Skip to content
2000
image of Chromatography and Spectroscopic Technique-Based Rapid Characterization of Nano-Carrier Pharmaceuticals

Abstract

A nanocarrier is a novel colloidal system whose particle size ranges between 1-100 nm. It is extensively utilized in drug delivery and various other sectors, such as the pharmaceutical, food, and dairy industries. The nanocarrier systems, including solid lipid nanoparticles, micelles, liposomes, and other encapsulated compounds, have improved stability, solubility, bioavailability, and quality. Nanocarriers offer therapeutic effectiveness with low toxicity because of their biocompatibility and ability to cross body barriers. Various analytical techniques, such as chromatography and spectroscopy, are crucial in qualitative and quantitative analysis of nanocarrier-based formulations. Molecular identification and drug content determination require chromatographic techniques, particularly HPLC. Spectroscopic techniques such as LC-MS, NMR, GC-MS, CE-MS, Raman, and IR are used to analyze the interaction and molecular structure of the sample. Nanocarriers have several benefits but face various challenges like stability, drug loading, regulatory standards, and biocompatibility. Future surface engineering and nanocarrier design advancements could improve targeted drug delivery and sustained diagnostic applications, significantly impacting healthcare.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385319695240911115239
2024-10-21
2025-01-17
Loading full text...

Full text loading...

References

  1. Gu L. Zhang F. Wu J. Zhuge Y. Nanotechnology in drug delivery for liver fibrosis. Front. Mol. Biosci. 2022 8 804396 10.3389/fmolb.2021.804396 35087870
    [Google Scholar]
  2. Saeidi Z. Giti R. Rostami M. Mohammadi F. Nanotechnology-based drug delivery systems in the transdermal treatment of melanoma. Adv. Pharm. Bull. 2023 13 4 646 662 10.34172/apb.2023.070 38022807
    [Google Scholar]
  3. Saadh M.J. Jadullah R.K. Nanotechnology in drug delivery. Pharmacologyonline 2021 3 1129 1135
    [Google Scholar]
  4. Onugwu A.L. Nwagwu C.S. Onugwu O.S. Echezona A.C. Agbo C.P. Ihim S.A. Emeh P. Nnamani P.O. Attama A.A. Khutoryanskiy V.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J. Control. Release 2023 354 465 488 10.1016/j.jconrel.2023.01.018 36642250
    [Google Scholar]
  5. Danaei M. Dehghankhold M. Ataei S. Hasanzadeh Davarani F. Javanmard R. Dokhani A. Khorasani S. Mozafari M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018 10 2 57 10.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  6. Katouzian I. Faridi Esfanjani A. Jafari S.M. Akhavan S. Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends Food Sci. Technol. 2017 68 14 25 10.1016/j.tifs.2017.07.017
    [Google Scholar]
  7. Din F. Aman W. Ullah I. Qureshi O.S. Mustapha O. Shafique S. Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017 12 7291 7309 10.2147/IJN.S146315 29042776
    [Google Scholar]
  8. Mishra D.K. Shandilya R. Mishra P.K. Lipid based nanocarriers: A translational perspective. Nanomedicine 2018 14 7 2023 2050 10.1016/j.nano.2018.05.021 29944981
    [Google Scholar]
  9. Shi Z. Zhou Y. Fan T. Lin Y. Zhang H. Mei L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mat. Med. 2020 1 6 10.1016/j.smaim.2020.05.002
    [Google Scholar]
  10. Zhang H. Yang F. Zhang Q. Hui A. Wang A. Structural evolution of palygorskite as the nanocarrier of silver nanoparticles for improving antibacterial activity. ACS Appl. Bio Mater. 2022 5 8 3960 3971 10.1021/acsabm.2c00482 35831238
    [Google Scholar]
  11. Haider M. Zaki K.Z. El Hamshary M.R. Hussain Z. Orive G. Ibrahim H.O. Polymeric nanocarriers: A promising tool for early diagnosis and efficient treatment of colorectal cancer. J. Adv. Res. 2022 39 237 255 10.1016/j.jare.2021.11.008 35777911
    [Google Scholar]
  12. Pawar V. Maske P. Khan A. Ghosh A. Keshari R. Bhatt M. Responsive nanostructure for targeted drug delivery. J. Nanotheranost. 2023 4 1 555 85 10.3390/jnt4010004
    [Google Scholar]
  13. Yıldırım M. Acet Ö. Yetkin D. Acet B.Ö. Karakoc V. Odabası M. Anti-cancer activity of naringenin loaded smart polymeric nanoparticles in breast cancer. J. Drug Deliv. Sci. Technol. 2022 74 103552 10.1016/j.jddst.2022.103552
    [Google Scholar]
  14. Acet Ö. Design of enhanced smart delivery systems for therapeutic enzymes: Kinetic and release performance of dual effected enzyme-loaded nanopolymers. Catal. Lett. 2023 153 10 1 11
    [Google Scholar]
  15. Yildirim M. Acet Ö. Immunomodulatory activities of pH/temperature sensitive smart naringenin-loaded nanopolymers on the mammalian macrophages. Appl. Surf. Sci. Adv. 2023 18 100527 10.1016/j.apsadv.2023.100527
    [Google Scholar]
  16. Acet Ö. Shcharbin D. Zhogla V. Kirsanov P. Halets-Bui I. Önal Acet B. Gök T. Bryszewska M. Odabaşı M. Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications. Colloids Surf. B Biointerfac. 2023 222 113031 10.1016/j.colsurfb.2022.113031 36435026
    [Google Scholar]
  17. Mishra N. Ashique S. Garg A. Rai V.K. Dua K. Goyal A. Bhatt S. Role of siRNA-based nanocarriers for the treatment of neurodegenerative diseases. Drug Discov. Today 2022 27 5 1431 1440 10.1016/j.drudis.2022.01.003 35017085
    [Google Scholar]
  18. Rostamabadi H. Falsafi S.R. Assadpour E. Jafari S.M. Evaluating the structural properties of bioactive‐loaded nanocarriers with modern analytical tools. Compr. Rev. Food Sci. Food Saf. 2020 19 6 3266 3322 10.1111/1541‑4337.12653 33337066
    [Google Scholar]
  19. Rashmi Z.F. Zabihi F. Singh A.K. Achazi K. Schade B. Hedtrich S. Haag R. Sharma S.K. Non-ionic PEG-oligoglycerol dendron conjugated nano-carriers for dermal drug delivery. Int. J. Pharm. 2020 580 119212 10.1016/j.ijpharm.2020.119212 32165226
    [Google Scholar]
  20. Sharma B. Yadav D.K. Metabolomics and network pharmacology in the exploration of the multi-targeted therapeutic approach of traditional medicinal plants. Plants 2022 11 23 3243 10.3390/plants11233243 36501282
    [Google Scholar]
  21. Dastidar D.G. Ghosh D. Das A. Recent developments in nanocarriers for cancer chemotherapy. OpenNano 2022 8 100080 10.1016/j.onano.2022.100080
    [Google Scholar]
  22. Mishra B. Patel B.B. Tiwari S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 2010 6 1 9 24 10.1016/j.nano.2009.04.008 19447208
    [Google Scholar]
  23. Abdulbaqi I.M. Darwis Y. Khan N.A. Assi R.A. Khan A.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomedicine 2016 11 2279 2304 10.2147/IJN.S105016 27307730
    [Google Scholar]
  24. Han H. Li S. Xu M. Zhong Y. Fan W. Xu J. Zhou T. Ji J. Ye J. Yao K. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv. Drug Deliv. Rev. 2023 196 114770 10.1016/j.addr.2023.114770 36894134
    [Google Scholar]
  25. Ilkhani H. Zhong C.J. Hepel M. Magneto-plasmonic nanoparticle grid biosensor with enhanced raman scattering and electrochemical transduction for the development of nanocarriers for targeted delivery of protected anticancer drugs. Nanomaterials 2021 11 5 1326 10.3390/nano11051326 34069804
    [Google Scholar]
  26. Vijayaraghavalu S. Krishnaswami V. Sugumaran A. Perumal V. Manavalan M. Kondeti D.P. Basha S.K. Ahmed M.A. Kumar M. Nanoformulations - Insights towards characterization techniques. Curr. Drug Targets 2022 23 14 1330 1344 10.2174/1389450123666220822094248 35996238
    [Google Scholar]
  27. Jain R. Dubey S.K. Singhvi G. Stability indicating validated high-performance liquid chromatography method for simultaneous estimation of chlorin e6 and curcumin in bulk and drug-loaded lipidic nanoformulation. Sep. Sci. Plus 2023 7 2 10.1002/sscp.202200107
    [Google Scholar]
  28. Yeo S. Kim M.J. Shim Y.K. Yoon I. Lee W.K. Solid lipid nanoparticles of curcumin designed for enhanced bioavailability and anticancer efficiency. ACS Omega 2022 7 40 35875 35884 10.1021/acsomega.2c04407 36249382
    [Google Scholar]
  29. Ganesan P. Kim B. Ramalingam P. Karthivashan G. Revuri V. Park S. Kim J. Ko Y. Choi D.K. Antineuroinflammatory activities and neurotoxicological assessment of curcumin loaded solid lipid nanoparticles on LPS-stimulated BV-2 microglia cell models. Molecules 2019 24 6 1170 10.3390/molecules24061170 30934561
    [Google Scholar]
  30. Krishnaveni P. Thangapandiyan M. Raja P. Rao G.V. Pathological and molecular studies on antitumor effect of curcumin and curcumin solid lipid nanoparticles. Pak. Vet. J. 2023 43 2 213 223
    [Google Scholar]
  31. Azeem A. Rizwan M. Ahmad F.J. Iqbal Z. Khar R.K. Aqil M. Talegaonkar S. Nanoemulsion components screening and selection: A technical note. AAPS PharmSciTech 2009 10 1 69 76 10.1208/s12249‑008‑9178‑x 19148761
    [Google Scholar]
  32. Perumal A.B. Li X. Su Z. He Y. Preparation and characterization of a novel green tea essential oil nanoemulsion and its antifungal mechanism of action against Magnaporthae oryzae. Ultrason. Sonochem. 2021 76 105649 10.1016/j.ultsonch.2021.105649 34186493
    [Google Scholar]
  33. Choubey A. Gilhotra R. Singh S. Garg G. Formulation and characterization of nanomedicine (solid lipid nanoparticle) associate with the extract of Pterospermum acerifolium for the screening of neurochemicals and neuroendocrine effects. Asian J. Neurosurg. 2017 12 4 613 619 10.4103/ajns.AJNS_2_15 29114273
    [Google Scholar]
  34. Yu T.Y. Raschle T. Hiller S. Wagner G. Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. Biochim. Biophys. Acta Biomembr. 2012 1818 6 1562 1569 10.1016/j.bbamem.2011.11.012 22119777
    [Google Scholar]
  35. Siejak P. Smułek W. Nowak-Karnowska J. Dembska A. Neunert G. Polewski K. Bird cherry (prunus padus) fruit extracts inhibit lipid peroxidation in pc liposomes: Spectroscopic, HPLC, and GC–MS studies. Appl. Sci. 2022 12 15 7820 10.3390/app12157820
    [Google Scholar]
  36. Černigoj U. Gašperšič J. Fichtenbaum A. Lendero Krajnc N. Vidič J. Mitulović G. Štrancar A. Titanium dioxide nanoparticle coating of polymethacrylate-based chromatographic monoliths for phosphopetides enrichment. Anal. Chim. Acta 2016 942 146 154 10.1016/j.aca.2016.08.044 27720118
    [Google Scholar]
  37. Shi F. Zhao J.H. Liu Y. Wang Z. Zhang Y.T. Feng N.P. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int. J. Nanomed 2012 7 2033 2043 22619540
    [Google Scholar]
  38. Kim Y-J. Mathiyalagan R. Markus J. Wang C. Singh P. Ahn S. Farh M.E. Yang D.C. Abbai R. Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng. Int. J. Nanomed. 2016 11 3131 3143 10.2147/IJN.S108549 27468232
    [Google Scholar]
  39. Sowani H. Mohite P. Munot H. Shouche Y. Bapat T. Kumar A.R. Kulkarni M. Zinjarde S. Green synthesis of gold and silver nanoparticles by an actinomycete Gordonia amicalis HS-11: Mechanistic aspects and biological application. Process Biochem. 2016 51 3 374 383 10.1016/j.procbio.2015.12.013
    [Google Scholar]
  40. Xue M. Yang M. Zhang W. Li X. Gao D. Ou Z. Li Z. Li X. Liu S. Yang S. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int. J. Nanomed. 2013 8 4677 4687 10.2147/IJN.S51262 24353417
    [Google Scholar]
  41. Vembu S. Pazhamalai S. Gopalakrishnan M. Synthesis, spectral characterization, and effective antifungal evaluation of 1H-tetrazole containing 1,3,5-triazine dendrimers. Med. Chem. Res. 2016 25 9 1916 1924 10.1007/s00044‑016‑1627‑6
    [Google Scholar]
  42. Rodà F. Picciolini S. Mangolini V. Gualerzi A. Seneci P. Renda A. Sesana S. Re F. Bedoni M. Raman spectroscopy characterization of multi-functionalized liposomes as drug-delivery systems for neurological disorders. Nanomaterials 2023 13 4 699 10.3390/nano13040699 36839067
    [Google Scholar]
  43. Falanga A. Del Genio V. Kaufman E.A. Zannella C. Franci G. Weck M. Galdiero S. Engineering of janus-like dendrimers with peptides derived from glycoproteins of herpes simplex virus type 1: Toward a versatile and novel antiviral platform. Int. J. Mol. Sci. 2021 22 12 6488 10.3390/ijms22126488 34204295
    [Google Scholar]
  44. Kakkar V. Singh S. Singla D. Sahwney S. Chauhan A.S. Singh G. Pharmacokinetic applicability of a validated liquid chromatography tandem mass spectroscopy method for orally administered curcumin loaded solid lipid nanoparticles to rats. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 2010 878 32 3427 3431 10.1016/j.jchromb.2010.10.017
    [Google Scholar]
  45. Azadi S. Osanloo M. Zarenezhad E. Farjam M. Jalali A. Ghanbariasad A. Nano-scaled emulsion and nanogel containing Mentha pulegium essential oil: Cytotoxicity on human melanoma cells and effects on apoptosis regulator genes. BMC Compl. Med Ther 2023 23 1 6
    [Google Scholar]
  46. Jain K. Verma A.K. Mishra P.R. Jain N.K. Surface-engineered dendrimeric nanoconjugates for macrophage-targeted delivery of amphotericin B: Formulation development and in vitro and in vivo evaluation. Antimicrob. Agents Chemother. 2015 59 5 2479 2487 10.1128/AAC.04213‑14 25645852
    [Google Scholar]
  47. Dwivedi P. Khatik R. Khandelwal K. Taneja I. Raju K.S. Paliwal S.K. Dwivedi A.K. Mishra P.R. Pharmacokinetics study of arteether loaded solid lipid nanoparticles: An improved oral bioavailability in rats. Int. J. Pharm. 2014 466 1-2 321 327 10.1016/j.ijpharm.2014.03.036 24657144
    [Google Scholar]
  48. Alfei S. Catena S. Turrini F. Biodegradable and biocompatible spherical dendrimer nanoparticles with a gallic acid shell and a double-acting strong antioxidant activity as potential device to fight diseases from “oxidative stress”. Drug Deliv. Transl. Res. 2020 10 1 259 270 10.1007/s13346‑019‑00681‑8 31628606
    [Google Scholar]
  49. Shafaei A. Saeed M.A. Hamil M.S. Ismail Z. Application of high performance liquid chromatography and Fourier-transform infrared spectroscopy techniques for evaluating the stability of Orthosiphon aristatus ethanolic extract and its nano liposomes. Rev. Bras. Farmacogn. 2018 28 6 658 668 10.1016/j.bjp.2018.07.005
    [Google Scholar]
  50. Han J. Sharipov M. Hwang S. Lee Y. Huy B.T. Lee Y.I. Water-stable perovskite-loaded nanogels containing antioxidant property for highly sensitive and selective detection of roxithromycin in animal-derived food products. Sci. Rep. 2022 12 1 3147 10.1038/s41598‑022‑07030‑9 35210473
    [Google Scholar]
  51. Ziaee M. Moharramipour S. Mohsenifar A. MA-chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. J. Pest Sci. 2004 87 4 2014
    [Google Scholar]
  52. Cortesi R. Esposito E. Gambarin S. Telloli P. Menegatti E. Nastruzzi C. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. J. Microencapsul. 1999 16 2 251 256 10.1080/026520499289220 10080118
    [Google Scholar]
  53. Javed B. Zhao X. Cui D. Curtin J. Tian F. Enhanced anticancer response of curcumin-and piperine-loaded lignin-g-p (Nipam-co-dmaema) gold nanogels against u-251 mg glioblastoma multiforme. Biomedicines 2021 9 11 1516 10.3390/biomedicines9111516 34829745
    [Google Scholar]
  54. Nasseri M. Golmohammadzadeh S. Arouiee H. Jaafari M.R. Neamati H. Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition. Iran. J. Basic Med. Sci. 2016 19 11 1231 1237 27917280
    [Google Scholar]
  55. Reeves A. Vinogradov S.V. Morrissey P. Chernin M. Ahmed M.M. Curcumin-encapsulating nanogels as an effective anticancer formulation for intracellular uptake. Mol. Cell. Pharmacol. 2015 7 3 25 40 26937266
    [Google Scholar]
  56. Sari R.K. Prayogo Y.H. Rozan S.A. Rafi M. Wientarsih I. Antioxidant activity, sun protection activity, and phytochemical profile of ethanolic extracts of daemonorops acehensis resin and its phytosomes. Sci. Pharm. 2022 90 1 10 10.3390/scipharm90010010
    [Google Scholar]
  57. Lin E.Y. Chen Y.S. Li Y.S. Chen S.R. Lee C.H. Huang M.H. Chuang H.M. Harn H.J. Yang H.H. Lin S.Z. Tai D.F. Chiou T.W. Liposome consolidated with cyclodextrin provides prolonged drug retention resulting in increased drug bioavailability in brain. Int. J. Mol. Sci. 2020 21 12 4408 10.3390/ijms21124408 32575820
    [Google Scholar]
  58. Priscilla D. Spectroscopic and chromatographic methods for quantitative analysis of phospholipid complexes of flavonoids – a comparative study. Pharm Anal Acta. 2014 6 1
    [Google Scholar]
  59. Telange D.R. Sohail N.K. Hemke A.T. Kharkar P.S. Pethe A.M. Phospholipid complex-loaded self-assembled phytosomal soft nanoparticles: evidence of enhanced solubility, dissolution rate, ex vivo permeability, oral bioavailability, and antioxidant potential of mangiferin. Drug Deliv. Transl. Res. 2021 11 3 1056 1083 10.1007/s13346‑020‑00822‑4 32696222
    [Google Scholar]
  60. Yang B. Qi F. Tan J. Yu T. Qu C. Study of green synthesis of ultrasmall gold nanoparticles using citrus sinensis peel. Appl. Sci. 2019 9 12 2423 10.3390/app9122423
    [Google Scholar]
  61. Kumar N. Goindi S. Saini B. Bansal G. Thermal characterization and compatibility studies of itraconazole and excipients for development of solid lipid nanoparticles. J. Therm. Anal. Calorim. 2014 115 3 2375 2383 10.1007/s10973‑013‑3237‑6
    [Google Scholar]
  62. Sundaresan N. Kaliappan I. Development and characterization of a nano-drug delivery system containing vasaka phospholipid complex to improve bioavailability using quality by design approach. Res. Pharm. Sci. 2021 16 1 103 117 33953779
    [Google Scholar]
  63. Shariati Pour S.R. Oddis S. Barbalinardo M. Ravarino P. Cavallini M. Fiori J. Delivery of active peptides by self-healing, biocompatible and supramolecular hydrogels. Molecules 2023 28 6 2528
    [Google Scholar]
  64. Isacchi B. Arrigucci S. Marca G. Bergonzi M.C. Vannucchi M.G. Novelli A. Bilia A.R. Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice. J. Liposome Res. 2011 21 3 237 244 10.3109/08982104.2010.539185 21158702
    [Google Scholar]
  65. Ningaraju S. Munawer U. Raghavendra V.B. Balaji K.S. Melappa G. Brindhadevi K. Pugazhendhi A. Chaetomium globosum extract mediated gold nanoparticle synthesis and potent anti-inflammatory activity. Anal. Biochem. 2021 612 113970 10.1016/j.ab.2020.113970 32961250
    [Google Scholar]
  66. Hu L. Xing Q. Meng J. Shang C. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech 2010 11 2 582 587 10.1208/s12249‑010‑9410‑3 20352534
    [Google Scholar]
  67. Ebrahimi H.A. Javadzadeh Y. Hamidi M. Jalali M.B. Repaglinide-loaded solid lipid nanoparticles: Effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. J. Pharm. Sci. 2015 23 1 46 10.1186/s40199‑015‑0128‑3 26392174
    [Google Scholar]
  68. Dang H. Meng M.H. Zhao H. Iqbal J. Dai R. Deng Y. Lv F. Luteolin-loaded solid lipid nanoparticles synthesis, characterization, improvement of bioavailability, pharmacokinetics in vitro and vivo studies. J. Nanopart. Res. 2014 16 4 2347 10.1007/s11051‑014‑2347‑9
    [Google Scholar]
  69. Omwoyo W.N. Ogutu B. Oloo F. Swai H. Kalombo L. Melariri P. Mahanga G.M. Gathirwa J.W. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int. J. Nanomed. 2014 9 3865 3874 25143734
    [Google Scholar]
  70. Stella B. Peira E. Dianzani C. Gallarate M. Battaglia L. Gigliotti C.L. Boggio E. Dianzani U. Dosio F. Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative. Nanomaterials 2018 8 2 110 10.3390/nano8020110 29462932
    [Google Scholar]
  71. Rahman S. Cao S. Steadman K.J. Wei M. Parekh H.S. Native and β-cyclodextrin-enclosed curcumin: entrapment within liposomes and their in vitro cytotoxicity in lung and colon cancer. Drug Deliv. 2012 19 7 346 353 10.3109/10717544.2012.721143 23030405
    [Google Scholar]
  72. Buzyurova D.N. Pashirova T.N. Zueva I.V. Burilova E.A. Shaihutdinova Z.M. Rizvanov I.K. Babaev V.M. Petrov K.A. Souto E.B. Surface modification of pralidoxime chloride-loaded solid lipid nanoparticles for enhanced brain reactivation of organophosphorus-inhibited AChE: Pharmacokinetics in rat. Toxicology 2020 444 152578 10.1016/j.tox.2020.152578 32898602
    [Google Scholar]
  73. Al Asmari A.K. Ullah Z. Tariq M. Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des. Devel. Ther. 2016 10 205 215 26834457
    [Google Scholar]
  74. Siyadatpanah A. Norouzi R. Mirzaei F. Haghirosadat B.F. Nissapatorn V. Mitsuwan W. Nawaz M. Pereira M.L. Hosseini S.A. Montazeri M. Majdizadeh M. Almeida R.S. Hemati M. Wilairatana P. Coutinho H.D. Green synthesis of nano-liposomes containing Bunium persicum and Trachyspermum ammi essential oils against Trichomonas vaginalis. J. Microbiol. Immunol. Infect. 2023 56 1 150 162 10.1016/j.jmii.2022.06.006 35864068
    [Google Scholar]
  75. Ramalingam P. Ko Y.T. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm. Res. 2015 32 2 389 402 10.1007/s11095‑014‑1469‑1 25082210
    [Google Scholar]
  76. Dai Y. Zhou R. Liu L. Lu Y. Qi J. Wu W. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int. J. Nanomed. 2013 8 1921 1933 23690687
    [Google Scholar]
  77. Liu T. Zhu W. Han C. Sui X. Liu C. Ma X. Preparation of glycyrrhetinic acid liposomes using lyophilization monophase solution method: Preformulation, optimization, and in VitroNanoscale Res. Lett. 2018 13 1 324
    [Google Scholar]
  78. Venishetty V.K. Chede R. Komuravelli R. Adepu L. Sistla R. Diwan P.V. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: A novel strategy to avoid intraduodenal administration. Colloids Surf. B Biointerfaces 2012 95 1 9 10.1016/j.colsurfb.2012.01.001 22463845
    [Google Scholar]
  79. Wang D. Veena M.S. Stevenson K. Tang C. Ho B. Suh J.D. Duarte V.M. Faull K.F. Mehta K. Srivatsan E.S. Wang M.B. Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor κB by an AKT-independent pathway. Clin. Cancer Res. 2008 14 19 6228 6236 10.1158/1078‑0432.CCR‑07‑5177
    [Google Scholar]
  80. Souza L.G. Silva E.J. Martins A.L. Mota M.F. Braga R.C. Lima E.M. Valadares M.C. Taveira S.F. Marreto R.N. Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur. J. Pharm. Biopharm. 2011 79 1 189 196 10.1016/j.ejpb.2011.02.012 21352915
    [Google Scholar]
  81. Zhang Z. Gao F. Bu H. Xiao J. Li Y. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. Nanomedicine 2012 8 5 740 7
    [Google Scholar]
  82. Hansraj G.P. Singh S.K. Kumar P. Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential. Int. J. Biol. Macromol. 2015 81 467 476 10.1016/j.ijbiomac.2015.08.035 26299709
    [Google Scholar]
  83. Botteon C.E. Silva L.B. Ccana-Ccapatinta G.V. Silva T.S. Ambrosio S.R. Veneziani R.C. Bastos J.K. Marcato P.D. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci. Rep. 2021 11 1 1974 10.1038/s41598‑021‑81281‑w 33479338
    [Google Scholar]
  84. Mosallaei N. Jaafari M.R. Hanafi-Bojd M.Y. Golmohammadzadeh S. Malaekeh-Nikouei B. Docetaxel-loaded solid lipid nanoparticles: Preparation, characterization, in vitro and in vivo evaluations. J. Pharm. Sci. 2013 102 6 1994 2004 10.1002/jps.23522 23558514
    [Google Scholar]
  85. Lee S.Y. Krishnamurthy S. Cho C.W. Yun Y.S. Biosynthesis of gold nanoparticles using Ocimum Sanctum extracts by solvents with different polarity. ACS Sustain. Chem. Eng. 2016 4 5 2651 2659 10.1021/acssuschemeng.6b00161
    [Google Scholar]
  86. Vijayakumar A. Baskaran R. Jang Y.S. Oh S.H. Yoo B.K. Quercetin-loaded solid lipid nanoparticle dispersion with improved physicochemical properties and cellular uptake. AAPS PharmSciTech 2017 18 3 875 883 10.1208/s12249‑016‑0573‑4 27368922
    [Google Scholar]
  87. Aboud H.M. El komy M.H. Ali A.A. El Menshawe S.F. Abd Elbary A. Development, optimization, and evaluation of carvedilol-loaded solid lipid nanoparticles for intranasal drug delivery. AAPS PharmSciTech 2016 17 6 1353 1365 10.1208/s12249‑015‑0440‑8
    [Google Scholar]
  88. da Rocha M.C. da Silva P.B. Radicchi M.A. Andrade B.Y de Oliveira J.V. Venus T. Merker C. Estrela-Lopis I. Longo J.P. Báo S.N. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J. Nanobiotechnol. 2020 18 1 43 10.1186/s12951‑020‑00604‑7 32164731
    [Google Scholar]
  89. Rigon R.B. Fachinetti N. Severino P. Durazzo A. Lucarini M. Atanasov A.G. El Mamouni S. Chorilli M. Santini A. Souto E.B. Quantification of trans-resveratrol-loaded solid lipid nanoparticles by a validated reverse-phase HPLC photodiode array. Appl. Sci. 2019 9 22 4961 10.3390/app9224961
    [Google Scholar]
  90. Dang Y.J. Zhu C.Y. Oral bioavailability of cantharidin-loaded solid lipid nanoparticles. Chinese Med 2013 8 1 1 10.1186/1749‑8546‑8‑1
    [Google Scholar]
  91. Alshawwa S.Z. Kassem A.A. Farid R.M. Mostafa S.K. Labib G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics 2022 14 4 883 10.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  92. Wicki A. Witzigmann D. Balasubramanian V. Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 2015 200 138 157 10.1016/j.jconrel.2014.12.030 25545217
    [Google Scholar]
  93. Ahmad A. Imran M. Sharma N. Precision nanotoxicology in drug development: Current trends and challenges in safety and toxicity implications of customized multifunctional nanocarriers for drug-delivery applications. Pharmaceutics 2022 14 11 2463 10.3390/pharmaceutics14112463 36432653
    [Google Scholar]
  94. Zheng K. Zhou D. Wu L. Li J. Zhao B. Zhang S. He R. Xiao L. Zoya I. Yu L. Zhang Y. Li Y. Gao J. Li K. Gold-nanoparticle-based multistage drug delivery system for antitumor therapy. Drug Deliv. 2022 29 1 3186 3196 10.1080/10717544.2022.2128469 36226475
    [Google Scholar]
  95. Kim T. Nam K. Kim Y.M. Yang K. Roh Y.H. DNA-assisted smart nanocarriers: Progress, challenges, and opportunities. ACS Nano 2021 15 2 1942 1951 10.1021/acsnano.0c08905 33492127
    [Google Scholar]
  96. Sabir F. Zeeshan M. Laraib U. Barani M. Rahdar A. Cucchiarini M. Pandey S. Dna based and stimuli-responsive smart nanocarrier for diagnosis and treatment of cancer: Applications and challenges. Cancers 2021 13 14 3396 10.3390/cancers13143396 34298610
    [Google Scholar]
  97. Habib S. Shakoor R.A. Kahraman R. A focused review on smart carriers tailored for corrosion protection: Developments, applications, and challenges. Prog. Org. Coat. 2021 154 106218 10.1016/j.porgcoat.2021.106218
    [Google Scholar]
  98. Nishiyama N. Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 2006 112 3 630 648 10.1016/j.pharmthera.2006.05.006 16815554
    [Google Scholar]
  99. Shao M. Hussain Z. Thu H.E. Khan S. Katas H. Ahmed T.A. Tripathy M. Leng J. Qin H.L. Bukhari S.N. Drug nanocarrier, the future of atopic diseases: Advanced drug delivery systems and smart management of disease. Colloids Surf. B Biointer. 2016 147 475 491 10.1016/j.colsurfb.2016.08.027 27592075
    [Google Scholar]
  100. Review A. Fused deposition modeling 3d-printed scaffolds for bone tissue engineering applications Ann. Biomed. Eng. 2024
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385319695240911115239
Loading
/content/journals/pnt/10.2174/0122117385319695240911115239
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: LC-MS ; HPLC ; chromatography ; nanocarriers ; Nanotechnology ; targeted drug delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test