huang W. Zhao Q. Oxygen self-sufficient NIR-activatable liposomes for tumor hypoxia regulation and photodynamic therapy. Chem. Sci. (Camb.) 2019 10 39 9091 9098 10.1039/C9SC03161H 31827751
    [Google Scholar]
  122. Zhang Z. Niu N. Gao X. Han F. Chen Z. Li S. Li J. A new drug carrier with oxygen generation function for modulating tumor hypoxia microenvironment in cancer chemotherapy. Colloids Surf. B Biointerfaces 2019 173 335 345 10.1016/j.colsurfb.2018.10.008 30316080
    [Google Scholar]
  123. Huang R. Ding Z. Jiang B.P. Luo Z. Chen T. Guo Z. Ji S.C. Liang H. Shen X.C. Artificial metalloprotein nanoanalogues: In situ catalytic production of oxygen to enhance photoimmunotherapeutic inhibition of primary and abscopal tumor growth. Small 2020 16 46 e2004345 10.1002/smll.202004345 33089606
    [Google Scholar]
  124. Zhou Z. Liang S. Zhao T. Chen X. Cao X. Qi M. Huang Y. Ju W. Yang M. Zhu D. Pang Y. Zhong L. Overcoming chemotherapy resistance using pH-sensitive hollow MnO2 nanoshells that target the hypoxic tumor microenvironment of metastasized oral squamous cell carcinoma. J. Nanobiotechnology 2021 19 1 157 10.1186/s12951‑021‑00901‑9 34039370
    [Google Scholar]
  125. Zhou T. J. Xing L. Fan Y. T. Cui P. F. Jiang H. L. Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy. J. Controll. Rel. Soci. 2019 307 44 54 10.1016/j.jconrel.2019.06.016
    [Google Scholar]
  126. Qiao Y. Yang F. Xie T. Du Z. Zhong D. Qi Y. Li Y. Li W. Lu Z. Rao J. Sun Y. Zhou M. Engineered algae: A novel oxygen-generating system for effective treatment of hypoxic cancer. Sci. Adv. 2020 6 21 eaba5996 10.1126/sciadv.aba5996 32490207
    [Google Scholar]
  127. Maleki T. Cao N. Kao C. Ko S-C. Ziaie B. Ziaie B. An ultrasonically powered implantable micro-oxygen generator (IMOG). IEEE Trans. Biomed. Eng. 2011 58 11 3104 3111 10.1109/TBME.2011.2163634 21824840
    [Google Scholar]
  128. Huang C.C. Chia W.T. Chung M.F. Lin K.J. Hsiao C.W. Jin C. Lim W.H. Chen C.C. Sung H.W. An implantable depot that can generate oxygen in situ for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. J. Am. Chem. Soc. 2016 138 16 5222 5225 10.1021/jacs.6b01784 27075956
    [Google Scholar]
  129. Islam S. Huggins R.C. Almeseri A.N.A.E. Domic M. Song S.H. Polizzotti B.D. Kim A. Totally implantable oxygen generator (TIOG) for hypoxia and hypoxemia. IEEE Trans. Biomed. Eng. 2023 70 4 1380 1388 10.1109/TBME.2022.3217164 36282828
    [Google Scholar]
  130. Phua S.Z.F. Yang G. Lim W.Q. Verma A. Chen H. Thanabalu T. Zhao Y. Catalase-Integrated hyaluronic acid as nanocarriers for enhanced photodynamic therapy in solid tumor. ACS Nano 2019 13 4 4742 4751 10.1021/acsnano.9b01087 30964974
    [Google Scholar]
  131. Yen T.Y. Stephen Z.R. Lin G. Mu Q. Jeon M. Untoro S. Welsh P. Zhang M. Catalase‐Functionalized iron oxide nanoparticles reverse hypoxia‐induced chemotherapeutic resistance. Adv. Healthc. Mater. 2019 8 20 1900826 10.1002/adhm.201900826 31557421
    [Google Scholar]
  132. Chen H. Tian J. He W. Guo Z. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 2015 137 4 1539 1547 10.1021/ja511420n 25574812
    [Google Scholar]
  133. Liang H. Wu Y. Ou X.Y. Li J.Y. Li J. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity. Nanotechnology 2017 28 46 465702 10.1088/1361‑6528/aa8d9c 28925921
    [Google Scholar]
  134. Chang C.C. Dinh T.K. Lee Y.A. Wang F.N. Sung Y.C. Yu P.L. Chiu S.C. Shih Y.C. Wu C.Y. Huang Y.D. Wang J. Lu T.T. Wan D. Chen Y. Nanoparticle delivery of MnO 2 and antiangiogenic therapy to overcome hypoxia-driven tumor escape and suppress hepatocellular carcinoma. ACS Appl. Mater. Interfaces 2020 12 40 44407 44419 10.1021/acsami.0c08473 32865389
    [Google Scholar]
  135. Chen Z. Zhang Q. Huang Q. Liu Z. Zeng L. Zhang L. Chen X. Song H. Zhang J. Photothermal MnO2 nanoparticles boost chemo-photothermal therapy-induced immunogenic cell death in tumor immunotherapy. Int. J. Pharm. 2022 617 121578 10.1016/j.ijpharm.2022.121578 35176333
    [Google Scholar]
  136. Chen Z. Liu Z. Zhang Q. Huang S. Zhang Z. Feng X. Zeng L. Lin D. Wang L. Song H. Hypoxia-ameliorated photothermal manganese dioxide nanoplatform for reversing doxorubicin resistance. Front. Pharmacol. 2023 14 1133011 10.3389/fphar.2023.1133011 36909187
    [Google Scholar]
  137. Yang D. Yang G. Sun Q. Gai S. He F. Dai Y. Zhong C. Yang P. Carbon‐Dot‐Decorated TiO 2 nanotubes toward photodynamic therapy based on water‐splitting mechanism. Adv. Healthc. Mater. 2018 7 10 1800042 10.1002/adhm.201800042 29527835
    [Google Scholar]
  138. Chen W. Sun Z. Jiang C. Sun W. Yu B. Wang W. Lu L. An All‐in‐One organic semiconductor for targeted photoxidation catalysis in hypoxic tumor. Angew. Chem. Int. Ed. 2021 60 30 16641 16648 10.1002/anie.202105206 33880849
    [Google Scholar]
  139. Zou M.Z. Liu W.L. Chen H.S. Bai X.F. Gao F. Ye J.J. Cheng H. Zhang X.Z. Advances in nanomaterials for treatment of hypoxic tumor. Natl. Sci. Rev. 2021 8 2 nwaa160 10.1093/nsr/nwaa160 34691571
    [Google Scholar]
  140. Hei Y. Chen Y. Li Q. Mei Z. Pan J. Zhang S. Xiong C. Su X. Wei S. Multifunctional immunoliposomes enhance the immunotherapeutic effects of pd-l1 antibodies against melanoma by reprogramming immunosuppressive tumor microenvironment. 2022 18 9 e2105118 10.1002/smll.202105118
    [Google Scholar]
  141. Zhao Y.Y. Zhang L. Chen Z. Zheng B.Y. Ke M. Li X. Huang J.D. Nanostructured phthalocyanine assemblies with efficient synergistic effect of type i photoreaction and photothermal action to overcome tumor hypoxia in photodynamic therapy. J. Am. Chem. Soc. 2021 143 34 13980 13989 10.1021/jacs.1c07479 34425676
    [Google Scholar]
  142. Liu Y. Li X. Shi Y. Wang Y. Zhao X. Gong X. Cai R. Song G. Chen M. Zhang X. Two-dimensional intermetallic PtBi/Pt core/shell nanoplates overcome tumor hypoxia for enhanced cancer therapy. Nanoscale 2021 13 33 14245 14253 10.1039/D1NR02561A 34477707
    [Google Scholar]
  143. Rajamani S. Radhakrishnan A. Sengodan T. Thangavelu S. Augmented anticancer activity of naringenin-loaded TPGS polymeric nanosuspension for drug resistive MCF-7 human breast cancer cells. Drug Dev. Ind. Pharm. 2018 44 11 1752 1761 10.1080/03639045.2018.1496445 29968480
    [Google Scholar]
  144. Yu W. Liu T. Zhang M. Wang Z. Ye J. Li C.X. Liu W. Li R. Feng J. Zhang X.Z. O 2 economizer for inhibiting cell respiration to combat the hypoxia obstacle in tumor treatments. ACS Nano 2019 13 2 acsnano.8b07852 10.1021/acsnano.8b07852 30698953
    [Google Scholar]
  145. Li M. Shao Y. Kim J.H. Pu Z. Zhao X. Huang H. Xiong T. Kang Y. Li G. Shao K. Fan J. Foley J.W. Kim J.S. Peng X. Unimolecular photodynamic O 2 -economizer to overcome hypoxia resistance in phototherapeutics. J. Am. Chem. Soc. 2020 142 11 5380 5388 10.1021/jacs.0c00734 32105455
    [Google Scholar]
  146. Warburg O. On respiratory impairment in cancer cells. Science 1956 124 3215 269 270 10.1126/science.124.3215.269 13351639
    [Google Scholar]
  147. Chen Y. Cairns R. Papandreou I. Koong A. Denko N.C. Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect. PLoS One 2009 4 9 e7033 10.1371/journal.pone.0007033 19753307
    [Google Scholar]
  148. Spinicci K. Jacquet P. Powathil G. Stéphanou A. Modeling the role of HIF in the regulation of metabolic key genes LDH and PDH: Emergence of Warburg phenotype. Comput. Syst. Oncol. 2022 2 3 e1040 10.1002/cso2.1040
    [Google Scholar]
  149. Kelly C.J. Hussien K. Fokas E. Kannan P. Shipley R.J. Ashton T.M. Stratford M. Pearson N. Muschel R.J. Regulation of O2 consumption by the PI3K and mTOR pathways contributes to tumor hypoxia. Radiother. Oncol. 2014 111 1 72 80 10.1016/j.radonc.2014.02.007 24631147
    [Google Scholar]
  150. Todaria M. Maity D. Awasthi R. Biogenic metallic nanoparticles as game-changers in targeted cancer therapy: recent innovations and prospects. Future Journal of Pharmaceutical Sciences 2024 10 1 25 10.1186/s43094‑024‑00601‑9
    [Google Scholar]
  151. Tiwari G. Radhakrishnan A. Shukla V.K. Quercetin loaded magnetite nanoparticles for metastatic breast cancer. J. Pharm. Negat. Results 2022 ••• 7024 7040
    [Google Scholar]
  152. Zuhrotun A. Oktaviani D.J. Hasanah A.N. Biosynthesis of gold and silver nanoparticles using phytochemical compounds. Molecules 2023 28 7 3240 10.3390/molecules28073240 37050004
    [Google Scholar]
  153. Yang T. Yao Q. Cao F. Liu Q. Liu B. Wang X. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int. J. Nanomedicine 2016 11 6679 6692 10.2147/IJN.S109695 27994464
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385328105241216042016
Loading
/content/journals/pnt/10.2174/0122117385328105241216042016
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Resistance ; Hypoxia ; Cancer ; Oxygen delivery ; hypoxia-induced autophagy ; Chemotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test